
	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	120

APPLIED
METAPHYSICS –
OBJECTS IN
OBJECT-ORIENTED
ONTOLOGY AND
OBJECT-ORIENTED
PROGRAMMING

By Gabriel Yoran

“As computer science works on domain-specific

models in order to find solutions to practical

problems, employing models of the world,

 informatics is – like any proper science – applied

metaphysics.”

Suggested citation: Yoran, Gabriel (2018). “Objects in Object-Oriented Ontol-
ogy and Object-Oriented Programming.” In Interface Crit ique Journal Vol.1 .
Eds. Florian Hadler, Alice Soiné, Daniel Irrgang
DOI: 10.11588/ic.2018.0.44744

This article is released under a Creative Commons l icense (CC BY 4.0).

YORAN: APPLIED METAPHYSICS

	

 121

ONTOLOGY AFTER
INFORMATICS
	
“What can I know? What must I do?
What may I hope for? What is man?”1
The four Kantian questions, as uni-
versal as they seem, pivot around the
I. All knowledge gained is knowledge
only in the cognitive relation between
acts of consciousness and an outside
world, which is deemed more or less
inaccessible. Every ethical demand is
demanded of an I. Every hope experi-
enced is experienced by an I. Kant
holds that answering these three
questions will inevitably lead to an
answer of the fourth: What is man?
And it is again an I who questions
what it is. The Western world lives in
the Kantian horizon. It pivots around
the I.

Speculative realists set out to
change that. While not representing a
unified theory, this line of thought en-
compasses different non-anthropo-
centric positions striving to, in Ray
Brassier’s words, “re-interrogate or to
open up a whole set of philosophical
problems that were taken to have
been definitively settled by Kant, cer-
tainly, at least, by those working
within the continental tradition.”2 As
overcoming the human as the epis-
temic center of the cosmos neces-
sarily leads to both a speculative

––
1 Immanuel Kant, Critique of Pure Reason, ed.
Paul Guyer and Allen W. Wood, The Cambridge
Edition of the Works of Immanuel Kant (Cambridge:
Cambridge University Press, 1998), A805/B833.
2 Ray Brassier, Iain Hamilton Grant, Graham
Harman, and Quentin Meillassoux, “Speculative
Realism,” in Collapse, ed. Robin Mackay, vol. III
(Oxford: Urbanomic, 2007), 308.

stance and a more or less realist posi-
tion, speculative realism is a feasible
term. In accordance with the tradition
in which Kant named metaphysics “a
wholly isolated speculative cognition
of reason,”3 speculative realism
merely makes the nature of its task
obvious by naming it accordingly.

The variant of speculative re-
alism which will be looked into here,
is object-oriented philosophy (more
often referred to as object-oriented
ontology and thus abbreviated OOO), a
theory by contemporary American
philosopher Graham Harman, who
also coined the term. Even though
OOO is subsumed under the specula-
tive realism movement, Harman
claims to be “the only realist in spec-
ulative realism.”4

OOO, even though this is most
likely unintended, is a substance on-
tology developed under the impres-
sion of informatics. It “might be
termed the first computational me-
dium-based philosophy, even if it is
not fully reflexive of its own historical
context in its self-understanding of
the computation milieu in which it re-
sides.”5 As “perhaps the first Internet
or born-digital philosophy has certain
overdetermined characteristics that
reflect the medium within which [it
has] emerged.”6 Such notions usually
refer to the leading figures of specula-
tive realism using blogs and social
media to distribute their thoughts

3 Kant, CPR, B xiv.
4 Graham Harman, personal communication
with the author, March 12, 2017.
5 David M. Berry, Critical Theory and the
Digital, Critical Theory and Contemporary Society
(New York: Bloomsbury, 2014), 103.
6 Ibid., 104.

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	122

quickly and engage in lively discus-
sions with the academic community
online. OOO however has a deeper re-
lation to the computational sphere:
while Harman first publicly men-
tioned the term object-oriented phi-
losophy in 1999,7 object-oriented
programming was already invented
in the late 1960s – and the parallels
between these two domains are note-
worthy.

