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Abstract: We describe a setting of a nonlinear fluid-structure interaction problem and the cor-
responding solution process in the finite element software package deal.II. The fluid equations
are transformed via the ALE mapping (Arbitrary Lagrangian Eulerian framework) to a reference
configuration and these are coupled with the structure equations by a monolithic solution algo-
rithm. To construct the ALE mapping, we use a biharmonic equation. Finite differences are used
for temporal discretization. The derivation is realized in a general manner that serves for different
time stepping schemes. Spatial discretization is based on a Galerkin finite element scheme. The
nonlinear system is solved by a Newton method. Using this approach, the Jacobian matrix is
constructed by exact computation of the directional derivatives. The implementation using the
software library package deal.II serves for the computation of different fluid-structure configura-
tions. Specifically, our geometry data are taken from the fluid-structure benchmark configuration
that was proposed in 2006 in the DFG project Fluid-Structure Interaction I: Modelling, Simulation, Op-
timisation. Our results show that this implementation using deal.II is able to produce comparable
findings.

1 Introduction

Fluid-structure interactions occur in many situations in industry and biomedical engineering
(Jianhai et al., 2006; Piperno and Farhat, 2001; Tallec and Mouro, 2001; Figueroa et al., 2006;
Santos et al., 2008; Nobile and Vergara, 2008; Vierendeels et al., 2008). Typically, the fluid and
the structure equations are modeled in different coordinate systems making a common solution
approach challenging. Fluid flows are modeled in an Eulerian framework whereas the structure
is treated in Lagrangian coordinates. In this work, we use a monolithic approach in which all
equations are solved simultaneously (Hron, 2001; Hron and Turek, 2006; Fernández and Gerbeau,
2009; Bungartz and Schäfer, 2006; Richter and Wick, 2010; Bungartz et al., 2010; Wick, 2011) and the
many references cited therein. Employing this approach, the interface conditions, the continuity
of velocity and the normal stresses, are automatically achieved at each time step (strongly coupled
approach (Fernández and Gerbeau, 2009; Wall et al., 2007; Matthies et al., 2006; Tezduyar et al.,
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2006)). The coupling leads to additional nonlinear behavior of the overall system. However, a
strong coupling can also be achieved by solving the two systems iteratively (for an brief overview,
we refer the reader to (Fernández and Gerbeau, 2009)). In such settings, the problem is seen as
a non-overlapping domain decomposition method (Küttler and Wall, 2008; Mok and Wall, 2001;
Deparis et al., 2006). In such a system, the coupling can be treated as Dirichlet-Neumann coupling,
which is subject of a discussion in (Küttler and Wall, 2008) or leading to an approach in which the
whole problem is reduced to only solving interface variables (Deparis et al., 2006).

Using a monolithic formulation is motivated by three issues. First, a coupled monolithic varia-
tional formulation is an inevitable prerequisite for gradient based optimization methods (Becker
et al., 2000), for rigorous goal oriented error estimation and mesh adaptation (Becker and Ran-
nacher, 2001). The latter issue has already been investigated for stationary fluid-structure interac-
tion settings in (van der Zee et al., 2008; Richter, 2012; Wick, 2012). In addition, the programming
code serves for the modeling and simulation of bio-medical applications in hemodynamics (Wick,
2011). Here, the densities of the blood and the vessels walls are of the same order, leading to
the so-called ‘added-mass’ effect (Causin et al., 2005). This artefact causes numerical instabilities
when using partitioned solution algorithms.

For fluid-structure interaction based on the ‘arbitrary Lagrangian-Eulerian’ (ALE) frame of refer-
ence, the choice of appropriate fluid mesh movement is important. We emphasize that the ALE
framework is a standard framework nowadays to solving fluid-structure interactions (Donéa
et al., 1977; Ghattas and Li, 1995; Hirt et al., 1974; Hughes et al., 1981). The crucial issue in this
framework is the construction of the fluid mesh motion. In this study, we use the biharmonic
operator (in a mixed formulation) for the mesh motion. It has the advantage to enable large de-
formations of the structure but has increased computational cost (Helenbrook, 2001; Wick, 2011).
These ingredients lead to a solvable semi-linear form of the coupled setting on the continuous
level.

Afterwards, we discretize this setting. Temporal discretization is based on finite differences and a
formulation as one step-θ scheme (see, e.g., (Turek, 1999)), from which we can extract the implicit
Euler, Crank-Nicolson, and the shifted Crank-Nicolson scheme.

Spatial discretization is realized by a standard Galerkin finite element approach by using the
Qc

2/P
dc
1 element for fluid flows and Qc

2 for structural discretization (Girault and Raviart, 1986). The
solution of the nonlinear discretized system can be achieved with a Newton method, which is very
attractive because it provides robust and rapid convergence. The Jacobian matrix is derived by
exact linearization (Fernández and Moubachir, 2005) that is demonstrated by an example. A very
detailed consideration is undertaken in (Wick, 2011). Because the development of preconditioners
for iterative linear solvers is difficult for fully coupled problems (however, suggestions have been
made (Heil, 2004; Badia et al., 2008; Richter, 2010)), we use a direct solver (UMFPACK Davis and
Duff (1997)) to solve the linear systems. Nevertheless, we extract the block-structure to clearify the
inner sub-structure of the system matrix (Jacobian). This knowledge facilitates the development
of a preconditioner that is based on a Block-Schur complement iteration.

In the last section, we consider three numerical examples that are taken from (Bungartz and
Schäfer, 2006). The provided programming code is able to reproduce these results and is based
on the finite element software library deal.II (Bangerth et al., 2012).

The outline of this paper is as follows. In Section 2, we introduce the equations for the fluid
and the structure and their coupling in a monolithic fashion. In Section 3, the discretization and
the linearization of the unsteady nonlinear problem are subject of our discussion. After these
considerations, we extract the inner structure of the system matrix. In the last section, we discuss
three results that are motivated by the fluid-structure benchmark computations and which are
derived with the accompanying source code. In the appendices, we describe how to run the
provided source code and we give a brief explication of the features of the source code.
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2 Equations in Variational Formulation

We denote by Ω ⊂ Rd, d = 2, 3, the domain of the fluid-structure interaction problem. This domain
is supposed to be time independent but consists of two time dependent subdomains Ω f (t) and
Ωs(t). The interface between both domains is denoted by Γi(t) = ∂Ω f (t) ∩ ∂Ωs(t). The initial (i.e.,
the reference) domains are denoted by Ω̂ f and Ω̂s, respectively, with their common interface Γ̂i.
Furthermore, we denote the outer boundary with ∂Ω̂ = Γ̂ = Γ̂D ∪ Γ̂N where Γ̂D and Γ̂N denote
Dirichlet and Neumann boundaries, respectively.

