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Abstract: In the numerical solution of partial differential equations (PDEs), a central question
is the one of building variational formulations that are inf-sup stable not only at the infinite-
dimensional level, but also at the finite-dimensional one. These properties are important since
they represent the rigorous foundations for a posteriori error control and the development of
adaptive strategies. The essential difficulty lies in finding systematic procedures to build varia-
tional formulations for which these desirable stability properties are (i) provable at the theoretical
level while (ii) the approach remains implementable in practice and (iii) its computational com-
plexity does not explode with the problem size. In this framework, the so-called Discontinuous
Petrov–Galerkin (DPG) concept seems a promising approach to enlarge the scope of problems
beyond second order elliptic PDEs for which this is possible. In the context of DPG, the result
for the elliptic case was proven by Gopalakrishnan and Qiu [2014] and requires a p-enriched test
space. Recently, the same type of result has been proven by Broersen et al. [2015] for certain classes
of linear transport problems using an appropriate hp-enrichment to build the finite dimensional
test space. In the light of this new result, we present Dune-DPG, a C++ library which allows
to implement the test spaces introduced in Broersen et al. [2015]. The library is built upon the
multi-purpose finite element package Dune (see Blatt et al. [2016]). In this paper, we present the
current version 0.2.1 of Dune-DPG which has so far been tested only for elliptic and transport
problems. An example of use via a simple transport equation is described. We conclude outlining
future work and applications to more complex problems. Dune-DPG is licensed under the GPL
2 with runtime exception and a source code tarball is available together with this paper.

1 Introduction

General context: Let Ω be a domain of Rd (d ≥ 1) and U, V two Hilbert spaces defined over
Ω and endowed with norms ‖ · ‖U and ‖ · ‖V, respectively. The normed dual of V, denoted V′, is
endowed with the norm

‖`‖V′ B sup
v∈V

|`(v)|
‖v‖V

, ∀` ∈ V′.



112

Let B : U→ V be a boundedly invertible linear operator and let b : U ×V→ R be its associated
continuous bilinear form defined by b(w, v) = (Bw) (v), ∀(w, v) ∈ U×V. We consider the operator
equation

Given f ∈ V′, find u ∈ U s. t.
Bu = f ,

(1)

or, equivalently, the variational problem

Given f ∈ V′, find u ∈ U s. t.
b(u, v) = f (v), ∀v ∈ V.

(2)

Let 0 < γ ≤ 1 be a lower bound for the (infinite-dimensional) inf-sup constant

inf
w∈U

sup
v∈V

b(w, v)
‖w‖U‖v‖V

≥ γ > 0.

Since B is invertible, problem (1) admits a unique solution u ∈ U and for any approximation
ū ∈ U of u,

‖B‖
−1
L(U,V′)‖ f − Bū‖V′ ≤ ‖u − ū‖U ≤ γ−1

‖ f − Bū‖V′ . (3)

From (3), it follows that the error ‖u − ū‖U is equivalent to the residual ‖ f − Bū‖V′ . The residual
contains known quantities and its estimation on an appropriate finite-dimensional space opens
the door to rigorously founded a posteriori concepts. However, note that the information that
the estimator can give is only meaningful when the variational formulation is well-conditioned,
i. e., for ‖B‖L(U,V′) and γ being as close to one as possible. Assuming that we have this property of
well-conditioning, a crucial point is that this needs to be inherited at the finite-dimensional level.
This issue has been well explored for standard Galerkin methods (i. e. when U = V) and allows
to appropriately address most parabolic and second order elliptic problems with a wide variety
of finite element methods. However, there are problems for which standard Galerkin methods do
not lead to a stable discretization (one example being transport-dominated PDEs). In this context,
one can move to a Petrov-Galerkin framework where the main guiding ideas are:

• It is possible to find a test space V and a norm for V which yield γ = 1. V and its norm
depend on the specific PDE and might not coincide withU.

• For a given finite-dimensional trial space UH, there exists a corresponding optimal test
spaceVopt(UH) such that the discrete inf-sup condition

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ

holds with the same constant γ as the infinite-dimensional one. For more details on this,
see Section 2.1.

Since, in general, even the approximate computation of the optimal test space requires the solution
of global problems, there are essentially two ways to make the computation affordable. One is the
introduction of a mixed formulation which avoids the computation of the optimal test spaces and
only uses them indirectly. This approach was used in Dahmen et al. [2012] to construct a general
adaptive scheme when U = L2(Ω) and to show convergence under certain abstract conditions
(which have to be verified for concrete applications). It was also employed in the context of
reduced-basis construction for transport-dominated problems (see Dahmen et al. [2014]).

