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Summary. Artificial Intelligence (Al) has been rapidly developing in recent times, and with it, new ways of understanding
psychological constructs based on their underlying mechanisms. The purpose of the present article is to propose a theo-
retical model for phenomenological dream-building based on non-equilibrium statistical physics, particularly through
core processes observed in Latent Diffusion Models and Generative Artificial Intelligence. Drawing upon the Integrated
World Modeling Theory (IWMT) of consciousness, diffusion models and current literature about the phenomenology of
dreams, the present model (henceforth, Dream Denoising Model [DDM)]) argues that dreams are the result of a denoising
process by which the Dreaming Brain System (DBS) resists entropic states caused by impaired information integration,
which reaches its lowest during dreamless sleep or Slow Wave Sleep (SWS). To do so, the DBS relies on memories
(dataset), conditioners such as Stable Traits and Transient States of the dreamer (prompt) and predictive processing
(cross-attention) in order to generate and predict an internally-generated model. The article also proposes the notion of a
Denoising Circuit by which the repetition of sleep cycles between alpha waves and slow waves enhances the DBS ability
to generate and predict more complex, vivid and bizarre oneiric experiences.
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1. Introduction

Atrtificial Intelligence (Al) has greatly advanced in the last
few decades, and has advanced even more rapidly in re-
cent years. From intuitive chatbots and machine learning
models to deepfakes and Al-assisted storytelling, Al is be-
coming an ever-growing tool in various domains, impacting
people’s lives in different ways (Aggarwal et al., 2022). Many
Als function on the basis of machine learning and data
mining, which have also become more sophisticated and
precise as research progresses. One of the most common
models currently used in Generative Artificial Intelligence
(GAI) engines are Diffusion Models (DMs). In other words, a
diffusion probabilistic model (or “diffusion model”, for short)
is an advanced machine learning algorithm that creates
high-quality data by gradually adding “noise” to a dataset,
and then reversing such a process. By analogy, one could
think of diffusion models as the process by which a drop of
ink diffuses through a glass of water until the water is com-
pletely colored, and then reversing the process to achieve
its initial state (“reverse diffusion”). Through this complex
process it is possible, for instance, to create fairly precise,
realistic and high-quality images based on prompts (text-
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to-image Al generation), other images (image-to-image Al
generation), or a mix of both (multi-prompting).

Many fields have posed their own debates and questions
about Al and its potential, psychology being one of them.
For instance, Abrams (2023) has stated that “Al chatbots
can make therapy more accessible and less expensive. Al
tools can also improve interventions, automate administra-
tive tasks, and aid in training new clinicians.” (p. 46). Not
only could Al directly impact the professional exercise of
clinical psychologists, but also provide researchers with a
model in itself for better understanding and studying psy-
chological constructs (See Halina, 2021; Hoel, 2021; Mun-
nik & Noorbhai, 2024; Prasad, 2023; Sufyan et al., 2024),
in a rather similar fashion as the computational analogy in-
voked during the cognitive revolution.

One of the increasingly studied domains in psychology
that could make good use of modern Al is dream phenom-
ena, as approached by oneirology. Although brain activity,
phenomenological experiences, and some cognitive func-
tions are relatively similar between Rapid Eye Movement
(REM) sleep and the waking state (Nir & Tononi, 2010; Sie-
gel, 2021), the oftentimes bizarre and seemingly arbitrary
images evoked in dreams raise numerous questions about
the nature and genesis of its content.

Despite some progress being made on the psychological
and neurobiological mechanisms involved in dream genera-
tion (See Hobson & McCarley, 1977; Medrano-Martinez &
Ramos-Platon, 2014; Ruby, 2011; Vitali et al., 2022), sev-
eral questions about such processes remain unanswered.
For instance, what dream-building mechanism accounts for
phenomenological differences throughout different sleep
stages, why bizarreness (hereby understood as “unusual-
ness”, as later described), although unlikely, is still more
commonly reported in some stages, what is the connection
(if any) between deep sleep and the fading of consciousness
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in relation to the generation of dreams, and what general cri-
teria are met for the dreaming brain to “pair” some dream
elements with others, are among these questions. Whether
dreams help to consolidate and/or forget certain memories
(Feld & Born, 2017); aid to regulate emotions (Cartwright,
2005; Walker, 2009); prevent the takeover of the visual cor-
tex (Eagleman & Vaughn, 2021); prepare for real-world prob-
lems (Jouvet, 1998; Momennejad et al., 2018); or simply are
the by-product of imaginative waking cognitive capacities
that have adaptive value (Domhoff, 2022), what has been
clear is that most contemporary theories of dreams do
not fully address how dreams elements are organized into
a visual narrative. Within the framework of neurocognitive
theory, computational sciences, phenomenology, and deep
learning research, the aim of this paper is to hypothesize
and describe an isomorphic relation between the underly-
ing mechanisms of diffusion models and the capacity for
“dream building”. In other words, it is argued that dream
content emerges in a way that resembles GAl through dif-
fusion models.