We adopt standard notation for the usual Lebesgue and Sobolev spaces (Wloka, 1982). We use
the notation (·, ·)X for a scalar product on a Hilbert space X and 〈·, ·〉∂X for the scalar product on
the boundary ∂X. We indicate by Lp(X), 1 ≤ p ≤ ∞ the standard Lebesgue space that consists of
measurable functions u, which are Lebesgue-integrable to the p-th power. The set Lp(X) forms
a Banach space with the norm ‖u‖Lp(X). For p = 2,Hm(X) := Wm,2(X) is a Hilbert space equipped
with the norm || · ||Hm(X) (Wloka, 1982). Finally, we indicate the subspace Wm,p(X) of functions with
zero trace on ∂X by Wm,p

0 (X). Specifically, we define H1
0(X) = {u ∈ H1(X) : u = 0 on ΓD ⊂ ∂X}. We

use frequently the short notation

V̂ := H1(X), V̂0 := H1
0(X),

and
L̂ := L2(X), L̂0 := L2(X)/R.

2.1 The coupled problem on the continuous level

In this work, the interaction of an incompressible Newtonian fluid and an elastic structure of
hyperbolic type is studied. The equations for fluid and structure are defined in their natural
frameworks. In the fluid problem, we aim to find a vector-valued velocity v and scalar-valued
pressure such that:

ρ f ∂tv f

∣∣∣
Â

+ ρ f (v f − ∂tu f ) · ∇v f − divσ f = 0 in Ω f (t),

divv f = 0 in Ω f (t),

v f = vD on Γ f ,in(t), σn f = g f ,N on Γ f ,N(t), (1)

with the Cauchy stress tensor σ f . With the help of the (undamped) structure problem, we aim to
find a vector-valued displacement û such that:

ρ̂s∂
2
t ûs − d̂iv(F̂Σ̂s) = 0 in Ω̂s,

û f = 0 on Γ̂s,D, F̂Σ̂sn̂s = 0 on Γ̂s,N, (2)

with the second Piola-Kirchhoff tensor Σ̂s and the deformation gradient F̂ = I + ∇̂û, where I
denotes the identity tensor. The coupling conditions are given by (with det(F̂) = J):

v f = ∂tu f on Γi(t), F̂Σ̂sns + Ĵ̂σF̂−Tn̂ f = 0 on Γ̂i, (3)

where ∂tû f denotes the fluid domain velocity that satisfies ∂tû f = v̂s on Γ̂i. The stress tensors, σ f

and Σ̂s, are defined by

σ f := −p f I + ρ fν f (∇v f + ∇vT
f ),

Σ̂s := (λs(trÊ)I + 2µsÊ), Ê =
1
2

(F̂TF̂ − I).

The viscosity and the density of the fluid are denoted by ν f and ρ f , respectively. The elastic
(combressible) structure is characterized by the Lamé coefficients µs, λs.
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The principal unknowns are the fluid velocity v̂ f : Ω̂ f×R+
→ R3, the fluid pressure p̂ : Ω̂ f×R+

→ R,
the structure displacement ûs : Ω̂s × R+

→ R3, and the fluid domain displacement (mesh motion)
û f : Ω̂ f ×R+

→ R3. The ALE mapping is denoted by Â and transforms the reference configuration
Ω̂ f of the fluid to the physical domain Ω f (t). This mapping is defined through the extension of
the structural displacement into the fluid domain; thus û f = Ext(ûs |̂Γi

) and solving an additional

partial differential equation that is given in Section 2.2. Furthermore, any function q̂ ∈ Ω̂ can be
defined Ω by q(x) = q̂(x̂) with x = Â(x̂, t).

2.2 Construction of the ALE mapping

The fluid domain motion is constructed by posing an auxiliary equation, which is driven by the
motion of the interface Γi(t), i.e., Â = ûs on Γ̂i, leading to ∂tû f = v̂s on Γ̂i. Furthermore, we fix
all outer boundaries of the domain by û f = 0. In the fluid domain Ω̂ f , the transformation Â is
arbitrary but should satisfy certain regularity conditions (C1-diffeomorphism). Specifically, the
fluid mesh is constructed by solving a biharmonic equation (for large mesh deformations without
re-meshing):

∆2û f = 0 in Ω̂ f ,

û f = ∂nû f = 0 on Γ̂ f ,in ∪ Γ̂ f ,out,

û f = ûs and ∂nû f = ∂nûs on Γ̂i.

The ALE map is constructed by solving a mixed formulation of the biharmonic equation in the
sense of Ciarlet (Ciarlet and Raviart, 1974). We introduce an auxiliary variable ŵ = −∆̂û and
obtain two differential equations:

ŵ = −∆̂û in Ω̂,

−∆̂ŵ = 0 in Ω̂ f . (4)

with the boundary conditions

û f = ∂nû f = 0 on Γ̂ f ,in ∪ Γ̂ f ,out,

û f = ûs and ∂nû f = ∂nûs on Γ̂i.

2.3 The variational system in the reference configuration

Until now, the description of the coupled problem serves for partitioned and monolithic solution
algorithms. In the following, we concentrate on a monolithic description of the coupled problem.
Specifically, the fluid equations are transformed to a fixed reference configuration and is solved
therein. A continuous variable û in Ω̂, defining the deformation in Ω̂s, and supporting the
transformation in Ω̂ f is defined. Then, we get the standard relations

Â := id + û, F̂ := I + ∇̂û, Ĵ := det(F̂). (5)

Furthermore, the velocity v̂ is a common continuous function for both subproblems, whereas the
pressure p̂ is discontinuous. We state the monolithic setting for fluid-structure interaction with a
biharmonic mesh motion model:
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Problem 2.1 (Variational fluid-structure interaction, biharmonic mesh motion) Find {v̂, û, ŵ, p̂} ∈
{v̂D + V̂0

} × {ûD + V̂0
} × V̂ × L̂, such that v̂(0) = v̂0 and û(0) = û0, for almost all t ∈ I, and