The other way is to make computations affordable by localization so that the optimal test spaces
can be computed by solving local problems. This is the approach taken in the DPG methodology,
initiated and developed mainly by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz
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and Gopalakrishnan [2011], Gopalakrishnan and Qiu [2014], Demkowicz and Gopalakrishnan
[2015]). Since, in general, the local problems to find Vopt(UH) are still infinite dimensional, the
DPG method approximates the exact optimal test functions in the context of a discontinuous
Petrov–Galerkin formulation. As a result, Vopt(UH) is replaced in practical computations by
a finite dimensional space called “near-optimal test-space”, which we will denote Vn.opt. This
is the space which is eventually used in the solution of the discrete problem. For fairly broad
classes of PDEs, there exist abstract results showing that the inf-sup stability of the discrete
problem with Vn.opt is preserved provided that Vn.opt is close enough to the true optimal test-
space Vopt(UH) in a certain abstract sense. We refer to Roberts et al. [2014] and also the concept
of delta proximality introduced in Dahmen et al. [2012] for results in this respect. Deriving more
quantifiable conditions on the form ofVn.opt is a more involved task which depends on the PDE. It
is nevertheless important since it helps to quantify the complexity of the approach in more specific
terms. This type of result was first proven for second order elliptic problems by Gopalakrishnan
and Qiu [2014]. It requires a p-enrichment strategy (with respect to the polynomial degree of
UH) to build Vn.opt. Recently, the same type of result has been derived by Broersen et al. [2015]
for certain classes of linear transport problems. It is proven there that the use of a certain hp-
enrichment in the construction of Vn.opt guarantees a sufficiently good near-optimal test space.
Beyond these theoretically backed-up cases, we also note that numerical evidence illustrates
the good stability properties of DPG for a larger spectrum of PDEs than elliptic and transport
problems. Without being exhaustive, we can find works on convection–diffusion [Broersen and
Stevenson, 2015, Niemi et al., 2013], elasticity and Stokes [Carstensen et al., 2014, Roberts et al.,
2014], Maxwell equations [Carstensen et al., 2016] and the Helmholtz equation [Demkowicz et al.,
2012]. Also, we note that the idea of hp-enrichment to build Vn.opt was explored in numerical
experiments about convection-diffusion in Niemi et al. [2013].

Motivations and contributions of the paper: In this paper, we explain the construction of
the Dune-DPG library which aims at solving different types of PDEs with a DPG variational
formulation. The main guidelines for its construction have been:

• to give the user as much liberty as possible in the nature of the problem to be addressed, in
the nature of the test and trial spaces to be used and in the geometry and mesh refinement,

• to endow the code with a modular structure in order to ensure an easy access to low-level
functionalities for which a fine control is required while keeping a high-level view for the
rest of the code.

In the light of the recent results by Broersen et al. [2015] and in order to have a rigorous back-up
on the stability of the calculations for the largest possible scope of problems, a special emphasis
has been put on giving the possibility to use h and p refined spaces for the construction of
the near-optimal test space Vn.opt. This point is actually the main novelty that the present
library offers with respect to other existing DPG libraries like Camellia (see Roberts [2014]). It is
nevertheless significant in the sense that this capability seems well suited to investigate novel
numerical schemes with rigorous error bounds for more elaborate transport based PDEs such as
kinetic problems. A work in this direction is currently ongoing and will be subject of a future
publication.

Dune-DPG is licensed under the GPL 2 with runtime exception and its latest version (0.2.1) is
released together with this paper1. The library is based upon the multi-purpose finite element
package Dune (see, e. g., Bastian et al. [2008]). In particular, we use version 2.4.1 [Blatt et al., 2016]
of the core modules Dune-Grid [Bastian et al., 2008], Dune-ISTL [Blatt and Bastian, 2006], Dune-
Geometry, Dune-Functions [Engwer et al., 2015], Dune-LocalFunctions and Dune-TypeTree. As
a consequence, for the users of Dune, the library represents a relatively simple way to experiment
with basic DPG concepts.

1The whole Git history of Dune-DPG can be found at https://gitlab.dune-project.org/felix.gruber/dune-dpg.
We try to keep the master branch compatible to the current development branches of the Dune core modules.

https://gitlab.dune-project.org/felix.gruber/dune-dpg
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Finally, we would like to point out that Dune-DPG is still under active development and the
present release comes with a couple of limitations which will be fixed in future versions. These
are:

• the current implementation is limited to problems with constant coefficients,

• parallelization of the code has not been explored,

• the library has been tested so far in elliptic and pure transport problems but, as already
brought up, it is currently being used to study more involved PDEs.

Layout of the paper: To show how the library works, the paper is organized as follows: In
Section 2, we summarize the mathematical concepts of DPG that are relevant to understand the
library. As an example, we explain at the end of this section how the ideas can be applied to a
simple transport problem following the theory of Broersen et al. [2015]. Then, in Section 3, we
present the different building blocks that form the library. We explain how they interact and how
they make use of some features of the Dune framework upon which our library is built. Finally,
in Section 4, we validate Dune-DPG by giving concrete results related to the solution of a simple
transport problem. Some performance results are also given.

2 Theoretical Foundations for DPG

As already brought up in the introduction, the DPG concept was initiated and developed mainly
by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz and Gopalakrishnan [2011],
Gopalakrishnan and Qiu [2014]). Other relevant results concerning theoretical foundations are
Broersen and Stevenson [2014, 2015] and, more recently, Broersen et al. [2015]. The strategy
followed in DPG to contrive stable variational formulations is based on the concept of optimal
test spaces and their practical approximation through the solution of local problems in the context
of a discontinuous Petrov–Galerkin variational formulation. The two following sections explain
more in detail these two fundamental ideas.