A brief overview on the basic functionality of DMs is pre-
sented in Section 2. Section 3 describes the association
between consciousness and sleep and its relation to the
proposed model, while Section 4 describes the Dream Dif-
fusion Model itself. The main findings, as well as the discus-
sion, are included in the final section.

2. Diffusion models in GAI

To better understand the present model, it is necessary to
briefly describe how diffusion models operate at a concep-
tual level. For practical purposes, the examples herein out-
lined correspond to Al image generation, even though such
mathematical models can be and are indeed used for a wide
range of applications.

First and foremost, it is important to note that DMs are

inspired by thermodynamics. “Diffusion” refers to a natural
phenomenon, which involves “the passage of elementary
particles through matter when there is a high probability of
scattering and a low probability of capture” (Rennie & Law,
2019). Since systems tend to reach equilibrium, energy
moves from an area of high concentration to one of lower
concentration. Even though the reversed process of diffu-
sion is physically impossible to achieve, it is possible to do
so in the digital world through algorithms.

Text-to-image generation is probably the most popularly
utilized feature, in which an Al generates an image based
on a text prompt, provided by the user. DMs are trained
on preestablished databases (e.g., a pool of images), with
which are then capable of transforming and generating new
data. The way they work is by adding gaussian noise to an
image (i.e., gradually “destroying” the data, increasing its
entropy) until a point in which the resulting image is nothing
but noise (Xt), and then reversing the process by deduct-
ing noise through a step-by-step-like Markov chain (in the
number of thousands of times) to obtain a completely de-
noised result based on the text command. Sohl-Dickstein et
al. (2015) described it as it follows:

The essential idea, inspired by non-equilibrium statistical
physics, is to systematically and slowly destroy structure
in a data distribution through an iterative forward diffu-
sion process. We then learn a reverse diffusion process
that restores structure in data, yielding a highly flexible
and tractable generative model of the data (p. 1).

For Als to revert the diffusion process from X7 to X, (whereas
X, represents the aspired outcome elicited by the prompt),
they rely on Artificial Neural Networks (ANNs), an intercon-
nected group of nodes that collaborate to approach com-
plicated problems (similar to the organization and func-
tioning of neurons in the human brain). These ANNs are
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Figure 1. Latent Diffusion Model scheme.

The two main components in LDMs are forward diffusion and reverse diffusion (Zhao, 2023). Through forward diffusion, images from a dataset (here represented by a picture of a dog, Xo)
go through an Image Encoder (IE), which transforms them into vectors (hence entering the Latent Space, where processing occurs more rapidly). Once in the Latent Space, the vectors
representing the images are “destroyed” (i.e., noised) gradually and sequentially through thousands of steps, until these are transformed into latent noise samples (X:). A Text Encoder
(TE) translates the prompt (text instructions) into vectors called “text embeddings”, so that the model can understand its semantic meaning. The image generation takes place due to
the process of the second component: reverse diffusion. The model gradually removes the noise thanks to a trained noise predictor (U-Net noise predictor) that removes noise step by
step, following the instructions given by the prompt, until a clearer image is generated. In this example, only text conditioning is used, being “White Swiss Shepherd with sunglasses”
prompted. A cross-attention mechanism merges the text embedding with the resulting image in each denoised step. Conditioning constantly informs the noise predictor about whether
each denoising step is correctly replicating what the prompt indicates. The Image Decoder (ID) then translates the image from the Latent Space to observable pixels: the resulting im-
age (Xn). Figure simplified and adapted from Rombach et al. (2021). Note. Images generated using the prompts “White Swiss Shepherd” and “White Swiss Shepherd with sunglasses”
respectively, by Stability.ai, Stable diffusion online, 2023. (https://stablediffusionweb.com).
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trained to successfully denoise images in order to produce
detailed, realistic and visually coherent images. One key
problem of previous diffusion models used in GAl was its
high consumption of resources, requiring more expensive
and efficient hardware. To solve this issue, Rombach et al.
(2021) proposed a Latent Diffusion Model (LDM) that was
performatively better and relied on limited computational
resources, allowing for “near-optimal point between com-
plexity reduction and detail preservation, greatly boosting
visual fidelity” by applying DM training in a latent space of
pretrained autoenconders. What is innovative about LDMs
is that the diffusion process is applied to an encoded latent
representation of the image, rather than to the image itself.
As further explained in subsequent sections, one can think
of the realm of dreams in a similar way to how we conceive
latent space in LDMs, insomuch oneiric images are not just
enacted -or “projected”- directly from visual stimuli stored
in memory, but are rather generated from an as-accurate-
as-possible representation of them. Dream reports featuring
incongruous elements, whether distorted or contextually in-
consistent (Revonsuo & Salmivalli, 1995), as well as adver-
sarial dreaming arising from semantic similarities (Deperrois
et al., 2023), provide evidence supporting this parallel. Fig. 1
graphically synthesizes the way LDMs operate.