Working at the Norwegian
Computing Center in Oslo, Ole-Johan
Dahl und Kristen Nygaard in the
1960s conceived a new way of com-
puter programming, in which what
was separate before, namely data and
functions, were molded into com-
bined and somehow sealed logical
units. Dahl and Nygaard named these
units “objects” and the programming
language they developed, Simula 67,
is regarded the first to allow for soft-
ware development following the par-
adigm of object-oriented program-
ming (OOP).8

OOP has been in use for nearly
five decades now and while it is still a
popular way of structuring software
development projects large and small
today, its critics have become more
vocal. OOP’s unnecessary complexity
is just one of the issues computer lan-
guage designers bring up: “The prob-
lem with object-oriented languages is
they’ve got all this implicit environ-
ment that they carry around with

––
7 Graham Harman, Bells and Whistles: More
Speculative Realism (Winchester: Zero Books, 2013),
6.
8 Bjarne Stroustrup in: Federico Biancuzzi and
Shane Warden, eds., Masterminds of Programming
(Sebastopol, CA: O’Reilly, 2009), 10.
9 Joe Armstrong, Coders at Work: Reflections
on the Craft of Programming, ed. Peter Seibel (New
York: Apress, 2009), 213.

them. You wanted a banana but what
you got was a gorilla holding the ba-
nana and the entire jungle.”9 Regard-
less of OOP coming under fire lately,
the striking parallels between the
aesthetic and technological praxis of
object-oriented programming on the
one side and a new metaphysics on
the other side, promise a fruitful con-
tribution to the ontographic project.

As a science investigating
“the structure and properties (not spe-
cific content) of scientific infor-
mation, as well as the regularities of
scientific information activity, its
theory, history, methodology and or-
ganization,” informatics was defined
in the 1960s.10 Since then the task of
informatics has been extended be-
yond the analysis of scientific infor-
mation and deepened by performing
this task using the means of compu-
ting. Thus, informatics today has be-
come the science that investigates
the structure and properties of infor-
mation. The similarities between ob-
ject-oriented programming and
object-oriented ontology do not come
as a surprise, given that informatics is
traditionally occupied with meta-
physics: both computer science and
philosophy “do not address the mate-
riality of things such as physics, they
are not confined to the ‘science of
quantity’ (= mathematics).”11 Since
computer science strives to map real-
ity onto computational structures,

10 A.I. Mikhailov, A.I. Chernyl, and R.S.
Gilyarevskii, “Informatika – Novoe Nazvanie Teorii
Naučnoj Informacii,” Naučno Tehničeskaja
Informacija, no. 12 (1966): 35–39.
11 Alessandro Bellini, “Is Metaphysics Relevant
to Computer Science?,” Mathema (June 30, 2012),
http://www.mathema.com/philosophy/metafisica/is-
metaphysics-relevant-to-computer-science/.

YORAN: APPLIED METAPHYSICS

	

 123

employing substance ontologies
seems obvious. As computer science
works on domain-specific models in
order to find solutions to practical
problems, employing models of the
world, informatics is – like any proper
science – applied metaphysics.

PARALLELS

Computational metaphors share
a lot of similarity in object-
oriented software to the
principles expressed by [ooo’s]
speculations about objects as
objects.12

There are astonishing parallels be-
tween object-oriented ontology and
object-oriented programming, even
though the former only borrowed the
name from the latter.13

When object-oriented pro-
gramming was invented, the domi-
nant approach to computer pro-
gramming was imperative or proce-
dural. Imperative programming
means conveying computational
statements that directly alter the
state of the program. A program de-
signed in this way roughly works by
linearly processing a list of functions
step by step. When these statements
are grouped into semantic units, “pro-
cedures,” one can speak of procedural
programming. Procedures are used
to group commands in a computer
program in order to make large pro-
grams more easily maintainable.
Groups of statements also make code
––
12 Berry, Critical Theory and the Digital, 205.
13 Graham Harman, personal communication
with the author, August 18, 2013.

reusable, since the same set of state-
ments can be invoked again and
again. It also makes code more flexi-
ble, since parameters can be handed
to a procedure for it to process. Pa-
rameters can be thought of as values
handed to functions (the x in f(x)).
While the function follows the same
logics, the operation’s result depends
on the parameters passed.
These improvements however were
not sufficient to handle complex
computational tasks like weather
forecasts. Tasks like this require sim-
ulations. And even though Alan
Shapiro mockingly notes that “the
commercialized culture of the USA is
substantially not a real world any-
more: it is already a simulation. Ob-
ject-oriented programming is a
simulation of the simulation,”14 the
necessity of simulating weather sys-
tems or financial markets called for
more sophisticated strategies to
structure computer programs. In-
stead of grouping lists of statements
into procedures and have these state-
ments directly manipulate a pro-
gram’s state, object-oriented pro-
gramming offers a vicarious ap-
proach. Computational statements
and data are being bundled together
in objects. These objects are being
closed off to the rest of the program
and can only be accessed indirectly
by means of defined interfaces. Un-
der this new programming paradigm
computer programmers became ob-
ject designers – they were forced to

14 Alan Shapiro, Die Software der Zukunft oder:
das Modell geht der Realität voraus, International
Flusser Lectures (Cologne: König, 2014), 7; transla-
tion by the author.