2.1 The concepts of optimal and near-optimal test spaces

Assuming that we start from a well-posed and well-conditioned infinite-dimensional variational
formulation (2), we look for a formulation at the finite-dimensional level which inherits these
desirable features. Let H > 0 be a parameter (H will later be associated to the size of a mesh ΩH
of Ω). For any given finite-dimensional trial spaceUH of dimensionN (that depends on H), there
exists a so-called optimal test spaceVopt(UH) of the same dimension. It is called optimal because
the finite-dimensional version of problem (2),

Find uH ∈ UH s. t.

b(uH, v) = f (v), ∀v ∈ Vopt(UH),
(4)

is well posed and

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ.

In other words, the discrete inf-sup condition is bounded with the same constant γ that is involved
in the infinite-dimensional problem. This implies that the discrete problem has the same stability
properties as the infinite-dimensional problem. Therefore the residual ‖ f − BuH‖V′ is equivalent
to the actual error ‖u − uH‖U with the same constants exhibited in (3). Since these constants do
not depend on H, ‖ f − BuH‖V′ is a robust error bound that is suitable for adaptivity since we can
decrease H without degrading the constants of equivalence.



115

Unfortunately, the optimal test space Vopt(UH) is not computable in practice. Indeed, if {ui
H}
N

i=1
spans a basis ofUH, then the set of functions {vi

}
N

i=1 defined through the variational problems,

i ∈ {1, . . . ,N}, 〈vi, v〉V = b(ui
H, v), ∀v ∈ V (5)

spans a basis ofVopt(UH). Since these problems are formulated in the infinite-dimensional space
V, they cannot be computed exactly (in addition, the problems are global). To address this issue,
problems (5) are V-projected to a finite-dimensional subspace Vh that will be called test-search
space. Therefore, in practice, an approximation {v̄i

}
N

i=1 to the set of functions {vi
}
N

i=1 is computed
by solving for all i ∈ {1, . . . ,N},

〈v̄i, vh〉V = b(ui
H, vh), ∀vh ∈ Vh. (6)

This defines a projected test space Vn.opt(UH,Vh) B span{v̄i
}
N

i=1. For the elliptic case and some
classes of transport problems, it has been shown that it is possible to exhibit test-search spacesVh
(which depend on the initialUH) such thatVn.opt(UH,Vh) is close enough to the optimalVopt(UH)
to allow that the discrete inf-sup constant

γH B inf
uH∈UH

sup
v̄∈Vn.opt(UH ,Vh)

b(uH, v̄)
‖uH‖UH‖v̄‖Vh

(7)

is bounded away from 0 uniformly in H. For this reason, Vn.opt(UH,Vh) is called a near-optimal
test-space. In the case of transport problems, the recent work of Broersen et al. [2015] shows that
good test-search spacesVh can be found when they are defined over a refinement Ωh of ΩH.

The near-optimal test space Vn.opt(UH,Vh) is the one that is computed in practice in the Dune-
DPG library. The finite-dimensional variational formulation that is eventually solved reads

Find uH ∈ UH s. t.

b(uH, v̄) = f (v̄), ∀v̄ ∈ Vn.opt(UH,Vh).
(8)

It can be expressed as a linear system of the form Ax = F, A ∈ RN×N , x ∈ RN , F ∈ RN . It can be
proven that A is by construction symmetric positive definite. The assembly of the system and its
solution in Dune-DPG are explained in Section 3.1.

2.2 The concept of localization

Depending on the choice ofV andVh, the solution of (6) to derive the near-optimal basis functions
of Vn.opt(UH,Vh) might be costly. This is because these N problems are, in general, global in the
whole domain Ω and they cannot be decomposed into local ones. Furthermore, if the resulting
near-optimal basis functions have global support, the solution of the finite-dimensional variational
problem (8) is costly as well because the resulting system matrix A is full.

To prevent this, we need an appropriate variational formulation with a well-chosen test space V
which has a product structure on the coarse grid ΩH,

V B
∏

K∈ΩH

VK, (9)

where supp(v) ⊂ K for any v ∈ VK. In particular, the restriction of theV-scalar product to K ∈ ΩH
has to be a scalar product forVK:

〈·, ·〉V|K = 〈·, ·〉VK

The test-search spaceVh will be chosen in such a way, that it has the same product structure asV,

Vh B
∏

K∈ΩH

Vh,K, Vh,K ⊂ VK.
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Therefore, for any 1 ≤ i ≤ N , the near-optimal test function v̄i can be written as

v̄i =
∑

K∈ΩH

v̄i
KχK,

where χK is the characteristic function of cell K. Additionally, we need a decomposition of the
bilinear form as a sum over mesh cells of ΩH,

b (u, v) =
∑

K∈ΩH

bK (u, v) , ∀v ∈
∏

K∈ΩH

VK. (10)

Then, for every K ∈ ΩH, v̄i
K is the solution of a local problem in K,

〈v̄i
K, vh,K〉VK = bK

(
ui

H, vh,K

)
, ∀vh,K ∈ Vh,K, (11)

where {ui
H}
N

i=1 is a basis ofUH. Therefore, finding v̄i can be decomposed into a sum of problems,
each one of which is localized on a mesh cell K ∈ ΩH. Moreover, if the support of ui

H is included
in some cell K ∈ ΩH, then the support of its corresponding near-optimal test function v̄i is also a
subset of K (and the neighboring cells in some cases). In other words, we would have v̄i = v̄i

KχK

or v̄i =
∑

K′∈ neigh(K) v̄i
K′χK′ . Hence, if the basis functions ui

H ofUH have local support, the resulting
system matrix A is sparse.