A pivotal idea in Diffusion Models is the concept of noise:
the process of adding and/our subtracting noise to a data-
set is the cornerstone of GAIl. Deep neural networks in early
GAls dealt with an issue known as overfitting. Overfitting
occurs when a machine learning model fails to effectively
generalize to all data types within its domain, and instead
aligns too closely with the training dataset. In other words,
when a deep neural network learns to fit one particular da-
taset, it becomes less generalizable to others. One way to
overcome this issue is by injecting noise into the dataset,
making it more corrupted and therefore less self-similar. An-
alogically, a relatively recent hypothesis proposed by Hoel
(2021) states that the human brain faces similar challenges
when it learns. In this context, dreams serve as a form of
biological noise injection that prevents overfitting during
wakefulness.

3. Consciousness and dreaming

The present model is based on the premise that the con-
figuration of dreams is closely linked to fluctuations across
different states of consciousness, analogous to the varying
levels of noise introduced or removed from vectorized data
in LDMs. These states of consciousness may differ in terms
of awareness, arousal, the extent of workspace-like interac-
tions in the brain, and the degree of integrated information.
Such variables are examined in detail in the following sec-
tions.

3.1. Awareness-arousal continuum

Parallels between LDMs and dream generation ought to
be drawn, firstly, on the basis of temporality. There used to
be thought that dreams only took place during REM sleep,
but it is now known that dreaming can occur during NREM
phases as well (Siclari, Baird, et al., 2017; Siclari, Bernardi,
et al., 2018). Nonetheless, REM dreams tend to be “lon-
ger, more vivid, bizarre, emotional and story-like”, whereas
NREM dreaming (more specifically during the N2 phase) is
“less frequently recalled and, when present, is shorter, less
intense and more thought-like and conceptual”, and “dis-

plays smaller connectedness” (Martin et al., 2020, p. 1, 17;
McNamara, 2023). Sleep cycles are determined by a combi-
nation of neurobiological and psychological variables; how-
ever, for the purposes of the present article, phenomeno-
logical traits associated with different dream phases (i.e.,
the oscillation of conscious states) are mainly discussed.

The two-component scale proposed by Laureys et al.
(2007) is useful in understanding consciousness as a con-
tinuum, consisting on two key variables: arousal (X axis),
which is the “behavioural continuum that occurs between
sleep and wakefulness” (p. 723), and awareness (Y axis),
operationally defined as an “appraisal of the potential to
perceive the external world and to voluntary interact with
it” (i.e. awareness of environment), and as “self-referential
processing, accounting for distinguishing stimuli related to
one’s own self from those that are not relevant to one’s own
concerns, to be at the core of the self” (p. 723), i.e. aware-
ness of self. In other words, consciousness requires a com-
bination of awareness, (the contents of consciousness) and
arousal at brain level. Given these measures, physiological
variations in consciousness result from a positive correla-
tion between perceptual awareness (content of conscious-
ness) and arousal (vigilance, degree of consciousness). This
model has received broad acceptance in clinical neurosci-
ences, and variations on its components have been empiri-
cally tested (see Lee et al., 2022).

Analogically, dream stages can be also represented along
this continuum in relation to the direction, form and degree
of the relationship between awareness and arousal (see Fig.
2). NREM stages (i.e., N1, N2 and N3) progress along the
consciousness continuum as levels of arousal and aware-
ness both decrease; nonetheless, it is observed that REM
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Figure 2. Dream-like experiences throughout the conscious-

ness continuum.

Consciousness can be conceived as a continuum defined by a correlation between awa-
reness (the content of consciousness) and arousal (the degree of consciousness). REM
dream is a paradoxical state with increased awareness but low arousal. Lucid dreams (LD)
show an even higher level of awareness determined by the dreamer’s capacity for volitio-
nal control (mental agency). Likewise, focused daydreaming (FDD) is also characterized by
purposeful, imaginative mental agency, while mind-wandering (MW) shows slightly decre-
ased awareness (while still awake) as the control of the mental flow is lessened. Modified
from Laureys et al. (2007).
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sleep peaks and deviates from the correlation with height-
ened awareness, yet a low level of arousal; this paradoxi-
cal state characterizes REM dreams. Even further from the
correlation line, lucid dreams (those in which the dreamer
is aware of being in a dream) occur with an even increased
degree of awareness than REM sleep.

Not only sleep stages elicit dream-like, subjective ex-
periences, but so do other forms of thought during wake,
such as daydreaming. Most researchers utilize the term
“daydreaming” when referring to the specific instance of
focused daydreaming, and would oftentimes characterize
it as being interchangeably with mind-wandering. This can
be problematic as it neglects the core differences between
both mental phenomena. The term “daydreaming” refers
to a supercategory of mental phenomena consisting of
two distinct instances: mind-wandering, and focused day-
dreaming. Within the stream of consciousness, the segment
of mind-wandering is characterized by a fairly unrestrained
flow of mental episodes, thoughts, experiences or subjects
that switch from one to the other in a rather spontaneous
way, whereas focused daydreaming involves a more con-
trolled and purposefully generated course of thought that is
structured in a rather narrative flow (Domhoff, 2022; Dorsch,
2014). According to the neurocognitive theory of dreaming,
parallels between waking cognition and dreaming could be
explained —at least partially— by the role of the Default Mode
Network (DMN), which would provide some of the neural
substrate that supports both daydreaming (i.e., mind-
wandering and focused daydreaming) during wakefulness,
and dreaming during the various stages of sleep (Domhoff
& Fox, 2015; Domhoff, 2022). According to the conceptual
differentiation made by Dorsch (2014), it can be argued that
mind-wandering unveils a fairly lessened awareness as op-
pose to focused daydreaming, in the same way some au-
thors (See Modolo et al., 2020; J6hr, et al., 2015; Gosseries
et al., 2011) locate lucid dreaming above REM sleep in rela-
tion to the awareness axis given its volitional nature (see
Table 1).