(Ĵρ̂ f∂tv̂, ψ̂v)
Ω̂ f

+ (ρ̂ f Ĵ(F̂−1(v̂ − ∂tû f ) · ∇̂)v̂), ψ̂v)
Ω̂ f

+( Ĵ̂σ f F̂−T, ∇̂ψ̂v)
Ω̂ f

+ (ρ̂s∂tv̂, ψ̂v)
Ω̂s

+ (F̂Σ̂s, ∇̂ψ̂
v)

Ω̂s
− 〈ĝ, ψ̂v

〉̂
Γout

= 0 ∀ψ̂v
∈ V̂

0,

(∂tû − v̂, ψ̂u)
Ω̂s

+ (α̂w∇̂ŵ, ∇̂ψ̂u)
Ω̂ f
− 〈α̂wn̂ f ∇̂ŵ, ψ̂u

〉̂
Γi

= 0 ∀ψ̂u
∈ V̂

0,

(α̂uŵ, ψ̂w)
Ω̂

+ (α̂u∇̂û, ∇̂ψ̂w)
Ω̂
− 〈α̂un̂ f ∇̂û, ψ̂w

〉̂
Γi

= 0 ∀ψ̂w
∈ V̂,

(d̂iv ( ĴF̂−1v̂), ψ̂p)
Ω̂ f

= 0 ∀ψ̂p
∈ L̂,

with ρ̂ f , ρ̂s, ν f , µs, λs, F̂, Ĵ, and positive diffusion parameters α̂u and α̂w. The stress tensors, σ̂ f and σ̂s, are
defined as

σ̂ f := −p̂ f I + ρ̂ fν f (∇̂v̂F̂−1 + F̂−T
∇̂v̂T),

Σ̂s := λs(trÊ)I + 2µsÊ.

The viscosity and the density of the fluid are denoted by ν f and ρ̂ f , respectively. The function ĝ represents
Neumann boundary conditions on the outflow boundary. Specifically, we have ĝ := ρ̂ fν f Ĵ(F̂−T

∇̂v̂)F̂−T on
Γ̂out (see Figure 1). The structure is characterized by the density ρ̂s, the Lamé coefficients µs, λs. For the
STVK material, the compressibility is related to the Poisson ratio νs (νs < 1

2 ).

The Problem 2.1 is completed by an appropriate choice of the two coupling conditions on the
interface. The continuity of velocity across Γ̂i is strongly enforced by requiring one common
continuous velocity field on the whole domain Ω̂. The continuity of normal stresses is given by

( Ĵ̂σsF̂−Tn̂s, ψ̂
v )̂

Γi
= ( Ĵ̂σ f F̂−Tn̂ f , ψ̂

v )̂
Γi
. (6)

By omitting this boundary integral jump over Γ̂i the weak continuity of the normal stresses
becomes an implicit condition of the fluid-structure interaction problem.

Remark 2.1 The boundary terms on Γ̂i in the Problem 2.1 are necessary to prevent spurious feedback of the
displacement variables û and ŵ. A discussion on this subject is made in (Richter and Wick, 2010). However,
we performed numerical experiments (that will be not discussed in this work) to study the influence of these
terms. Our findings suggest to neglict these terms. Nevertheless, we provide the implementation in the
source code such that we are able to test the switch between usage or not of these terms.

3 Discrete Level

In this section, we briefly comment on temporal and spatial discretization and explain the solution
process of the nonlinear problem. Finally, we give a short account on the form of the linear
equation system, which must be solved in each Newton step. In fact, because that the fluid
equations have been transformed on a fixed reference configuration, the whole problem is solved
therein (instead of moving the fluid mesh explicitly).

3.1 Temporal and spatial discretization

The continuous problem is treated with the Rothe method, thus, first discretizing in time and
afterwards in space. Therefore, a semi-linear form is introduced and the problem 2.1 is written in
compact notation: Find Û = {v̂, û, ŵ, p̂} ∈ X̂, where X̂0 := {v̂D + V̂0

} × {ûD + V̂0
} × V̂ × L̂, such that∫ T

0
Â(Û)(Ψ̂) dt = 0 ∀Ψ̂ ∈ X̂0. (7)

c© by the authors, 2013 Archive of Numerical Software 1(1), 2013
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The time integral is defined in an abstract sense such that the equation holds for almost all time
steps. The semi-linear form Â(Û)(Ψ̂) is defined by

Â(Û)(Ψ̂) = ( Ĵρ̂ f∂tv̂, ψ̂v)
Ω̂ f

+ (ρ̂ f Ĵ(F̂−1(v̂ − ∂tû f ) · ∇̂)v̂), ψ̂v)
Ω̂ f

+ ( Ĵ̂σ f F̂−T, ∇̂ψ̂v)
Ω̂ f

+ (ρ̂s∂tv̂, ψ̂v)
Ω̂s

+ (F̂Σ̂s, ∇̂ψ̂
v)

Ω̂s
− 〈ĝ, ψ̂v

〉̂
Γout

+ (∂tû, ψ̂u)
Ω̂s
− (v̂, ψ̂u)

Ω̂s
+ (α̂w∇̂ŵ, ∇̂ψ̂u)

Ω̂ f
− 〈α̂wn̂ f ∇̂ŵ, ψ̂u

〉Γ̂i

+ (α̂uŵ, ψ̂w)
Ω̂

+ (α̂u∇̂û, ∇̂ψ̂w)
Ω̂
− 〈α̂un̂ f ∇̂û, ψ̂w

〉Γ̂i

+ (d̂iv (ĴF̂−1v̂), ψ̂p)
Ω̂ f
∀Ψ̂ ∈ X̂0, (8)

with Ψ̂ = {ψ̂v, ψ̂u, ψ̂w, ψ̂p
} ∈ V̂

0
×V̂

0
×V̂×L̂. Temporal discretization is based on finite differences

and the one step-θ schemes (Turek, 1999). The derivation for our set of equations was made in
(Wick, 2011). A numerical comparison for different type of time-stepping schemes is undertaken
in (Wick, 2011). Spatial discretization in the reference configuration Ω̂ is treated by a conforming
Galerkin finite element scheme, leading to a finite dimensional subspace X̂h ⊂ X̂. The discrete
spaces are based on the Qc

2/P
dc
1 element for the fluid problem (Girault and Raviart, 1986). The

structure problem is discretized by the Qc
2 element. Other (reasonable) choices of finite elements

(selected from appropriate functional spaces) might be tested for the present source code.