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	124

come up with an object-oriented on-
tology for the world they wanted to
map into the computer’s memory.

The invention of object-orien-
tation made object-oriented com-
puter languages a necessity. The
available computer languages did not
possess the grammar necessary to
describe objects and their relations. It
becomes clear that “computer lan-
guage” or “programming language”
are misleading terms. These lan-
guages are products of human inven-
tion. They are human-designed,
human-understandable languages,
which computers can process in or-
der to fulfill certain tasks. Designing
a programming language is an at-
tempt at producing the toolset for fu-
ture developers to solve as yet un-
anticipated problems, sometimes in
ways that were previously inconceiv-
able. Object-oriented ontologies in in-
formatics are pragmatic and open,
they are realist in a sense of being a
useful system of denotators of things
outside the computer (or the pro-
gramming language). They aim for re-
usable program code, which only
needs to be written once, so problems
do not need to be solved twice and er-
rors do not have to be fixed in multi-
ple places. Thus, the programming
language designer’s task is meta-
pragmatic: designing a language as a
tool for others to build tools to even-
tually fulfill certain tasks. Object-ori-
entation discards lists of statements
in favor of objects as the locus of, to
use a Simondonian term, “problem

––
15 Gilbert Simondon, “The Genesis of the
Individual,” in Incorporations, ed. Jonathan Crary and
Sanford Kwinter (New York: Zone, 1992), 301.

solving.” Simondon’s notion of the in-
dividual describes objects as “agents
of compatibilisation,” solving prob-
lems between different “orders of
magnitude.”15 With this notion Si-
mondon seems to have anticipated
the object in object-oriented pro-
gramming; or at the very least, the ac-
tual implementation of objects in OOP
prove to be in line with the traits of
the individual Simondon described.

Object-oriented programming
became so widely adopted partly be-
cause it is close to the everyday expe-
rience of objects. It also makes strong
use of hierarchies, another everyday
concept. Objects may remain identifi-
able and stable from the outside, even
when their interior changes dramati-
cally. The “open/closed principle” is
evidence of this: a component, not
necessarily an object, needs to be
open for future enhancement, but
closed with regards to its already ex-
posed interfaces. This “being closed”
ensures that other components de-
pending on the component can rely
on the component’s functionality dis-
played earlier – unexpected changes
in behavior need to be prevented.16
Being closed can be read as unity, as
a certain stability of an object that
makes it identifiable. Object-oriented
programming however reaches some
of this stability by interweaving ob-
jects into a hierarchy, an idea that ob-
ject-oriented ontology rejects.
In both object-oriented programming
and object-oriented ontology objects
are the dominant structural ele-

16 Bertrand Meyer, Object-Oriented Software
Construction, Prentice-Hall International Series in
Computer Science (New York: Prentice-Hall, 1988),
23.

YORAN: APPLIED METAPHYSICS

	

 125

ments. In object-oriented program-
ming, objects are supposed to be mod-
eled after real-life objects as the aim
is to provide a sufficiently precise
representation of the reality to be
simulated. In practice this undertak-
ing often fails. Objects are being cre-
ated in code for things that do not
exist outside the program. Function-
ality is forced into object form even
when the result is awkward and un-
satisfying. As a result, alternative pro-
gramming paradigms are getting
more interest lately and new pro-
gramming languages like Apple’s
Swift are designed undogmatically,
mixing different paradigms with the
goal to always deliver the solution
that’s least error-prone for the use-
case. But this should not be of any
concern as we are focusing on the
multitude of traits that OOP and OOO
share:

1. Objects are both systems’ basic

building blocks.
2. Objects can be anything from

very simple to extremely com-
plex.

3. Objects have an inner life,
which is not fully exposed to
the outside.

4. Objects interact with other ob-
jects indirectly and do not ex-
haust other objects completely.

5. Objects can destroy other ob-
jects.

6. Results of interactions between
objects may or may not be pre-
dictable from outside an object.

7. Objects can contain objects.

––
17 Biancuzzi and Warden, Masterminds of
Programming, 350.