2.3 An example: a linear transport equation

Let Ω = (0, 1)2 and β be a vector of R2 with norm one. For any x ∈ ∂Ω, let n(x) be its associated
outer normal vector. Then

Γ− B {x ∈ ∂Ω | β · n(x) < 0} ⊂ ∂Ω (12)

is the inflow-boundary for the given constant transport direction β. Given c ∈ R and a function
f : Ω → R, we consider the problem of finding the solution ϕ : Ω → R to the simple transport
equation

β · ∇ϕ + cϕ = f , in Ω,

ϕ = 0, on Γ−.
(13)

If we apply the DPG approach introduced in Broersen et al. [2015] to solve this problem, we first
need to introduce the following spaces. Denoting by ∇H the piecewise gradient operator, let

H(β,ΩH) B {v ∈ L2(Ω) | β · ∇Hv ∈ L2(Ω)},

equipped with squared “broken” norm ‖v‖2H(β,ΩH) = ‖v‖2L2(Ω) + ‖β · ∇Hv‖2L2(Ω). Let also

H0,Γ− (β,Ω) B closH(β,Ω){u ∈ H(β,Ω) ∩ C(Ω̄) | u = 0 on Γ−}

and
H0,Γ− (β, ∂ΩH) B {w|∂ΩH | w ∈ H0,Γ− (β,Ω)}

equipped with quotient norm

‖θ‖H0,Γ− (β,∂ΩH) B inf{‖w‖H(β,Ω) | θ = w|∂ΩH , w ∈ H0,Γ− (β,Ω)}.

The variational formulation reads

ForU B L2(Ω) ×H0,Γ− (β, ∂ΩH) andV B H(β,ΩH),
given f ∈ H(β,ΩH)′, find u B (ϕ, θ) ∈ U such that
b(u, v) = f (v), ∀v ∈ V.

(14)
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In this formulation (usually called ultra-weak formulation) the bilinear form b(u, v) is defined by

b(u, v) = b
(
(ϕ, θ), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂ΩH

~vβ�θ ds. (15)

Note that this variational formulation depends on the mesh ΩH. Also, note the presence of an
additional unknown θ that lives on the skeleton ∂ΩH of the mesh. For smooth solutions, θ agrees
with the traces of ϕ on ∂ΩH (i. e. the union of cell interfaces of ΩH).

For the discretization, we replace θ by a lifting w ∈ H0,Γ− (β,Ω) (for details see Broersen et al.
[2015]) and take for some m ∈N,

UH B
( ∏

K∈ΩH

Pm−1(K)
)
×

(
H0,Γ− (β,Ω) ∩

∏
K∈ΩH

Pm(K)
)∣∣∣∣∣∣∣
∂Ωh

, (16)

where Pm(K) is the space of polynomials of degree m. A viable test-search space can be taken
simply as discontinuous piecewise polynomials of slightly higher degree on the finer mesh Ωh of
ΩH, namely

Vh B
∏
K∈Ωh

Pm+1(K). (17)

As a result, the discrete version of (14) reads

Find uH B (ϕH,wH) ∈ UH such that

b̃(uH, v̄) = f (v̄), ∀v̄ ∈ Vn.opt(UH,Vh).
(18)

The bilinear form b̃ is slightly different from b. It reads

b̃(u, v) = b̃
(
(ϕ,w), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂Ωh

~vβ�w ds. (19)

The trace integral is over ∂Ωh and not ∂ΩH since Vh is now a broken space with respect to the
finer mesh Ωh. This is why we need a lifting w instead of θ here. Note that depending on the
polynomial degree m and the refinement level of Ωh, there might be undefined degrees of freedom
of w. In this case, they have to be fixed for example by minimizing ‖w‖H(β,Ω).

3 An Overview of the Architecture of DUNE-DPG

In this section we describe how the DPG method presented in Section 2 has been implemented
in Dune-DPG. As already brought up, the library has been built upon the finite element package
Dune.

The user starts by choosing the appropriate test-search space Vh and trial space UH for his
problem. Then, the bilinear form b(·, ·) and the inner product 〈·, ·〉V are declared via the classes
BilinearForm and InnerProduct (see Section 3.1.2). They both consist of an arbitrary number
of elements of the type IntegralTerm (see Section 3.1.3). The DPGSystemAssembler class handles
the automatic assembly of the linear system Ax = F associated to problem (8). As Section 3.1.1
explains, it includes:

• the assembly of the matrix A and the right hand side F

• the treatment of boundary conditions
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To assemble A, we use the decomposition (10) and define the local matrices AK by

(AK)i, j = bK(u j
H,K, v̄

i
K) (20)

where {ui
H,K}

NK
i=1 is a basis for the restriction ofUH to K and {v̄i

K}
NK
i=1 is a basis for the restriction of the

near-optimal test spaceVn.opt(UH,Vh) to K. To compute these local matrices, we follow the same
lines as the Camellia library [Roberts, 2014] and start from a basis {v j

h,K}
MK
j=1 of the test-search space

Vh restricted to K. Then, we use the bilinear form b(·, ·) and the inner product 〈·, ·〉V to construct
the matrices BK and GK defined by

