Automatisierte und semiautomatisierte Klassifizierung - eine Analyse aktueller Projekte

Anna Kasprzik

Abstract


Das sprunghafte Anwachsen der Menge digital verfügbarer Dokumente gepaart mit dem Zeit- und Personalmangel an wissenschaftlichen Bibliotheken legt den Einsatz von halb- oder vollautomatischen Verfahren für die verbale und klassifikatorische Inhaltserschließung nahe.

Nach einer kurzen allgemeinen Einführung in die gängige Methodik beleuchtet dieser Artikel eine Reihe von Projekten zur automatisierten Klassifizierung aus dem Zeitraum 2007-2012 und aus dem deutschsprachigen Raum. Ein Großteil der vorgestellten Projekte verwendet Methoden des Maschinellen Lernens aus der Künstlichen Intelligenz, arbeitet meist mit angepassten Versionen einer kommerziellen Software und bezieht sich in der Regel auf die Dewey Decimal Classification (DDC). Als Datengrundlage dienen Metadatensätze, Abstracs, Inhaltsverzeichnisse und Volltexte in diversen Datenformaten.

Die abschließende Analyse enthält eine Anordnung der Projekte nach einer Reihe von verschiedenen Kriterien und eine Zusammenfassung der aktuellen Lage und der größten Herausfordungen für automatisierte Klassifizierungsverfahren.

Volltext:

PDF



DOI: http://dx.doi.org/10.11588/pb.2014.1.14022

URN (PDF): http://nbn-resolving.de/urn:nbn:de:bsz:16-pb-140224