8. Objects can change over time,
but at the same time stay the
same object in the sense of an
identifiable entity.

9. No two objects are the same.

OBJECTS AS
UNPREDICTABLE
BUNDLES

The first programming language re-
garded as object-oriented was Simula
67, invented in the 1960s by Ole-Jo-
han Dahl und Kristen Nygaard at the
Norwegian Computing Center in Oslo.
Simula 67 was designed as a formal
language to describe systems with
the goal of simulation (thus the name
Simula, a composite of simulation
and language). Simula already incor-
porated most major concepts of ob-
ject-orientation. Most importantly,
Dahl’s and Nygaard’s object definition
still holds today: objects in object-ori-
ented programming are bundles of
properties (data) and code (behavior,
logics, functions, methods). These ob-
jects expose a defined set of inter-
faces, which does not reveal the
totality of the object’s capabilities and
controls the flow of information in
and out of the object. These two spe-
cifics are subsumed under the “en-
capsulation” moniker.17

Objects in programming are
another variant of “the ancient prob-
lem of the one and the many”:18 they
exist as abstract definitions, called

18 Graham Harman, The Quadruple Object
(Winchester: Zero Books, 2011), 69.

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	126

“classes” or “object types,” and as ac-
tual entities, called “objects” or “in-
stances.” So, while a class is the
Platonic description of an abstract ob-
ject’s properties and behavior, in-
stances are the actual realization of
such classes in a computer’s
memory.19 There can be more than
one instance of any class, and it is
possible and common for multiple in-
stances of the same class to com-
municate with each other.
Let us look at a concrete example of
the difference between procedural
and object-oriented programming. In
procedural programming, a typical
function would be y=f(x), where f is
the function performed on x and the
function’s result would be stored (re-
turned) in the variable y. In object-ori-
entation however, an object x would
be introduced, which would contain a
method f. An interface would be de-
fined that would allow for other ob-
jects to call f, using a specified
pattern. And so, by invoking f, the
member function being part of object
x – or x.f() for short – the object, con-
taining both data and functionality,
stays within itself. In our case, there
is no return value, so no y to save the
results of function f to. This is not
necessary as the object itself holds all
the data it operates on.

Object-oriented programming
has been criticized for the fact that
the behavior of object methods (func-
tions inside objects) is unpredictable
when viewed from a strictly mathe-
matical perspective. A mathematical
function y=f(x) is supposed only to
––
19 Vlad Tarko, “The Metaphysics of Object
Oriented Programming,” May 28, 2006,
http://news.softpedia.com/news/The-Metaphysics-
of-Object-Oriented-Programming-24906.shtml.

work on x and return the result in y.
An object method however can also
modify other variables inside its ob-
ject and thus lead to unpredictable re-
sults. A function is supposed to return
its result – an object method however
modifies its object, but does not nec-
essarily return a copy of (or a pointer
to) the whole modified object. When
manipulating an object through one
of its member functions, it is not
known from the outside which effects
this manipulation will have on the ob-
ject internally. This means the ob-
ject’s behavior following such a
method call is not predictable from
outside of the object. While software
developers generally try to prevent
unpredictability, the object-oriented
philosopher will hardly be surprised:
it is a key characteristic of OOO that
objects can behave in unpredictable
ways and that their interiority is
sealed off from any direct access:

I think the biggest problem
typically with object-oriented
programming is that people do
their object-oriented program-
ming in a very imperative
manner where objects encap-
sulate mutable state and you
call methods or send mes-
sages to objects that cause
them to modify themselves
unbeknownst to other people
that are referencing these ob-
jects. Now you end up with
side effects that surprise you
that you can’t analyze.20

20 Biancuzzi and Warden, Masterminds of
Programming, 315.

YORAN: APPLIED METAPHYSICS

	

 127

While in object-orientation data and
operations performed on it need to be
bundled into one object, the compet-
ing paradigm of functional program-
ming means that operations and data
are separated. In the functional pro-
gramming language Haskell for ex-
ample, functions can only return
values, but cannot change the state of
a program (as is the case in object-ori-
entation).