(BK)i, j = bK(u j
H,K, v

i
h,K) , (GK)i, j = 〈vi

h,K, v
j
h,K〉V . (21)

It follows from (11) that the coefficients ci, j
K of the basis functions v̄i

K =
∑
MK
j=1 ci, j

K v j
h,K of the near-

optimal test space restricted to K are the columns of the matrix

CK B G−1
K BK (22)

and the local matrices satisfy
AK = AT

K = BT
KCK. (23)

The matrices CK and AK are computed by the class TestspaceCoefficientMatrix which also
offers a feature to store those matrices to reduce computational costs in case of constant coefficients
(see Section 3.1.4). Finally, the DPGSystemAssembler class constructs the global matrix A out of
the local matrices AK. In addition to these classes, the class ErrorTools handles the computation
of a posteriori estimators following the guidelines that are given in Section 3.2.

3.1 Assembling the discrete system for a given PDE

The following subsections describe the DPGSystemAssembler class and all the classes used by it.

3.1.1 DPGSystemAssembler The assembly of the discrete system Ax = F derived from
the variational problem is handled by the class DPGSystemAssembler. Before we can create a
DPGSystemAssembler by calling the method make_DPGSystemAssembler we first have to define
the trial space UH, the near-optimal test space Vn.opt(UH,Vh) as well as the bilinear form b and
the inner product that describe our DPG system. The bilinear form is an object of the class
BilinearFormwhich is explained in Section 3.1.2. As for the spacesUH andVn.opt(UH,Vh), they
are both given by a std::tuple composed of (scalar) global basis functions from Dune-Functions.
The reason to use a tuple is to handle problems involving several unknowns. For instance, in
the ultra-weak formulation introduced for the transport problem in Section 2.3, we have two
unknowns (ϕ,w) andUH is a product of two spaces.

The following lines of code taken from src/plot_solution.cc give an overview of how to set up
the transport problem from Section 2.3. The individual steps will be explained in the following
subsections. The example uses UG (see Bastian et al. [1997]) to represent the mesh but the code
admits other grid implementations. We refer to the README file included in the library for details
on this and on how to launch the program.

src/plot_solution.cc

128 using FEBasisInterior = Functions::LagrangeDGBasis<GridView, 1>;
129 FEBasisInterior spacePhi(gridView);
130
131 using FEBasisTraceLifting = Functions::PQkNodalBasis<GridView , 2>;
132 FEBasisTraceLifting spaceW(gridView);
133
134 auto solutionSpaces = std::make_tuple(spacePhi , spaceW);
135
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136 using FEBasisTest
137 = Functions::PQkDGRefinedDGBasis<GridView, 1, 3>;
138 auto testSearchSpaces = std::make_tuple(FEBasisTest(gridView));
139
140 auto bilinearForm = make_BilinearForm(testSearchSpaces , solutionSpaces ,
141 make_tuple(
142 make_IntegralTerm<0,0,IntegrationType::valueValue ,
143 DomainOfIntegration::interior>(c),
144 make_IntegralTerm<0,0,IntegrationType::gradValue ,
145 DomainOfIntegration::interior>(-1., beta),
146 make_IntegralTerm<0,1,IntegrationType::normalVector ,
147 DomainOfIntegration::face>(1., beta)));
148 auto innerProduct = make_InnerProduct(testSearchSpaces ,
149 make_tuple(
150 make_IntegralTerm<0,0,IntegrationType::valueValue ,
151 DomainOfIntegration::interior>(1.),
152 make_IntegralTerm<0,0,IntegrationType::gradGrad ,
153 DomainOfIntegration::interior>(1., beta)));
154
155 typedef GeometryBuffer<GridView::template Codim<0>::Geometry> GeometryBuffer;
156 GeometryBuffer geometryBuffer;
157
158 auto systemAssembler
159 = make_DPGSystemAssembler(bilinearForm , innerProduct , geometryBuffer);

The systemAssembler has a member variable testspaceCoefficientMatrix_ which is of type
TestspaceCoefficientMatrixBuffered or TestspaceCoefficientMatrixUnbuffered, depend-
ing on whether make_DPGSystemAssembler is called with or without a GeometryBuffer, for details
on that, see Section 3.1.4.

OncesystemAssemblerhas been defined, a call to the methodassembleSystem(stiffnessMatrix,
rhsVector, rhsFunctions) assembles the matrix A and the right-hand side vector F. They are
stored in the variables stiffnessMatrix (of type BCRSMatrix<FieldMatrix<double,1,1>>) and
rhsVector (of typeBlockVector<FieldVector<double,1>>). The input parameterrhsFunctions
is of type LinearForm and represents the function f from the right hand side of the PDE. Internally,
the class DPGSystemAssembler iterates over all mesh cells K and delegates the work of computing
local contributions AK to the system matrix A totestspaceCoefficientMatrix_.systemMatrix().
Similarly the local right-hand side vectors are computed by taking the product of the precomputed
testspaceCoefficientMatrix_.coefficientMatrix() with LinearForm::getLocalVector().
For constructing A and F out of the local matrices AK and the local right-hand side vectors, we
make use of the mapping between local and global degrees of freedom given by the index sets
from Dune-Functions.