In spite of its shared neural substrate and mutual capacity
for internally generated thought, focused daydreaming and
mind-wandering phenomenologically differ from dreams
during sleep (e.g., lucid dreams and REM dreams). Dreams
tend to be more bizarre and fanciful, with decreased execu-

Table 1. States of consciousness within the dreaming con-
tinuum schematized according to low or high arousal and
awareness in relation to each other.

State Arousal Awareness
Active wakefulness +++ +++
Focused daydreaming + 4+ ++
Mind-wandering + + +

N1 - _

N2 - -

N3 / SWS - -
REM - ++
Lucid dreams - + 4+

Note. The plus sign (+) indicates high arousal or awareness in relation to the other
dimension (i.e., awareness that is higher than arousal or arousal that is higher than
awareness), whereas the minus sign (-) indicates a lower dimension in relation to the
other. Equal combinations of +/+ or —/- indicate that both dimensions are equally high
or low, respectively. The number of signs describing each distinct state illustrates the
degree of such dimensions only in relation to other stages (more than / less than).
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tive functions (Hartmann, 1996, as cited in Balgrove et al.,
2019), whereas daydreams are usually directed towards a
higher number of worries closely related to waking life ex-
periences.

As shown in Section 4, daydreaming could also be ac-
counted by the DDM, given that such experiences operate
on certain dynamics similar to those observed in NREM and
REM dreams.

3.2. Integrated World Modeling Theory and the Over-
fitted Brain

Among modern theories of consciousness, one that pro-
vides a structured framework for the present model given
its sophistication, integration, and relation to computational
sciences and artificial intelligence, is the Integrated World
Modeling Theory (IWMT) of consciousness (Safron, 2020,
2022). IWMT assess the two main aspects of conscious-
ness described by Block (2008) and Pantani et al. (2018):
phenomenal consciousness (p-consciousness) and access
consciousness (a-consciousness), by drawing upon Infor-
mation Integration Theory (lIT) (Tononi, 2004; Tononi et al.,
2016), and Global Neuronal Workspace Theory (GNWT)
(Baars, 1988; Dehaene, 2014), respectively. A detailed ex-
planation on each of the theories that constitute IWMT, as
well as its functional, algorithmic, and implementational lev-
els of analysis, both exceed the scope of this article, yet
basic premises derived from them, as well as their relation
to the present model, are briefly described.

IWMT attempts to link IIT and GNWT through the lenses
of the Free Energy Principle and Active Inference (FEP-AI).
FEP-AI states that perception takes place within the context
of actions such as “foraging for information and resolving
model uncertainty” (p.3), so that persisting systems can
minimize prediction error (i.e., free energy) in order to pre-
serve themselves. So as to resist entropy, persisting sys-
tems have to entail predictive models by which they make
selective decisions among various alternatives. Here, the
Dreaming Brain System (DBS) plays an important role. In the
context of the present model, the DBS is the term coined
to refer to the brain enacting as a persisting system with
the ability to behave as a self-predicting generative model
during sleep, which necessarily takes into consideration
the inherent neurocognitive impairments attributed to this
state. One could argue that, since dreams are experienced
consciously (Kahn & Gover, 2010), the DBS must operate
on broadly similar FEP-AI terms. Nonetheless, dreams are
characterized by being fairly independent of external senso-
ry stimuli; moreover, it is argued that stimulus-independent
thought overlapping with dreaming is phenomenologically
different from stimulus-dependent thought (Gross et al,,
2020). As Bucci & Grasso (2017) have argued, “brains are
sophisticated neural networks that rely on statistical infer-
ences to produce the best prediction of the incoming sen-
sory input and of their own internal states” (p. 3). Based
on the Predictive Processing Framework, this distinctive
feature of dreaming would require the DBS not only to se-
lectively infer each possible outcome given prior states out
of a cluster of events to minimize the amount of prediction
error and reach equilibrium, but even recreate such events
by retrieving elements from memory in the absence of per-
ceivable external stimuli.