THE PLATONIC
CLASS

While objects may have complex in-
ner workings (code as well as data),
they usually do not share all this in-
formation with other objects. An ob-
ject exposes certain well-defined
interfaces through which communi-
cation is possible. In line with object-
orientation’s original application, we
want to discuss the key concepts of
OOP using a simulation program. We
will imagine a program simulating
gravitational effects in our solar sys-
tem. Such a program, if designed in
an object-oriented way, would most
definitely contain an object type – or
Platonic “class” – representing a
planet. Such a class would contain
variables to describe a planet’s physi-
cal and chemical properties like its
diameter, atmosphere, age, current
average temperature, its position in
relation to the solar system’s sun, etc.
It would also contain methods, which
would be used to manipulate class
data. A method to change the average
temperature (to account for the case
of a slowly dying sun for example)

would need to be implemented as
well. In a solar system simulation,
there would be multiple instances –
objects – of the planet class; in the
case of our solar system one would
create objects for Earth, Jupiter, Sat-
urn etc.

The simulation would manip-
ulate any planet’s data by calling the
object’s respective method, for exam-
ple the one to change the planet’s av-
erage temperature on the surface.
The actual variable holding the aver-
age temperature itself would not be
exposed to the object’s outside. So,
any interaction with the object must
be mediated through the interface
methods provided by the object. All
interactions with an object become
structured by this intermediate layer
and can be checked for faulty inputs.
Instead of directly changing the tem-
perature on a planet to a value below
absolute zero (which would be possi-
ble if direct access was given), the in-
termediate data setting method
provides its own logic, and thus limi-
tations, to prevent such a “misuse” of
the object.

But all planets are different
and to take this into consideration in
our simulation, we would need to set
any instance’s properties (data) ac-
cordingly. To do so, classes provide
special “constructor” methods, which
bring an instance of a class into exist-
ence. Constructors take parameters
needed to initially construct an object
and then create an instance accord-
ingly. (To destroy objects, so-called
“destructors” can be used as well.)
As mentioned, object-oriented pro-
gramming differentiates between
classes (object types) and objects
(there is other terminology, but in this

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	128

work, we will use these classic terms
as defined in the C++ programming
language). What makes this parallel
interesting is that it is an interplay
between a fixed structure and free-
floating accidents that constitutes an
object. This interplay is what OOO
deems an object’s essence. As not to
stretch the analogies between OOO
and OOP too far, this interplay takes
place on the inside of an object in OOO,
but in OOP it crosses borders between
objects. But similar to the situation in
OOO, objects can come into existence
without actively enacting any reality.
However, the object structure in OOP
(which we would call the counterpart
to OOO’s real-object-pole) defines
what an object can do. This is to be
understood as a potential and not as
an exhaustive description of the ob-
ject’s capabilities. In OOP, the instance
of an object (what we have come to
see as its real-qualities-pole) cannot
be reduced to the object itself (the
real-object-pole) – an object therefore
is always more than its rigid struc-
ture. If the object has any interface to
the outside, which is the case with
most objects in OOP, there is still no
way to know the results of all possible
interactions with the object.

HIERARCHY AND
INHERITANCE

Let us assume all planets in our solar
system simulation have been suffi-
ciently defined. We would still need
an object representing the sun. The
sun is not a planet, but a star, yet there
are properties and probably methods

both share, something all celestial
bodies incorporate. Since its first in-
carnation in Simula 67, using the ob-
ject-oriented programming paradigm
is synonymous with organizing ob-
jects hierarchically in tree-like struc-
tures. Every object has at least one
parent object (a superclass) and can
have child objects (subclasses). An
object then inherits all properties and
methods of its superclass (or, in some
cases, superclasses) and hands them
and its own properties and methods
down its subclasses, which can then
add additional properties and meth-
ods. So, both classes representing
planets and suns should be derived
from a superclass representing any
celestial body. This celestial body
class would then handle properties
and methods shared by all its sub-
classes. Only methods and data nec-
essary for more specific celestial
bodies like planets or stars would be
defined in their respective sub-
classes. In OOP, a principle of reversed
subsidiarity is at work: anything that
can be handled at the highest, most
abstract level is being handled there;
only more specific tasks are being
handled further down the object hier-
archy.