3.2 Linearization techniques for the nonstationary problem

Time and spatial discretization end at each single time step in a nonlinear quasi-stationary problem

Â(Ûn
h )(Ψ̂) = F̂(Ψ̂) ∀Ψ̂ ∈ X̂h,

which is solved with a Newton-like method. Given an initial Newton guess Ûn,0
h , find for

j = 0, 1, 2, . . . the update δÛn
h of the linear defect-correction problem

Â′(Ûn, j
h )(δÛn

h , Ψ̂) = −Â(Ûn, j
h )(Ψ̂) + F̂(Ψ̂),

Ûn, j+1
h = Ûn, j

h + λδÛn
h . (9)

In this algorithm, λ ∈ (0, 1] is used as damping parameter for line search iterations. A crucial role
for (highly) nonlinear problems includes the appropriate determination of λ. A simple strategy
is to modify the update step in (9) as follows: For given λ ∈ (0, 1) determine the minimal l∗ ∈ N
via l = 0, 1, . . . ,Nl, such that

R(Ûn, j+1
h,l ) < R(Ûn, j

h,l ),

Ûn, j+1
h,l = Ûn, j

h + λlδÛn
h .

For the minimal l, we set
Ûn, j+1

h := Ûn, j+1
h,l∗ .

In this context, the nonlinear residual R(·) is defined as

R(Ûn
h ) := max

i

{
Â(Ûn

h )(Ψ̂i) − F̂(Ψ̂i)
}
∀Ûn

h ∈ X̂h,

where {Ψ̂i} denotes the nodal basis of X̂h.

The directional derivative Â′(Û)(δÛ, Ψ̂) that is utilized previously, is defined as Gâteaux derivative
The application to a semi-linear form reads:

Â′(Û)(δÛ, Ψ̂) := lim
ε→0

1
ε

{
Â(Û + εδÛ)(Ψ̂) − Â(Û)(Ψ̂)

}
=

d
dε

Âh(Û + εδÛ)(Ψ̂)
∣∣∣
ε=0
.
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Directional derivatives needed for the Newton method

In this section, we discuss an example of one specific directional derivative that includes all of
the necessary steps. We also refer the reader to other discussions on the exact derivation of the
Jacobian (Fernández and Moubachir, 2005; Wick, 2011).

Let us consider a part of the fluid convection term in ALE coordinates. As part of a semi-linear
form, it holds

Âconv(Û)(Ψ̂) = (ρ̂ f Ĵ(F̂−1v̂ · ∇̂)v̂), ψ̂v)Ω̂ f
= (ρ̂ f ∇̂v̂ ĴF̂−1 v̂, ψ̂v)Ω̂ f

.

In this case, the directional derivative Â′conv(Û)(δ̂Û, Ψ̂) in the direction δ̂Û = {δv̂, δû, δp̂} is given
by

Â′conv(Û)(δ̂Û, Ψ̂) =
(
∇̂δv̂ ĴF̂−1 v̂, ψ̂v

)
+

(
∇̂v̂ ( ĴF̂−1)′(δû) v̂, ψ̂v

)
+

(
∇̂v̂ ĴF̂−1δv̂, ψ̂v

)
. (10)

In the following, we restrict our considerations to an two-dimensional example because the
inverse of the deformation matrix can easily be stated in explicit form. However, the three-
dimensional solution of fluid-structure interactions is also possible with our programming code
(Wick, 2011). For a more compact notation, we refer the reader to (Wick, 2011). Explicitly, the
deformation matrix reads:

F̂ = I + ∇̂û =

(
1 + ∂̂1û1 ∂̂2û1

∂̂1û2 1 + ∂̂2û2

)
,

which brings us to

ĴF̂−1 =

(
1 + ∂̂2û2 −∂̂2û1

−∂̂1û2 1 + ∂̂2û2

)
,

and its directional derivative in direction δû = (δû1, δû2):

( ĴF̂−1)′(δû) =

(
∂̂2δû2 −∂̂2δû1

−∂̂1δû2 ∂̂2δû2

)
.

This expression is part of the second term shown in Equation (10). The remaining expressions
for directional derivatives can be derived in an analogous way. For more details on computation
of the directional derivatives on the interface, we refer to (Richter and Wick, 2010). With these
ingredients the Jacobian is built explicitly (as also done in (Fernández and Moubachir, 2005;
Barker and Cai, 2010)) to identity optimal Newton convergence.

3.3 Block-structure of the linear equation system

After discretization and linearization, we solve in each Newton step a linearized problem, to
achieve the solution of the (originally) nonlinear problem. The investigation of the block-structure
of the linear system was already discussed for a stationary setting with a harmonic fluid mesh-
motion model in (Janssen and Wick, 2010). In this work, we upgrade these ideas to the unsteady
case and the biharmonic fluid mesh-motion model. Specifically, we are interested in the block-
structure of the semi-linear form (8). To ease the notation in this section, we omit the ‘hats’ because
it is clear that we are still working in the reference configuration Ω̂.

The global linear equation system has the following form in each Newton step (9):
Mvv

k + Nvv + Lvv + Mvv
k Evu + Svu 0 Bvp

Muv
Muu

k αwLuw 0
0 αuLwu αuMww 0

BT
vp Spu 0 Mpp



δv
δu
δw
δp

 =


bv(tn+1, tn,un)
bu(tn+1, tn,un)
bw(tn+1, tn,un)
bp(tn+1, tn,un)

 , (11)

Here, the introduced matrices are characterized as follows. In the first block, we have in the fluid
domain the mass term Mvv, the convection term Nvv, the Laplacian Lvv and a mass matrix Mvv in

c© by the authors, 2013 Archive of Numerical Software 1(1), 2013
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the structure part. In the next block in the upper row, we find the elasticity of the structure and
couplings terms in the fluid domain. In the last block, we have the gradient matrix Bvp. In the
second row, in the first two blocks, we find again two mass terms Muv and Muu in the structure
domain. Then, we detect a Laplacian Luw due to the biharmonic fluid mesh motion. In the third
row, we start in the second block with a Laplacian Lwu because of the mesh motion model. The
same reason holds for the appearance of the next mass term Mww. In the last row, we find the
(negative) transposed divergence matrix BT

vp. Then, we have again a coupling term Spu and in the
last entry of the system matrix, we have the pressure mass matrix in the structure domain. Except
of the diffusion parameters of the mesh motion model and the time step k, we omitted all other
parameters. Specifically, the θ parameter of the time-stepping scheme is not shown. We recall,
that all terms of the former time step are hidden in the right hand side vector B = {bv, bu, bw, bp}.
Though, in each Newton step, see equation (9), we are concerned with a linear system

A δU = B, (12)

where A denotes a block matrix and δU = {δv, δu, δw, δp} and solution vector. To solve system
(12), one could try to find a preconditioner such that

P−1A δU = P−1B. (13)

If we find appropriate entries for P−1 such that the condition number of P−1A is moderate, then
the whole systems would converge in a few iterations. Specifically, we use geometric multigrid
method to solve the Laplace-dominated blocks in the preconditioner. This method was introduced
in deal.II in (Janssen and Kanschat, 2011).