IIT postulates certain phenomenological axioms (prem-
ises about the nature of experience) and then infers the
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properties of physical systems that can account for it. It
poses that a physical system is conscious if it is capable to
integrate causally effective information. The amount of inte-
grated information in a physical system is denoted by the
metric ¢ (the “quantity” of consciousness available to a sys-
tem). According to IWMT, IIT approaches p-consciousness
(or subjectivity, experience) by stating that posterior medial
cortices and the inferior parietal lobule both play an impor-
tant role integrating attention schemas, body schemas and
visual models of the world in generating conscious experi-
ence (Safron, 2020). Moreover, it could be argued that the
dreaming continuum (as shown in Table 1 and Fig. 2) covari-
ances with the amount of integrated information, being ¢ at
its lowest during Slow Wave Sleep (SWS, oftentimes dream-

less sleep), and at its highest during active wakefulness. As
Tononi (2014) states, “all indications from TMS-EEG experi-
ments are that (...) information integration is high in wake,
collapses in early NREM sleep, and recovers, though not
fully, in REM sleep.” (p. 216).

On the other end, the GNWT states that “in the conscious
state, a non-linear network ignition associated with recur-
rent processing amplifies and sustains a neural represen-
tation, allowing the corresponding information to be glob-
ally accessed by local processors” (Mashour et al., 2020,
p.776). GNWT is an updated variation of the Global Work-
space Theory (GWT) described by Baars (1988), which ar-
gues that conscious experience is represented by broad-
casted information that becomes widely accessible to local
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processors across the brain. GNWT draws upon GWT by
including defined networks in the brain as the neural sub-
strate. In the realm of dreams, Global Workspace processes
relate to both a-consciousness (lucid dreaming and aware-
ness) and p-consciousness (embodied integrated scenes
with narrative structure) (Raffone & Barendregt, 2021). Fig.
3 synthesizes the main premises of the present model and
their correlated theoretical framework from IWMT.
Notwithstanding the above, predictive processing ap-
proaches face important critiques. Firstly, it fails to explain
the “dark room problem” (i.e., why organisms do not univer-
sally tend to seek stable environments). Secondly, non-lucid
dreams lack the agency that would be required to simulate
realistic action-outcome relationships. Thirdly, and perhaps
most importantly, the hypothesis that dreams reduce model
complexity and improve predictions through progressive
optimization does not align with the fact that dreams do not
necessarily become simpler or more consistent over time.
To address these issues, Hoel (2021) proposed the Over-
fitted Brain Hypothesis (OBH), —previously introduced-,
which proposes that dreams act as a natural way for the
brain to prevent overfitting (i.e., when a model learns the
training data too well, capturing not only the underlying pat-
terns, but also the noise and irrelevant details specific to
the dataset). According to the OBH, the brain faces simi-
lar issues of overfitting in its daily learning. Dreams can be
very different from our waking experiences (“training data”)
because of their oftentimes unusual elements. This random-
ness helps the brain break out of rigid patterns of thought
and learning by injecting noise during sleep, enhancing its
ability to handle new unfamiliar situations; in other words,
“the distinct phenomenology of dreams exists to maximize
their effectiveness at improving generalization and com-
bating mere memorization of an organism’s day”, and “it is
the strangeness of dreams in their divergence from waking
experience that gives them their biological function” (Hoel,
2021, p. 7). This hypothesis could best explain what Dom-
hoff (2022) refers to as “cognitive glitches” in dreams (re-
ferring to bizarre elements); however, the main premise of
the OBH is challenged by research suggesting that bizarre,
novel or unusual dreams are quite infrequent (Dorus et al.,
1971, as cited in Domhoff, 2022). Without disregarding the
functionality of dreams proposed by the OBH, this discrep-
ancy could be addressed by (1) expanding the operational
definition of bizarreness, hypothesizing that any element in
the dream that deviates from everyday reality can account,
even to a lesser degree, as injected noise; and (2) describing
“realistic” dreams, as opposed to the bizarre/unusual ones,
through the integrative approach of the IWMT of conscious-
ness. Accordingly, it is argued that the DBS, being a persist-
ing system in itself, resorts to memory to retrieve a myriad of
—mainly visual and noise-injected- stimuli-like experiences,
to then actively organize such experiences into narratives
by means of active inference. This idea also draws upon
the Dream-Building System proposed by Barcaro & Magrini
(2022), which argues for the existence of a phenomenologi-
cal retrieving sub-system and a plot-building sub-system.

4. Dream Denoising Model

The present model postulates that the underlying mecha-
nisms of dream building, as phenomenologically described
in the previous sections, emulate the basic workings of GAI,
specifically LDMs, in the way data is destroyed of “diffused”
(noised) and consequently restored (denoised) based upon
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criteria such as prompt input. This basic idea relies upon the
following premises:

1. Memories are the primary source of dream content,
particularly autobiographical memory (Malinowski
& Horton, 2014), semantic memory (Cavallero et al.,
1990) and episodic memory in NREM dreams (Baylor &
Cavallero, 2001, as cited in Payne & Nadel, 2004). As
the “dream-lag effect” suggests, REM sleep often in-
corporates events from waking life experienced 5 to 7
days prior to the dream (Van Rijn et al., 2015). Similarly,
LDMs in text-to-image GAls retrieve elements from a
dataset in order to generate new images.