DPGSystemAssembler is also responsible for applying boundary conditions to the system. So far,
only Dirichlet boundary conditions are implemented. To this end, first the degrees of freedom
affected by the boundary condition are marked. Then the boundary values are set to the corre-
sponding nodes with the method applyDirichletBoundary. For instance, if we are considering
the transport problem of Section 2.3, we need to set to zero the degrees of freedom of w that are in
Γ−. For this, we mark the relevant nodes with the method getInflowBoundaryMask and store the
information in a vector dirichletNodesInflow. Then we call applyDirichletBoundary as we
outline in the following listing. The sequence of instructions is given in the code below. Note that
the trial space associated to w is required. Since, in our ordering, w is our second unknown, we get
its associated trial space with the command std::get<1>(solutionSpaces) (since std::tuple
starts counting from 0).

src/plot_solution.cc

165 typedef BlockVector<FieldVector<double,1> > VectorType;
166 typedef BCRSMatrix<FieldMatrix<double,1,1> > MatrixType;
167
168 VectorType rhsVector;
169 MatrixType stiffnessMatrix;
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170
171 auto rhsFunctions
172 = make_DPGLinearForm(testSearchSpaces ,
173 std::make_tuple(make_LinearIntegralTerm<0,
174 LinearIntegrationType::valueFunction ,
175 DomainOfIntegration::interior>(f(beta))));
176 systemAssembler.assembleSystem(stiffnessMatrix , rhsVector , rhsFunctions);
177
178 // Determine Dirichlet dofs for w (inflow boundary)
179 {
180 std::vector<bool> dirichletNodesInflow;
181 BoundaryTools boundaryTools = BoundaryTools();
182 boundaryTools.getInflowBoundaryMask(std::get<1>(solutionSpaces),
183 dirichletNodesInflow ,
184 beta);
185 systemAssembler.applyDirichletBoundary<1>
186 (stiffnessMatrix ,
187 rhsVector ,
188 dirichletNodesInflow ,
189 0.);
190 }

Finally, in certain types of problems, some degrees of freedom might be ill-posed. For example,
in the transport case, the degrees of freedom corresponding to trial functions on faces aligned
with the flow direction will be weighted with 0 coefficients in the matrix or interior degrees
of freedom of the lifting w of the trace variable may be undefined. To address these issues,
DPGSystemAssembler provides several methods like defineCharacteristicFaces to interpolate
undefined degrees of freedom on characteristic faces or applyMinimization to handle undefined
degrees of freedom in the interior and optionally also on characteristic faces by minimizing a
given norm.

Once A and F are obtained, the system Ax = F (which is, from the theory, invertible) can be solved
with the user’s favorite direct or iterative scheme.

3.1.2 BilinearForm and InnerProduct As it follows from (10), the bilinear form b(·, ·) can
be decomposed into local bilinear forms bK(·, ·). The BilinearForm class describes bK and pro-
vides access to the corresponding local matrices AK defined in (20) which are then used by the
DPGSystemAssembler to assemble the global matrix A.

In our case, we view a bilinear form bK as a sum of what we will call elementary integral terms.
By this we mean integrals over K (or ∂K) which are a product of a test search function v ∈ Vh (or
its derivatives) and a trial function u ∈ UH (or its derivatives). Additionally, the product might
also involve some given function c. The current release only supports constant functions c and
the non-constant case will be delivered in a future release. For instance, in our transport equation
(cf. (19)),

bK(u, v) = bK((ϕ,w), v) B
∫

K
cvϕ︸ ︷︷ ︸

Int0

−

∫
K
β · ∇vϕ︸         ︷︷         ︸
Int1

+
∑

Kh∈Ωh,Kh⊂K

∫
∂Kh

vwβ · n

︸                        ︷︷                        ︸
Int2

, (24)

where we have omitted the tilde to ease notation here. Therefore the matrix AK =
∑

i∈I Ai
K can

be computed as a sum of the matrices Ai
K corresponding to the different elementary integrals

Inti, i ∈ I. Any of the elementary integrals can be expressed via the class IntegralTerm that we
describe in Section 3.1.3.

To create an object bilinearForm of the class BilinearForm, we call make_BilinearForm as
follows.

C++ code
1 auto bilinearForm = make_BilinearForm (testSearchSpaces , solutionSpaces , terms);
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The variables testSearchSpaces and solutionSpaces are the ones introduced in Section 3.1.1 to
representVh andUH. The object terms is a tuple of objects of the class IntegralTerm. Once that
the object bilinearForm exists, a call to the method getLocalMatrix computes AK by iterating
over all elementary integral terms and summing up their contributions Ai

K.

Let us now briefly discuss the class InnerProduct. Its aim is to allow the computation of the
inner products associated to the Hilbert spacesU and V. For this, we take advantage of the fact
that an inner product can be seen as a symmetric bilinear form b(u, v) where u and v are both
functions from some space. Hence, we can reuse the structure of BilinearForm for summing over
elementary integral terms to define the class InnerProduct. The construction of an InnerProduct
is thus done with

C++ code
1 auto innerProduct = make_InnerProduct (testSpaces , terms);

3.1.3 IntegralTerm An IntegralTerm represents an elementary integral over the interior of a
cell K, over its faces ∂K or even over faces of a partition of K. It expresses a product between a
term related to a test function v and a term related to a trial function u. Examples are Int0, Int1
and Int2 from (24).