The representation (11) shadows one important fact. Namely, that all terms are defined on
two different domains Ω̂ f and Ω̂s, which has consequences for an appropriate construction of a
preconditioner. Consequently, we split the system into fluid variables and structure variables,
which is not shown here to the convencience for the reader.

From this representation, we observe immediately that two terms are zero on the diagonal in the
system matrix. This lack must be resolved when using a Block-Schur preconditioner. In (Janssen
and Wick, 2010), the authors introduce artificial terms on the diagonal and weight them to reduce
the influence on the mathematical model. However, this drastically reduces the performance of
the iterative solver because the weighting factors influnce the condition number of the matrix
and therefore the number of iteration steps. One idea to overcome this drawback was subject of
investigation in (Richter, 2010). Here, the author use a partitioned solution algorithm to solve the
monolithic problem. Another approach for a fast solver for monolithic problems was introduced
in (Heil, 2004). Finally, other algorithms for solving fluid-structure interaction can be found in
(Fernández and Moubachir, 2005; Barker and Cai, 2010).
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4 Numerical results

We consider the numerical benchmark tests FSI 1, FSI 2 and FSI 3, which were proposed in
(Bungartz and Schäfer, 2006). The configuration is sketched in Figure 1. New results can be
found in (Bungartz and Schäfer, 2006; Turek et al., 2010; Degroote et al., 2010; Wick, 2011).

The first test case results in a stationary regime but is computed within a pseudo time stepping
process with the implicit Euler scheme. The shifted Crank-Nicolson scheme was used for the
both unsteady configurations FSI 2 and FSI 3.

Configuration

The computational domain has length L = 2.5m and height H = 0.41m. The circle center is
positioned at C = (0.2m, 0.2m) with radius r = 0.05m. The elastic beam has length l = 0.35m and
height h = 0.02m. The right lower end is positioned at (0.6m, 0.19m), and the left end is attached
to the circle.

(2.5, 0)

(2.5, 0.41)(0, 0.41)

(0, 0)

A=(0.6,0.2)

Ω̂

Γ̂wall

Γ̂wall

Γ̂in Γ̂out

Figure 1: Flow around cylinder with elastic beam with circle-center C = (0.2, 0.2) and radius
r = 0.05.

Control points A(t) (with A(0) = (0.6, 0.2)) are fixed at the trailing edge of the structure, measuring
x- and y-deflections of the beam.

Boundary conditions

A parabolic inflow velocity profile is given on Γ̂in by

v f (0, y) = 1.5Ū
4y(H − y)

H2 , Ū = 0.2ms−1 (FSI 1),

v f (0, y) = 1.5Ū
4y(H − y)

H2 , Ū = 1.0ms−1 (FSI 2),

v f (0, y) = 1.5Ū
4y(H − y)

H2 , Ū = 2.0ms−1 (FSI 3).

On the outlet Γ̂out the ‘do-nothing’ outflow condition ((Heywood et al., 1996)) is imposed which
leads to zero mean value of the pressure at this part of the boundary. The remaining boundary
conditions are chosen as in the CSM test cases.

Initial conditions

For the nonstationary tests one should start with a smooth increase of the velocity profile in time.
We use

v f (t; 0, y) =

v f (0, y) 1−cos( π2 t)
2 if t < 2.0s

v f (0, y) otherwise.
(14)

The term v f (0, y) is already explained above.
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Quantities of comparison and their evaluation

1) x- and y-deflection of the beam at A(t).

2) The forces exerted by the fluid on the whole body, i.e., drag force FD and lift force FL on
the rigid cylinder and the elastic beam. They form a closed path in which the forces can be
computed with the help of line integration. The formula is evaluated on the fixed reference
domain Ω̂ and reads:

(FD,FL) =

∫
Ŝ

Ĵσ̂allF̂−T
· n̂ dŝ =

∫
Ŝ(circle)

Ĵσ̂ f F̂−T
· n̂ f dŝ +

∫
Ŝ(beam)

Ĵσ̂ f F̂−T
· n̂ f dŝ. (15)

The quantities of interest for the time dependent test cases are represented by the mean value,
amplitudes, and frequency of x- and y-deflections of the beam in one time period T of oscillations.

Parameters

We choose for our computation the following parameters. For the fluid we use % f = 103kgm−3,
ν f = 10−3m2s−1. The elastic structure is characterized by %s = 104kgm−3 (FSI 2) and %s = 103kgm−3

(FSI 1 and FSI 3), respectively, and νs = 0.4. Furthermore, we use for the FSI 1 and FSI 2 test cases
µs = 0.5 ∗ 106kgm−1s−2 and for the FSI 3 test case µs = 2.0 ∗ 106kgm−1s−2.

Table 1: Results for the FSI 1 benchmark with the biharmonic mesh motion model. The mean
value and amplitude are given for the four quantities of interest: ux,uy,FD,FL.

DoFs ux(A)[×10−5m] uy(A)[×10−4m] FD[N] FL[N]
5445 2.3258 8.2397 14.6331 0.74577

20988 2.2808 8.1846 15.1434 0.74025
82368 2.2734 8.1751 15.3302 0.73982

326304 2.2703 8.1809 15.3776 0.74111

We observe the same qualitative behavior in each of our approaches for the quantities of interest
(ux(A), uy(A), drag, and lift); these results are in agreement with (Turek et al., 2010).