OOP’s terminology, talking of
“parent classes,” “child classes,” and
“inheritance,” shows the hierarchical
tradition in which OOP is rooted. Any
object in the hierarchy “inherits” all
traits from its parent object. Such a
hierarchy has at its root an abstract
object (CObject in Microsoft’s MFC
model), which only consists of ab-
stract methods that make no state-
ment about the specifics of this object
at all. Such an object is rarely being
used directly by software developers,

YORAN: APPLIED METAPHYSICS

	

 129

but only through one of its more con-
crete subclasses. But not all objects
are part of such a hierarchy, like for
example the CTime object in the MFC
model.21 CTime is used to represent
an absolute time value. Operations on
such a value are very basic and
needed in a multitude of methods, but
it would be hard to logically position a
time object somewhere in an all-en-
compassing hierarchical system. The
question of what a representation of a
specific time should be derived from
is hard to answer. This concept is too
basic to be inserted into a hierarchy.
So, while CTime objects can be inte-
grated into custom-made hierarchies,
they themselves are not derived from
any superclass: representations of
time are solitary objects within the
MFC model.

INTERFACE AND
IMPLEMENTATION

Now that we have a small hierarchy
of celestial bodies represented in our
object-oriented program design, we
still face the task of implementing the
actual simulation algorithm. Discuss-
ing this algorithm itself is outside our
scope. We are more interested in
where such an algorithm would be
placed in an object-oriented design.
This touches a key question of any
object-oriented system: where and
how do processes take place? Do they
happen within objects, between ob-

––
21 Microsoft, “CTime Class,” 2015,
https://msdn.microsoft.com/en-us/library
/78zb0ese.aspx.

jects, or in both places? While Simon-
don stresses the notion of objects as
being through becoming,22 the con-
cepts of both OOP and OOO define ob-
jects qua their relative stability.

In object-oriented ontology,
real objects need sensual objects as a
bridge between them, leading to a
chain of objects. Sensual or real ob-
jects cannot touch each other di-
rectly. The sensual object acts as an
interface between real objects – or
the real object as the interface be-
tween sensual objects. In object-ori-
ented programming, objects cannot
touch directly as well: they are broken
down in interface and implementa-
tion parts. The interface part acts as
an – incomplete – directory of meth-
ods and variables made available to
other objects. It never exposes every-
thing on an object’s inside to the out-
side. It can even announce methods,
which at the time of such an an-
nouncement are not even fully de-
fined. Only when these methods are
being invoked, a real-time decision
will be made in regard to which ver-
sion of the method would be appropri-
ate to use in the current situation. So,
OOP’s interface is on the one hand a
sensual object since it serves as the
interface to other objects while not
exposing the whole enactability on
reality of its real object – which would
be the implementation. Methods can
execute different code, depending on
criteria inaccessible from the outside,
allowing for a program to change dur-
ing runtime without damaging the

22 Simondon, “The Genesis of the Individual.”

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	130

object’s identifiability. The imple-
mentation part on the other hand rep-
resents the real object in the totality
of its enactability in the program.

As for the solar system simu-
lation, in object-oriented program-
ming the obvious implementation
would be a superclass representing
all the components of a solar system
needed for its simulation on a celes-
tial bodies’ level. An instance of such
a solar system class would then have
to incorporate member classes for
every celestial body in the solar sys-
tem. But which object would be the
one to describe the relations between
all the data and methods of the solar
system object? One could create
methods in the solar system class
that would contain the algorithm
needed for the simulation, like modi-
fying a planet’s position in space de-
pending on the position and
movement of other celestial bodies as
time progresses. But the intended
way of handling such a simulation is
a technique called message-passing.

Objects can send and receive
messages. The concept of message-
passing allows for messages to be
sent to an object, which then decides
how to handle the message. This way
an object is able to handle requests
dynamically, depending on the type
of data sent to it. This illustrates how
both sides in an object-to-object in-
teraction are involved. This interac-
tion is not a simple sender-receiver
relationship, but a rich exchange in
which both objects involved do not
fully touch each other, but are selec-
tive with regards to which input to ac-
cept at all. An object representing a
planet could send a message to other
planet objects, informing them about

its own location in space. These other
planets then would change their posi-
tion in space accordingly. This way
one could create a very simple simu-
lation of gravity, but none of the ob-
jects involved would have any access
to other object properties not needed
for the calculation of gravitational ef-
fects.

So, message-passing is not
just a concept of inexhaustibility, it is
also a concept of indirection. Objects
do not exhaust each other, they do not
even touch directly, but they com-
municate by messages, which can be
seen as an implementation of the
concept of sensual objects.

INEXHAUSTIBILITY
OF PROGRAMS

Let us go back to the solar system
simulation example one last time. We
found that the object ontology offered
by object-oriented programming lan-
guages is a lax one, since there can be
objects outside the hierarchy.