The IntegralTerm is parametrized by two size_t that give the indices of the test and trial spaces
that we want to integrate over. Additionally we specify the type of evaluations used in the integral
with a template parameter of type

C++ code
1 enum class IntegrationType {
2 valueValue ,
3 gradValue ,
4 valueGrad ,
5 gradGrad ,
6 normalVector ,
7 normalSign
8 };

and the domain of integration with a template parameter of type

C++ code
1 enum class DomainOfIntegration {
2 interior ,
3 face
4 };

IfintegrationType is of typeIntegrationType::valueValueorIntegrationType::normalSign,
the function make_IntegralTerm has to be called as follows:

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c);

wherec is a scalar coefficient in front of the test space product and is of arithmetic type, e. g.double.
The template parameter domainOfIntegration is one of the types from DomainOfIntegration
and the parameterslhsSpaceIndex andrhsSpaceIndex refer, in this particular order, to the indices
of test and trial space in their respective tuples of test and trial spaces. Note that the objects of the
class IntegralTerm are not given the spaces themselves but only some indices referring to them.
This is because the spaces are managed by the class BilinearForm (or InnerProduct) owning the
IntegralTerm.
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For other integrationTypes, we also need to specify the flow direction beta by calling

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c, beta);

where c is again of arithmetic type and beta is of vector type, e. g. FieldVector<double, dim>.

The IntegralTerm Int1 from example (24) can be created with

C++ code
1 auto integralTerm
2 = make_IntegralTerm<0, 0, IntegrationType::gradValue ,
3 DomainOfIntegration::interior>(-1., beta);

where the two zeroes are, in this particular order, the indices of test and trial space in their
respective tuples of test and trial spaces.

The class IntegralTerm provides a method getLocalMatrix that computes its contribution Ai
K

to the local matrix AK and that is called by the getLocalMatrix method of BilinearForm or
InnerProduct. Since one would normally want to write a program which solves a fixed problem,
we use Boost Fusion2 to do as much work at compile time as possible. Since the IntegrationType
and DomainOfIntegration of each IntegralTerm are compile time constants, an optimizing C++
compiler should be able to optimize away some unused code branches. Defining the bilinear
form and inner product at compile time also gives us the opportunity to check for errors in the
problem formulation at compile time. For now this is not done, but we would like to include
such checks in the future to improve the usability of our library.

3.1.4 TestspaceCoefficientMatrix (buffered and unbuffered) For any element K, the com-
putation of the matrices CK and AK defined in (22) and (23) is handled either by the class
TestspaceCoefficientMatrixBuffered or by TestspaceCoefficientMatrixUnbuffered. Two
classes have been developed to minimize computations when the PDE coefficients are constant.
In this case CK and AK depend only on the geometry of the element K. As a result, the value
of CK and AK will be constant for all elements K having, up to a translation, the same map to
the reference element. Thus, CK and AK can be computed only once for all cells sharing this
mapping property. The class TestspaceCoefficientMatrixBuffered makes use of the above
and reduces computational costs in grids where many cells have the same mapping property.
The class TestspaceCoefficientMatrixUnbuffered handles the general case (grids with many
different cell mapping types and, in future releases, non-constant PDE coefficients).

Structurally speaking, both classes have the bilinear form b(·, ·) and the inner product 〈·, ·〉V as
template parameters and offer a method bind(const Entity& e) in which they use the methods
BilinearForm::getLocalMatrix() and InnerProduct::getLocalMatrix() to set up BK and GK
as defined in (21). They compute CK = G−1

K BK via the Cholesky algorithm and AK = BT
KCK. The

computed matrices can be accessed via the methods coefficientMatrix() and systemMatrix(),
respectively. The constructor of TestspaceCoefficientMatrixUnbuffered gets only the bilinear
form and the inner product. In addition to this, TestspaceCoefficientMatrixBuffered needs a
GeometryBuffer containing a map to save the geometry of the elements K and the corresponding
matrices CK and AK. When theTestspaceCoefficientMatrixBuffered is bound to a new element
K, then first it is checked whether its map to the reference element is already in the buffer. If so,
the saved matrices CK and AK are used. Otherwise, they are computed and added to the map.

2Fusion is a meta programming library and part of the C++ library collection Boost: http://www.boost.org/

http://www.boost.org/
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3.2 A posteriori error estimators

To compute the residual

‖ f − BuH‖V′ = sup
v∈V

‖ f (v) − b(uH, v)‖V
‖v‖V

,

we exploit once again the product structure ofV and use the fact that

‖ f − BuH‖
2
V′ =

∑
K∈ΩH

‖rK(uH, f )‖2V′K =
∑

K∈ΩH

‖RK(uH, f )‖2VK

where rK is the cell-wise residual. RK is the Riesz-lift of rK inVK so it is the solution of〈
RK(uH, f ), v

〉
VK

= b(uH, v) − f (v), ∀v ∈ VK. (25)

Since (25) is an infinite-dimensional problem, we project the Riesz-lift RK to a finite-dimensional
subspace VK of VK, obtaining an approximation RK. This in turn gives the a posteriori error
estimator

‖R(uH, f )‖V B

 ∑
K∈ΩH

‖RK(uH, f )‖2VK


1/2

. (26)

An appropriate choice of the a posteriori search spaceVK depends on the problem and is crucial
to make ‖RK‖VK good error indicators.