Figure 2: FSI 2: velocity field for three different time steps.
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The velocity field for three different time steps is displayed in Figure 2. Here, we observe the
Karman vortex street. The computed values of the FSI 1 test case are summarized in the Table
1. The results of the FSI 2 and the FSI 3 test are displayed in the Figures 3 and 4. The reference
values are taken from (Turek et al., 2010). In general, to verify convergence with respect to space
and time, at least three different mesh levels and time step sizes must be computed.
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Figure 3: FSI 2. Top: the deflections of the beam, ux(A) and uy(A). Bottom: the drag and the lift
computations over the path S of the cylinder and the interface between the fluid and the structure.
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Figure 4: FSI 3. Top: the deflections of the beam, ux(A) and uy(A). Bottom: the drag and the lift
computations over the path S of the cylinder and the interface between the fluid and the structure.
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5 Conclusions

We presented a description of a monolithically-coupled fluid-structure interaction problem and
its implementation using the deal.II software library. In upcoming works, we plan to implement
efficient mesh refinement procedures and gradient based optimization routines. For these kind
of problems, a closed monolithic formulation of the coupled problem, as presented in this work,
is an indispensable requirement. Second, we plan to improve the solution process of the linear
equation systems in each Newton step.

Apendix A: Library Information and Source Code Files

In this apendix, we describe the requirements to reproduce the results with the help of the
provided source code. The implementation has been compiled with the deal.II 7.3.0 library.
Specifically, the reader can create a subdirectory

1 step-fsi

in the deal.II examples folder that comes with the installation. Herein, the following files must
be copied:

• The main source file with comments in which, for example, parameters might be changed
to study other configurations and corresponding output data.

1 step-fsi.cc

• The grid to run the computation:

1 fsi.inp

• The standard simple Makefile of deal.II as used to run all other tuturial steps:

1 Makefile

It is possible to change the path to the deal.II library in the Makefile. In the standard
configuration, it is assumed that the reader works in an arbitrary directory in which the cc
file has been copied. Assuming that deal.II is located in the home directory of the user, the
following path can be found in the Makefile:

1 D = ~/deal.II

Apendix B: Features of the Implementation in deal.II

The implementation of the Problem 8 is realized in a similar fashion as most of the tutorial
steps in deal.II. In the first part, we define some terms within three namespaces to keep the later
implementation as clear as possible. We define the

1 namespace ALETransformations {...}

for tensors of the solution variables û, v̂, p̂, ŵ and their corresponding derivatives that become
necessary for the Newton method. In the next namespace,

1 namespace NSEALE {...}

we declare the transformed fluid equations. The last namespace is used to organize the structure
terms:
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1 namespace StructureTermsALE {...}

Next, we introduce a class denoting nonhomogeneous Dirichlet boundary values:

1 class BoundaryParabolic {...}

After these preparations, we come to the main class of our implementation:

1 class FSIALEProblem {...}

An extensive description of this class can be found in the source file itself. In the following, we
will briefly describe each function declared in this class. First, the constructor is used to initialize
the finite elements and to specify their degree. Next, we define a function that deals with runtime
parameters:

1 set_runtime_parameters () {...}

A possible extension of the provided source file, could be the following idea: to use a parameter
handler object that reads these data from a file. Finally, the function

1 setup_system () {...}

is used to initialize the system matrix and several vectors that are later needed. So far, we have
only prepared the basic framework that is a prequerisite to run the program. In the following,
we treat the equations introduced in the theoretical part of this work, see Equation 8. We recall
that we are supposed to solve at each Newton step a linear equation system. The ingredients are
a left-hand-side, consisting of the Jacobian that is performed in

1 assemble_system_matrix () {...}

The corresponding right hand side is the residual of the semi-linear form that is computed in

1 assemble_system_rhs () {...}

Moreover, we set the initial boundary conditions of our problem in

1 set_initial_bc (...) {...}

In each Newton step, nonhomogeneous Dirichlet boundary conditions must be set to zero. There-
fore, we declare a second function

1 set_newton_bc ()

where we replace all nonhomogeneous Dirichlet conditions by their corresponding homogeneous
parts. The nonlinear system is treated by a Newton-like method,

1 newton_iteration (...)

that also includes some nice features, like a simple line search routine. Moreover, we check the
improvement of the residual term in each Newton step. Depending on this check, we decide
whether the system matrix needs to be rebuild or not. The probably most interesting function for
possible future work is discussed in the following. Herein, we will solve the linear system (that
arises in each Newton step) with a direct solver from UMFPACK:

1 solve () {...}

The following function is similar to many functions in the tutorial steps and manages the output
of our results:
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1 output_results (...) {...}

To determine the quality of our implementation, we need measure some physical quantities. In
this study, we compute the deflections in the both principal directions:

1 compute_point_value (...) {...}

Additionally, we compute the forces (the drag and the lift) that act on the interface between the
fluid and the structure, and the forces around the cylinder. These computations can be performed
by line integration:

1 compute_drag_lift_fsi_fluid_tensor () {...}

Finally, we call the both aforementioned functions in

1 compute_functional_values () {...}

In the last function of the class,

1 run () {...}

the time stepping scheme, and all remaining routines, are performed. Finally, the main function
is used to call the main class. It looks mostly like in almost all the other tutorial steps.

Apendix C: Running the Source Code for solving FSI 1,2,3

The provided programming code can be used to obtain the results presented in Section 4. By
default, the FSI 1 configuration is computed. The other two configurations can be set up, first, in
the

1 template <int dim>
2 class BoundaryParabolic

to change the inflow velocity. Increasing the inflow velocity leads to nonstationary behavior:

1 // FSI 1: 0.2; FSI 2: 1.0; FSI 3: 2.0
2 double inflow_velocity = 2.0e-1;

All remaining components are set up in the

1 set_runtime_parameters () {...}

function. Specifically, structure’s density

1 // FSI 1 & 3: 1.0e+3; FSI 2: 1.0e+4
2 density_structure = 1.0e+3;

and the Lamé coefficient

1 // Structure parameters
2 // FSI 1 & 2: 0.5e+6; FSI 3: 2.0e+6
3 lame_coefficient_mu = 0.5e+6;

differ from case to case. To obtain nonstationary solutions, the time-stepping scheme should be
of second order in time:
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1 // Timestepping schemes
2 // BE, CN, CN_shifted
3 time_stepping_scheme = "BE";

Thus, one should choose CN or the shifted CN scheme for solving the FSI 2 and 3 problem. To
reflect the dynamics of the system, altough we work with implicit time-stepping schemes without
CFL condition, the time step should be sufficiently small:

1 // Timestep size:
2 // FSI 1: 1.0 (quasi-stationary)
3 // FSI 2: <= 1.0e-2 (non-stationary)
4 // FSI 3: <= 1.0e-3 (non-stationary)
5 timestep = 1.0;

Finally, reasonable maximal numbers of time steps (to corresponding end time values T) are

1 // Maximum number of timesteps:
2 // FSI 1: 25 , T= 25 (timestep == 1.0)
3 // FSI 2: 1500, T= 15 (timestep == 1.0e-2)
4 // FSI 3: 10000, T= 10 (timestep == 1.0e-3)
5 max_no_timesteps = 25;

With the help of these suggestions, all presented results of Section 4 can be computed with the
provided source code.