2. There seems to be continuity between waking life and
dreams (Domhoff, 2022; Schredl, 2010, 2017), mean-
ing that, at least generally, “dream sources are mental
contents that directly refer to events in the dreamer’s
life” (Barcaro & Magrini, 2022, p. 242). Nevertheless, it
is important to consider that the continuity hypothesis
is more relevant and evident when it comes to emo-
tional reaction, but not so much to behaviour; in other
words, what the dream-self (in this case, the DBS)
does within the dream is different to how the wake-self
would react (Kahn, 2019). In LDMs, elements in a da-
taset are vectorized in order to be sent into the Latent
Space (where forward diffusion and reverse diffusion
happen more efficiently), and ultimately decoded back
into observable pixels. Generated images are only pos-
sible if derived from pre-existing data (i.e., other im-
ages) that are reorganized and restructured by the GAI.
Likewise, dream content is mediated and/or prompted
by some features that can be classified into two broad
categories: Stable Traits (ST) —features that are inher-
ently consistent in the individual through long periods-,
such as the dreamer’s gender (Hall et al., 1982; Schredl
et al., 2019), age (Maggiolini et al., 2020) and personal-
ity (Parra & Sosa, 2019; Schredl, 2003), and Transient
States (TS) -temporary features or recent experiences
that are contingent, environmentally-dependent or
relatively unpredictable-, such as personal concerns
(Domhoff, 2022), mood (King & DeCicco, 2007), envi-
ronmental stimuli to a lesser degree (Salvesen et al.,
2024; Solomonova & Carr, 2019), and some factors
that affect continuity, such as emotional involvement
(El) with the waking-life experience, and the type of
waking-life experience (TYPE) that is been incorpo-
rated into the dream (Schredl, 2003).

3. As shown by dream reports, REM and NREM dreams
tend to be qualitatively different from each other, in
terms of structure (REM reports show larger connect-
edness [Martin et al., 2020], as well as a more story-
like narrative as opposed to NREM reports, which are
oftentimes fragmented and discontinuous [Krishnan,
2021]), and nature (REM dreams are more elaborate,
vivid and emotional, whereas NREM dreams tend to
be more conceptual and thought-like, and less re-
markable in vividness and emotion [Fosse et al., 2004;
Purves et al., 2008; Suzuki et al., 2004]); as well as
quantitively, with regards to word length (REM reports
are longer than NREM reports [Oudiette et al., 2012)),
recall rates (recollection of dreams in REM awakenings
are significantly higher than in NREM [Krishnan, 2021;
Nielsen, 2000]) and frequency (mentation reports are
more frequent in REM reports than in NREM reports
[Suzuki et al., 2004]).
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4. Dreams during deeper NREM sleep, although not im-
possible, are far less frequent than in other stages and
are often blank or short, which indicates a clear reduc-
tion in levels of consciousness (Massimini et al., 2005,
as cited in Klimova, 2014). As suggested by Tononi
(2012, 2014), ® would be at its lowest during dreamless
sleep. It has been argued that (a) the posterior hot zone
of the brain may be a core correlate of conscious ex-
perience in sleep, (b) local changes in slow wave activ-
ity may account for the presence of dreaming, and (c)
slow waves disrupt causal interactions between thala-
mocortical regions, thus impairing information integra-
tion (Bucci & Grasso, 2017; Siclari, Baird, et al., 2017;
Siclari, Bernardi, et al., 2018). As shown by Banks et al.
(2020), disruption of cortical connectivity also contrib-
utes to loss and recovery of consciousness. In LDMs,
the forward diffusion process concludes when a maxi-
mum of entropy X7 is reached, namely, when data can-
not be further noised/destroyed.

5. Throughout the night, with each sleep cycle, the dura-
tion of REM sleep increases while the duration of SWS
decreases (Dijk, 2019).

6. Most dreams are either fictional (possible in real life but
unlikely to happen) or bizarre (impossible in real life,
e.g., defying laws of physics), whereas a little less than
1/3 of reported dreams are realistic, meaning that they
could have happened in the same way during wak-
ing life (Schredl, 2010; Schredl et al., 1999). It should
be noted that the operational definition of bizarreness
used in this model is similar to that of Schredl’s (1991)
realism/bizarreness scale, in terms of the closeness