The solar system object, the
object which hosts our simulation,
would need to be instantiated at some
point, since it cannot create itself.
There has to be code outside the solar
system class. Of course, there might
be another object, which again incor-
porates the solar system class (a su-
perclass to the solar system)
representing a galaxy. But the Milky
Way is not useful for simulating the
gravitational effects in our solar sys-
tem, and this would just move the
problem to another level. The object-
oriented programming paradigm is

YORAN: APPLIED METAPHYSICS

	

 131

an abstraction from the hardware the
program will eventually be running
on, since the central processing unit
(CPU) does not “know” objects. The
compiler or interpreter program must
have done its task of translation to
machine code before the CPU can run
the program – and after this transla-
tion the object concept is lost to the
CPU. These translator programs re-
duce object-orientation to a very
basic sequence of memory opera-
tions, which the chip can process.
This would only change if object-ori-
ented hardware were being built,
hardware that would render compil-
ers or interpreters useless – but ob-
ject-oriented chip designs like the
Intel iAPX 432, which was introduced
in 1981, eventually failed. They were
slow and expensive and new technol-
ogies more suitable to the limitations
of hardware prove more efficient –
and so the idea of object-orientation
in chips has only found very limited
application.23

Programming languages
came a long way in the last 60 years.
They moved from a primitive set of
commands in order to directly access
a processor’s memory to complex se-
mantics, completely abstracted from
the hardware its programs will run
on. All high-level programming lan-
guages need an intermediary be-
tween statements made in such a
language and the hardware programs
are supposed to run on – these inter-
mediaries are either compilers (pro-
grams that in a time-consuming way
translate high-level programming
––
23 David R. Ditzel and David A. Patterson,
“Retrospective on High-Level Language Computer
Architecture”(ACM Press, 1980), 97-104,
doi:10.1145/800053.801914.

languages to machine code the pro-
cessor can work with) or interpreters
(which basically fulfill the same task
in real-time). In any case, there is a
medium between the high-level lan-
guage and the machine.24

While objects in object-ori-
ented ontology are described as bro-
ken down in a real and a sensual part
(what we superficially likened to the
concepts of implementation and in-
terface in programming), we need to
understand that the whole relation of
the statements made in a high-level
programming language to the hard-
ware the written program will run on
is the relation of model and reality.
The hardware of the chip forms the
ultimate reality of the program, since
the hardware defines the reality
against the model put on top of it
must work. The reality of the hard-
ware again is its context, the wider
environment of the machinery, its ap-
plications, and the people using it.

The limits of a program’s en-
actability of its reality are in the hard-
ware it runs on and the time available.
A self-modifying program could en-
act an infinite amount of reality given
there is enough time. So, the real ob-
ject is inexhaustible by the relations it
enters into with sensual objects. Pro-
grams running on a chip can never
exhaust it. It is impossible to list all
the programs that could be executed
on the chip. It is not even possible to
know in advance if all these programs
will actually come to an end. Alan Tu-
ring described this phenomenon,
which later became known as the

24 A new generation of chips might end this
separation. FPGAs are chips whose hardware can be
modified by means of software, effectively blurring
the line between software and hardware.

	
INTERFACE CRITIQUE JOURNAL – VOL. I – 2018
	

	132

“halting problem”: it is undecidable if
an arbitrary computer program will
eventually finish running or will con-
tinue running forever.25 The halting
problem extends inexhaustibility to
the proof of inexhaustibility.

Object-oriented ontology
aims at treating all objects equally –
which rules out a central perpetrator.
In object-oriented programming, it
seems that there is no central perpe-
trator as well and objects act inde-
pendently from a central instance. In
reality, object-orientation today is a
paradigm put on top of hardware,
which is incapable of working with-
out a central perpetrator. So, while the
language in which the program is
modeled, is object-oriented, it is im-
portant to understand that these ob-
jects are constructions in a language,
which again tries to mimic things and
relations in reality.

Objects act on behalf of them-
selves as long as one stays at the ob-
ject’s level of abstraction. On the
chip’s level these objects are nonex-
istent – the CPU only acts upon
memory, where certain information
is stored. The CPU and the operating
system will make decisions without
the objects “knowing,” for example for
dispatching: since programs today
mostly run on computers with more
than one central processing unit, it is
necessary to distribute tasks (or ob-
ject methods) to different CPUs.