Conclusions and ideas for further investigations with this program

The implementation makes use of some tools provided by deal.II. However, some features are
novel in our code. Specifically, these are:

• The solution of a nonlinear time-dependent PDE with four blocks and seven components
in total (2+2+2+1: for velocity, displacement, additional displacment, and pressure).

• The FESystem class in deal.II was extended to be able to deal with four finite elements.

• Implementation of a monolithically-coupled fluid-structure interaction problem with three
types of nonlinearities:

– convection term of the fluid,

– nonlinear constitutive model of the structure problem,

– nonlinear transformation rules induced by the ALE map.

• The geometry, the boundary conditions, and the initial conditions can be easily changed
to run other configurations (pseudo stationary and unsteady, respectively). Specifically,
large structural deformations can be simulated because of using the biharmonic fluid mesh
motion model. For various examples (obtained by an analoguous deal.II code), we refer to
(Wick, 2011) and (Wick, 2011).

• By omitting the structure terms (this can simply be realized by setting all material ids
equal to 0 in the *.inp file), the user gets immediately a pure fluid solver because the
transformation F̂ becomes the identity and then Ĵ = 1. Then, all equations reduce to the
well-known incompressible Navier-Stokes equations. By taking the benchmark grid for
fluid flows (Schäfer and Turek, 1996) and adapting the initial conditions, one can have a try
to reproduce these findings.
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• The implementation of different time-stepping schemes in our code. It is well-known that
the pure Crank-Nicolson scheme suffers from stability aspects for long-term computations
and/or for rough initial data. A comparison of the pure Crank-Nicolson scheme with the
shifted Crank-Nicolson scheme for the FSI 2 and FSI 3 test cases was already subject in (Wick,
2011). What does happen when using the backward Euler scheme for these examples?

• In the same manner, the finite elements for the spatial discretization can be changed. Since
deal.II provides many different finite elements, one can easily change them. However, the
inf-sup stability should be fulfilled or some appropriate stabilization must be added when
using equal-order finite elements.

Possible future improvements of this program

The user of the source code is invited to have his/her own try for possible improvements. At
present, we note these ideas:

• To replace the linear solver by an iterative solver, e.g. GMRES. Using a such solver, it
is necessary to investigate theory and implementation using deal.II. However, the crucial
issue is the construction of a preconditioner for the system matrix. The development of a
Block-Schur preconditioner as in (Janssen and Wick, 2010) is one possibility but not the only
one. To the best of our knowledge, the authors have already started further investigations
to improve that approach.

• To implement efficient mesh refinement techniques; in particular for unsteady compu-
tations. For stationary settings of fluid-structure interaction problems, a first try with
application in hemodynamics already exists (Wick, 2012).

• Solving a fluid-structure problem with many spatial unknowns (i.e., on a fine grid) and
many time steps requires much more effort in computational power. For this reason, one
could develop a parallel version of this code.

Acknowledgments

The author gratefully acknowledges Bärbel Janssen (University of Bern) and Guido Kanschat
(Heidelberg University) and Wolfgang Bangerth (Texas A&M University) for fruitful discussions.
Furthermore, the financial support by the DFG (Deutsche Forschungsgemeinschaft) and the HGS
MathComp Heidelberg during my PhD time is acknowledged.

References
Z. Jianhai, C. Dapeng, Z. Shengquan, ALE finite element analysis of the opening and closing

process of the artificial mechanical valve, Appl. Math. Mech. (2006) 403–412.

S. Piperno, C. Farhat, Paritioned procedures for the transient solution of coupled aeroelastic
problems - part ii: energy transfer analysis and three-dimensional applications, Comput.
Methods Appl. Mech. Engrg. 190 (2001) 3147–3170.

P. L. Tallec, J. Mouro, Fluid structure interaction with large structural displacements, Comput.
Methods Appl. Mech. Engrg. 190 (2001) 3039–3067.

C. Figueroa, I. Vignon-Clementel, K. Jansen, T. Hughes, A coupled momentum method for
modeling blood flow in three-dimensional deformable arteries, Comp. Methods Appl. Mech.
Engrg. 195 (2006) 5685–5706.

N. D. D. Santos, J.-F. Gerbeau, J. Bourgat, A partitioned fluid-structure algorithm for elastic thin
valves with contact, Comp. Methods Appl. Mech. Engrg. 197 (2008) 1750–1761.

Archive of Numerical Software 1(1), 2013 c© by the authors, 2013



FSI in deal.II 17

F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics
by generalized Robin conditions, SIAM J. Sci. Comput. 30 (2008) 731–763.

J. Vierendeels, K. Dumont, P. Verdonck, A partitioned strongly coupled fluid-structure interaction
method to model heart valve dynamics, J. Comp. Appl. Math. (2008).

J. Hron, Fluid structure interaction with applications in biomechanics, Ph.D. thesis, Charles
University Prague, 2001.

J. Hron, S. Turek, A monolithic FEM/Multigrid solver for ALE formulation of fluid structure with
application in biomechanics, volume 53, Springer-Verlag, pp. 146–170.

M. Fernández, J.-F. Gerbeau, Algorithms for fluid-structure interaction problems, volume 1 of
Formaggia et al. (2009), pp. 307–346.

H.-J. Bungartz, M. Schäfer, Fluid-Structure Interaction: Modelling, Simulation, Optimization,
volume 53 of Lecture Notes in Computational Science and Engineering, Springer, 2006.

T. Richter, T. Wick, Finite elements for fluid-structure interaction in ALE and fully Eulerian
coordinates, Comp. Methods Appl. Mech. Engrg. 199 (2010) 2633–2642.

H.-J. Bungartz, M. Mehl, M. Schäfer, Fluid-Structure Interaction II: Modelling, Simulation, Opti-
mization, Lecture Notes in Computational Science and Engineering, Springer, 2010.

T. Wick, Fluid-structure interactions using different mesh motion techniques, Comput. Struct. 89
(2011) 1456–1467.

W. Wall, S. Genkinger, E. Ramm, A strong coupling partitioned approach for fluid-structure
interaction with free surfaces, Computers and Fluids 36 (2007) 169–183.