of the dream action to everyday reality based on the
presence of fantasy objects, or connections and ac-
tions that are not possible in the real world. By these
means, bizarreness should not be confused with struc-
ture or connectedness (as it might be if Hobson et al.’s
[1987] definition was followed), for dreams can be both
bizarre or unusual in their context (e.g., the dreamer in-
explicably has the ability to fly) and structured in terms
of narrative continuity or congruence (e.g., the abil-
ity to fly is somewhat consistent with the general plot
within the oneiric stream). What this ultimately implies
is that REM dreams could progressively become more
bizarre and structured at similar rates, given that these
two characteristics, as defined here, are not mutually
exclusive.
Essentially, the DDM postulates that dream-building pro-
cesses draw upon waking life experiences, which are
reorganized by the DBS as an attempt to resist the phe-
nomenological entropy caused by the impairment of infor-
mation integration. The resulting oneiric experience is most-
ly prompted by a combination of Stable Traits and Transient
States. Fig. 4 schematically summarizes the model.
Experiences lived, felt and thought during wakefulness
provides the raw material, conscious or unconscious, for
dream-building. Memories stored in Long-Term Memory
(LTM), and particularly those more recent and/or significant,
are condensed upon sleeping onset for later usage by the
DBS. This is achieved through a retrieval sub-system (R) like
the one proposed by Barcaro & Magrini (2022), which cre-
ates a cluster of dream sources as an output. When asleep,
the first cycle transitions from early stage N1 to N3 and,
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N2 to N3 —@
+
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- Autobiographical
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Figure 4. Dream Denoising Model scheme.

The DDM consists of two main processes: dream diffusion and dream denoising. The Dreaming Brain System (DBS) draws upon contents stored in the Long-Term Memory (LTM). Upon
sleep onset, the retrieving sub-system (R) works by compressing the input from LTM, that is, the most relevant or readily available contents or experiences, producing a cluster of dream
sources. As the cycle progresses from light sleep (N1) to deep sleep (N3), the presence of slow waves increases, thus impairing information integration (, graphically represented along
a continuum [gradient] from maximum @ [left], to minimum). Dreams experienced during this phase tend to be more conceptual and thought-like, as the contents retrieved from memory
are still being selected and have not yet been fully integrated with spatial, temporal, and causal coherence. When N3 (and possibly Slow Wave Sleep or dreamless sleep accompanying
it) is reached, the DBS counteracts phenomenological entropy by generating an integrated model (i.e., dream) that involves workspace-like interactions in the absence of perceivable
external stimuli. The contents constituting this virtual experience are prompted by the dreamer’s Stable Traits (ST) and a finite number of Transient States (TS). These conditioners are
integrated by the Transformative Sub-System (Te), which constantly regulates the stream of events by transforming distributed input into a serial output, and operating through criteria for
associativity between two or more dream elements. An extra condition, namely reflective awareness and agentive control, allows for REM dreams to turn into Lucid Dreams (LD) under
certain conditions. During the denoising phase, the DBS engages in predictive processing based on Active Inference and Bayesian model selection, constructing an ongoing subjec-
tive experience through perception-action loops. At the end of the first cycle, REM stage gradually returns to stage N3, producing a circuit of repeated diffusion-denoising processes.
This denoising circuit enables the DBS to access a wider set of elements stored in memory and therefore generate more vivid dreams throughout the night. When awaken, the recall
sub-system (r) attempts to store recent oneiric experience into the Short-Term Memory (STM); then, oneiric material can either be sent to LTM for further storage, and later recalled, or
fall into sleep amnesia when it is (1) stored in STM, but unable to reach LTM (i.e., shortly remembered upon awakening but quickly forgotten thereafter), or (2) lost before awakening or
immediately after, unable to even reach STM. Note. Images generated using the prompts “White Swiss Shepherd” and “White Swiss Shepherd with sunglasses” respectively, by Stability.
ai, Stable diffusion online, 2023. (https://stablediffusionweb.com).
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hence, from alpha waves to SWS, according to EEG. This
shift impairs information integration (required for vividness,
coherence and structure in oneiric experiences), causing
dreams in these stages —if recalled- to be thought-like and
lacking the richness that characterizes REM dreams. When
N3 is reached, the DBS counteracts the impairment caused
by SWS (hereby understood as phenomenological entropy)
by attempting to reach a previous state of higher conscious-
ness (i.e., active wakefulness), yet outstretching no further
from REM sleep or Lucid Dreaming in normal conditions,
as this would otherwise cause a premature awakening or
maintenance insomnia. In terms of information integration,
it could be argued that ®Oyae > Prem > Prrem, as electroen-
cephalographic responses evoked by transcranial magnetic
stimulation studies suggest (Massimini et al., 2010). During
REM (and, more indirectly, NREM), dreams are prompted
by two categories of conditioners: Stable Traits, which are
relatively consistent in a dreamer’s lifespan and/or devel-
opmental stage in life, and a finite number of Transient
States, which are recent-experience dependent and vary in
a mostly daily-to-weekly basis. These various conditioners
influence the way memories are reorganized, reinterpreted
and reintegrated into a structured oneiric experience by a
Transformative Sub-System T,, which would be the counter-
part of the Plot-Building Sub-System described in Barcaro
& Margini’s (2022) model.