In Dune-DPG, the computation of the a posteriori estimator (26) is handled by the classErrorTools.
The following lines of code compute (26) for the solution u_H of a problem with bilinear form
bilinearForm, inner product innerProduct and right hand side rhsVector.

C++ code
1 ErrorTools errorTools = ErrorTools();
2 double aposterioriErr =

errorTools.aPosterioriError(bilinearForm ,innerProduct ,u_H,rhsVector);

The object bilinearForm is of the type BilinearForm described above. It has to be created
with an object testSpace associated to the a posteriori search space VH. The same applies for
innerProduct, which is of type InnerProduct. Also the vector rhsVector has to be set up using
the a posteriori search space.

Furthermore, ErrorTools contains a method DoerflerMarking to use the approximate cell-wise
residuals ‖RK‖VK for adaptive refinement.

4 Numerical Example: Implementation of Pure Transport in DUNE-DPG

As a simple numerical example, we solve the transport problem (13) with

c = 0,
β = (β1, β2) = (cos(π/8), sin(π/8)),
f = 1.

As Figure 1d shows, the exact solution

ϕ(x) =


√
β2

2/β
2
1 + 1 · x1, if β1 · x2 − β2 · x1 > 0√

β2
1/β

2
2 + 1 · x2, else



124

describes a linear ramp starting at 0 in each point of the inflow boundary Γ− and increasing with
slope 1 along the flow direction β. There is a kink in the solution starting in the lower left corner
of Ω and propagating along β.

For the numerical solution, we let ΩH be a partition of Ω into uniformly shape regular triangles
generated by partitioning Ω = [0, 1]2 into n × n uniform quadrangles that are then each divided
from the lower left to the upper right corner into two triangles. Ωh is a refinement of ΩH to
some level ` ∈ N0 such that h = 2−`H, i. e. each triangle in ΩH gets subdivided into 4` congruent
subtriangles.

With UH and Vh defined as in (16) and (17) with m = 2, we compute uH = (ϕH,wH) ∈ UH
by solving the ultra-weak variational formulation (18). We investigate convergence in H of the
error ‖ϕ−ϕH‖L2(Ω). We also evaluate the a posteriori estimator ‖R(uH, f )‖V when the components
RK(uH, f ) are computed with a subspaceVK of polynomials of degree 5, ∀K ∈ ΩH.

Regarding the error ‖ϕ − ϕH‖L2(Ω), as Figure 1a shows, we observe linear convergence as H
decreases. This is to be expected since the polynomial degree to compute ϕH is 1. The figure
also shows that the refinement level ` of the test-search spaceVh has essentially no impact on the
behavior of the error.

Regarding the behavior of the a posteriori estimator ‖R(uH, f )‖V, it is possible to see in Figures 1b
and 1c that the quality of ‖R(uH, f )‖V slightly degrades as H decreases in the sense that, as H
decreases, ‖R(uH, f )‖V represents the error ‖ϕ − ϕH‖L2(Ω) less and less faithfully. An element that
might be playing a role is that ‖RK(uH, f )‖V is not exactly an estimation of ‖ϕ−ϕH‖L2(Ω), but of the
error including also wH, namely ‖u − uH‖U = ‖(ϕ,w) − (ϕH,wH)‖U.

The source code used to compute the values from the convergence plots in Figure 1a–c can be
found in src/convergence_test.cc while the code used to generate Figure 1d can be found
in src/plot_solution.cc. In this program, the user can easily experiment with the transport
equation by changing the values of β and c (see the README file).

In Figure 2 we compare the runtime for assembling the system with and without buffering of the
test space coefficient matrices from Section 3.1.4 on a 4 core Intel Core i7-3770 CPU with 3.40GHz
and 15GB of RAM. These performance measurements have been done for the same problem as
before and the corresponding code resides in src/profile_testspacecoefficientmatrix.cc.
The plots show the clear advantage of using the buffering whenever the grid is uniform and we
use constant coefficients.

5 Conclusion And Future Work

In Section 2, we gave a short overview of the DPG method. We then introduced our Dune-
DPG library in Section 3, documenting the internal structure and showing how to use it to solve a
given PDE. Finally, we showed some numerical convergence results computed for a problem with
well-known solution. This allowed us to compare our a posteriori estimators to the real L2 error
of our numerical solution. As a next step, we want to fully implement non-constant coefficients
in order to support a wider range of PDEs.

Furthermore, we want to improve our handling of vector valued problems with one notable
example being first order formulations of convection–diffusion problems. With our current
std::tuple of spaces structure used throughout the code, we have to implement vector valued
spaces by adding the same scalar valued space several times. With the Dune-TypeTree library
from Müthing [2015] we can handle vector valued spaces much more easily, as has already been
shown in Dune-Functions. This will result in major changes in our code, but will probably allow
us to replace our dependency on Boost Fusion with more modern C++11 constructs. In the long
run, we hope that this would give us increased maintainability and decreased compile times in
addition to the improvements in the usability of vector valued problems. Finally, we want to
explore parallelization to increase the performance. This is aligned with our long-term goal of
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Figure 1: L2 error and a posteriori error estimator of numerical solutions

making Dune-DPG a flexible building block for constructing DPG solvers for a large range of
different problem types.
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