The intuition of being sur-
rounded by objects with a certain in-
dependence from each other is at the

––
25 Alan M. Turing, “On Computable Numbers,
with an Application to the Entscheidungsproblem,”
Proceedings of the London Mathematical Society s2-
42, no. 1 (January 1, 1937): 230-65,
doi:10.1112/plms/s2-42.1.230; Alan M. Turing, “On

root of both models, OOP and OOO. But
object-oriented ontology rejects the
concept of a reducibility of objects to
other objects: even though every ob-
ject can be broken down to its parts
(representing new objects): these ob-
jects do not exhaust the bigger object
they form. There is nothing “below”
objects in OOO. OOP however is a
model, which is deliberately put on
top of the more primitive and non-in-
tuitive computational concept of
memory.

This shows how object-ori-
ented programming works only at a
certain level of abstraction, thus con-
stituting the major difference be-
tween object-oriented programming
and object-oriented ontology: the ear-
lier being a model applied pragmati-
cally in one domain, the latter aiming
for a complete metaphysics.

Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction,” Proceedings of
the London Mathematical Society s2-43, no. 6
(January 1, 1938): 544-46, doi:10.1112/plms/s2-
43.6.544.

YORAN: APPLIED METAPHYSICS

	

 133

REFERENCES

Armstrong, Joe. Interview by Peter Seibel. In:

Coders at Work: Reflections on the Craft
of Programming, edited by Peter Seibel,
205-239. New York: Apress, 2009.

Bellini, Alessandro.“Is Metaphysics Relevant
to Computer Science?”Mathema (June
30, 2012). http://www.ma-
thema.com/philosophy/metafisica/is-
metaphysics-relevant-to-computer-sci-
ence/.

Berry, David M. Critical Theory and the Digital.
Critical Theory and Contemporary Society.
New York: Bloomsbury, 2014.

Biancuzzi, Federico, and Shane Warden, eds.
Masterminds of Programming. Sebasto-
pol, CA: O’Reilly, 2009.

Brassier, Ray, Iain Hamilton Grant, Graham
Harman, and Quentin Meillassoux. “Spec-
ulative Realism.” In: Collapse, edited by
Robin Mackay, III:306-449. Oxford: Ur-
banomic, 2007.

Ditzel, David R., and David A. Patterson. “Ret-
rospective on High-Level Language Com-
puter Architecture.”In: Proceedings of the
7th annual symposium on Computer Archi-
tecture, 97-104. ACM, 1980.
doi:10.1145/800053.801914.

Harman, Graham. Bells and Whistles: More
Speculative Realism. Winchester: Zero
Books, 2013.

Harman, Graham. The Quadruple Object. Win-
chester: Zero Books, 2011.

Kant, Immanuel. Critique of Pure Reason. Ed-
ited by Paul Guyer and Allen W. Wood.
The Cambridge Edition of the Works of
Immanuel Kant. Cambridge: Cambridge
University Press, 1998.

Meyer, Bertrand. Object-Oriented Software
Construction. Prentice-Hall International
Series in Computer Science. New York:
Prentice-Hall, 1988.

Microsoft. “CTime Class,” 2015.
https://msdn.microsoft.com/en-us/li-
brary/78zb0ese.aspx.

Mikhailov, A.I., A.I. Chernyl, and R.S. Gilyarev-
skii. “Informatika – Novoe Nazvanie Te-
orii Naučnoj Informacii.” In: Naučno

Tehničeskaja Informacija, no. 12 (1966):
35-39.

Shapiro, Alan. Die Software der Zukunft oder:
das Modell geht der Realität voraus. Inter-
national Flusser Lectures. Cologne: Kö-
nig, 2014.

Simondon, Gilbert. “The Genesis of the Indi-
vidual.” In: Incorporations, edited by Jona-
than Crary and Sanford Kwinter, 297-319.
New York: Zone, 1992.

Tarko, Vlad. “The Metaphysics of Object Ori-
ented Programming.” Softpedia News
(May 28, 2006).
http://news.softpedia.com/news/The-
Metaphysics-of-Object-Oriented-
Programming-24906.shtml.

Turing, Alan M.“On Computable Numbers,
with an Application to the Entschei-
dungsproblem.” In: Proceedings of the
London Mathematical Society s2-42, no. 1
(January 1, 1937): 230-65.
doi:10.1112/plms/s2-42.1.230.

Turing, Alan M. “On Computable Numbers,
with an Application to the Entschei-
dungsproblem. A Correction.” In: Proceed-
ings of the London Mathematical Society
s2-43, no. 6 (January 1, 1938): 544–46.
doi:10.1112/plms/s2-43.6.544.