H. Matthies, R. Niecamp, J. Steindorf, Algorithms for strong coupling procedures, Comp.
Methods Appl. Mech. Engrg 195 (2006) 2028–2049.

T. Tezduyar, S. Sathe, K. Stein, Solution techniques for the fully discretized equations in computa-
tion of fluid-structure interaction with space-time formulations, Comp. Methods Appl. Mech.
Engrg. 195 (2006) 5743–5753.

U. Küttler, W. A. Wall, The dilemma of domain decomposition approaches in fluid-structure in-
teractions with fully enclosed incompressible fluids, volume 60 of Domain decomposition methods
in science and engineering XVII, Springer, Berlin, pp. 575–582.

D. Mok, W. Wall, Partitioned analysis schemes for the transient interaction of incompressible
flows and nonlinear flexible structures, Trends in Computational Structural Mechanics, CIMNE,
Barcelona.

S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Fluid-structure algorithms based on
Steklov-Poincaré operators, Comp. Methods Appl. Mech. Engrg 195 (2006) 5797–5812.

R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of partial
differential equations: basic concepts, SIAM J. Optim. Control 39 (2000) 113–132.

R. Becker, R. Rannacher, An optimal control approach to error control and mesh adaptation in
finite element methods, Acta Numerica 2001, Cambridge University Press, a. iserles edition,
pp. 1–102.

K. van der Zee, E. van Brummelen, R. de Borst, Goal-oriented error estimation for Stokes flow
interacting with a flexible channel, International Journal of Numerical Methods in Fluids 56
(2008) 1551–1557.

c© by the authors, 2013 Archive of Numerical Software 1(1), 2013



18 Thomas Wick

T. Richter, Goal-oriented error estimation for fluid-structure interaction problems, Comp. Meth-
ods Appl. Mech. Engrg. 223-224 (2012) 38–42.

T. Wick, Goal-oriented mesh adaptivity for fluid-structure interaction with application to heart-
valve settings, Arch. Mech. Engrg. 59 (2012) 73–99.

T. Wick, Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to
Heart-Valve Dynamics, Ph.D. thesis, University of Heidelberg, 2011.

P. Causin, J.-F. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for
fluid-structure problems, Comput. Methods Appl. Mech. Engrg. 194 (2005) 4506–4527.

J. Donéa, P. Fasoli-Stella, S. Giuliani, Lagrangian and Eulerian finite element techniques for
transient fluid-structure interaction problems, in: Trans. 4th Int. Conf. on Structural Mechanics
in Reactor Technology, p. Paper B1/2.

O. Ghattas, X. Li, A variational finite element method for stationary nonlinear fluid-solid inter-
action, J. Comput. Phys. 121 (1995) 347–356.

C. Hirt, A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow
speeds, J. Comput. Phys. 14 (1974) 227–253.

T. Hughes, W. Liu, T. Zimmermann, Lagrangian-Eulerian finite element formulation for incom-
pressible viscous flows, Comput. Methods Appl. Mech. Engrg. 29 (1981) 329–349.

B. Helenbrook, Mesh deformation using the biharmonic operator, Int. J. Numer. Methods Engrg.
(2001) 1–30.

S. Turek, Efficient solvers for incompressible flow problems, Springer-Verlag, 1999.

V. Girault, P.-A. Raviart, Finite Element method for the Navier-Stokes equations, Number 5 in
Computer Series in Computational Mathematics, Springer-Verlag, 1986.

F. Fernández, M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure
coupling, Comput. Struct. 83 (2005) 127–142.

M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure
interaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004) 1–23.

S. Badia, Q. Quaini, A. Quarteroni, Splitting methods based on algebraic factorization for fluid-
structure interaction, SIAM J. Sci. Comput. 30 (2008) 1778–1805.

T. Richter, A monolithic multigrid solver for 3d fluid-structure interaction problems, SIAM J. Sci.
Comput. (2010). Submitted.

T. A. Davis, I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization,
SIAM J. Matrix Anal. Appl. 18 (1997) 140–158.

W. Bangerth, T. Heister, G. Kanschat, Differential Equations Analysis Library, 2012.

J. Wloka, Partielle Differentialgleichungen, B. G. Teubner Verlag, Stuttgart, 1982.

P. Ciarlet, P.-A. Raviart, A mixed finite element method for the biharmonic equation, Mathematical
Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York, pp.
125–145.

T. Wick, Stability estimates and numerical comparison of second order time-stepping schemes
for fluid-structure interactions, in: Numerical Mathematics and Advanced Applications 2011,
ENUMATH 2011 in Leicester, UK.

Archive of Numerical Software 1(1), 2013 c© by the authors, 2013



FSI in deal.II 19

A. Barker, X.-C. Cai, Scalable parallel methods for monolithic coupling in fluid-structure interac-
tion with application to blood flow modeling, J. Comput. Phys. 229 (2010) 642–659.

B. Janssen, T. Wick, Block preconditioning with Schur complements for monolithic fluid-structure
interactions, in: J. Pereira, A. Sequeira (Eds.), ECCOMAS CFD 2010, Lisbon.

B. Janssen, G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-
conforming high order finite element methods, SIAM J. Sci. Comput (2011). To be published.

S. Turek, J. Hron, M. Madlik, M. Razzaq, H. Wobker, J. Acker, Numerical simulation and bench-
marking of a monolithic multigrid solver for fluid–structure interaction problems with ap-
plication to hemodynamics, Technical Report, Fakultät für Mathematik, TU Dortmund, 2010.
Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 403.

J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels, Performance of partitioned
procedures in fluid-structure interaction, Comput. Struct. (2010) 446–457.

J. G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions
for the incompressible Navier-Stokes equations, International Journal of Numerical Methods
in Fluids 22 (1996) 325–352.

M. Schäfer, S. Turek, Flow Simulation with High-Performance Computer II, volume 52 of Notes
on Numerical Fluid Mechanics, Vieweg, Braunschweig Wiesbaden.

L. Formaggia, A. Quarteroni, A. Veneziani, Cardiovascular Mathematics: Modeling and simula-
tion of the circulatory system, Springer-Verlag, Italia, Milano, 2009.

c© by the authors, 2013 Archive of Numerical Software 1(1), 2013


	Introduction
	Equations in Variational Formulation
	The coupled problem on the continuous level
	Construction of the ALE mapping
	The variational system in the reference configuration

	Discrete Level
	Temporal and spatial discretization
	Linearization techniques for the nonstationary problem
	Block-structure of the linear equation system

	Numerical results
	Conclusions