How does the Transformative Sub-System predict the re-
lation between those elements retrieved from the memory
storage, upon which such elements are retroactively cho-
sen? Al Text Generators typically use a technique called
Word2Vec that allows them to obtain vector representations
of words. The vectorization of words permits to capture
information about the meaning of a word by analyzing the
context provided by the surrounding words. For instance, a
vector for the word “dog” would be more likely to be closely
related to the word “wolf” than it would be for “fish” (See
Fig. 5). By this means, for instance, Al Text Generators can
efficiently construct grammatically accurate bodies of text
that somewhat resemble human writing. Word-embeddings
have even been used in the study of dream reports (See
Altszyler et al., 2017). Similarly, it has been proposed that
dream sources could be linked to one another following cer-
tain criteria. A robust number of studies regarding the caus-
ally associative nature of dream sources has been made
mostly on the basis of hermeneutic —and, more specifically,
psychodynamic— approaches; nevertheless, the empirical
evidence does not provide systematic support for such ex-
planations (see Domhoff, 2022, chapter 5, for a thorough
review on the evidence for symbolism in dreams). Although
the causally associative nature of the building blocks of
oneiric experiences remains largely unknown to the neuro-
sciences, research has suggested that the link between dif-
ferent dream elements can be justified in the processing of
the DBS through:

a) Dreamer’s cognitive social networks, which are mir-
rored by characters appearing in dreams (Schweick-
ert, 2007a; 2007b; 2007c). This means that dreaming
social networks (as well as waking social networks)
include short paths to other people, a tendency for
connected individuals to be paired as characters in the
dream, and a strong likelihood for a large number of
characters to be connected in a large central compo-
nent; also, people who are closer to the dreamer (e.g.,
relatives, significant other...) in waking life tend to ap-
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pear more often in dreams than other individuals (Han
et al., 2015, as cited by Domhoff, 2022).

b) Semantic similarity between inputs, as noted by De-
perrois et al. (2023). During REM sleep, different rep-
resentations of observed stimuli from waking life are
retrieved and generate a creative dream through feed-
back pathways. In essence, in REM sleep “several
independent memories are replayed from the hippo-
campus and combined in high-level areas” (p. 6), given
their semantic similarity.

c) Pre-existing cognitive categories, reinforced by previ-
ous experience (see Beck, 2002). Cognitive entities and
experiences organized in categories allow for better
predictive processing; for instance, it would be more
likely to dream about a car being driven by an adult hu-
man on a highway (given the semantic and categorical
relationship between “adult human”, “drive”, “car” and
“highway”), than by a cat on the moon. Even though
the latter is still possible (as studies on bizarreness dur-
ing REM sleep have shown), even such randomness
could also be accounted for by a myriad of other links
and conditioners (e.g., having recently watched a sci-fi
movie involving anthropomorphic animals).

When base memories (and the basic relations among them)
are selected and elicited, the sequence of events (i.e., the
stream of information) within the dream experience is then
guided, on the one hand, by the active and ongoing influ-
ence of the conditioners, and, on the other hand, by means
of the FEP-AI (i.e., the DBS ‘best guess’ to minimize predic-
tion error), enabled by the amount of ¢ available at a given
stage. This notion is fundamental for understanding the
qualitative differences between REM and NREM dreams.
NREM dreams, in the light of a lessened ® value, are expe-
rienced with little to non apparent causal relation between
its constituent elements; they lack structure and a story-
like narrative given the diminished capacity for the DBS
to make ongoing and more complex predictions. Isolated
images and other discontinuous elements experienced in
NREM dreams would be the result of direct retrieval of wak-
ing memories that are yet to be causally integrated, mod-
elled and predicted by the DBS in a higher @ state; that is
to say, “more sparse activations [in the brain] during NREM
stages would result in segregated information, but the lo-
cal maxima might still be sufficient for static, non-narrative
perceptual-like mentation” (Bucci & Grasso, 2017, p. 10).
From the second sleep cycle onward, the gradual shifting
between stages REM and N3/SWS, back and forth, repeats
approximately 5-6 times before awakening (Weiner & Craig-
head, 2010), producing a cycle in itself (namely, denoising
circuit by the DDM). Throughout each cycle, REM stages
become longer while SWS becomes briefer. Although little
research has been conducted about the phenomenological
differences and changes throughout the sleep cycle, Carr &
Solomonova (2019) report that attributes such as bizarre-
ness and perceptual vividness increase as the night pro-
gresses for both REM and NREM sleep reports. This sin-
gularity could be explained as the result of the denoising
circuit; throughout the night, with each denoising cycle, the
DBS deals with fewer degrees of injected noise (as SWS
stages become shorter), allowing the system to access a
wider variety of waking experiences and elements stored in
memory to build the dream itself. This amplified accessibil-
ity is what would cause REM stages to elicit progressively
more vivid and bizarre experiences, as links and associa-
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tions can become more numerous and complex. The capac-
ity for active inference in internally-generated world models,
although not necessarily becoming better or more precise
during the sleep cycle, would account, even in non-lucid
dreams where agency is somewhat lacking, for the narra-
tive property of dreams, in which sequences of events are
ordered with temporal consistency, that would most likely
also include spatial and causal coherence. If this was not
the case, dreams would elicit internal extro-science world
models (Meillassoux, 2015), characterized by a regime lack-
ing guiding laws of existence and, therefore, too chaotic to
be causally conceivable. By contrast, NREM dreams are
usually less narrative and more conceptual since incremen-
tal noise injection, at least during the first sleep cycles after
sleep onset, restricts access to waking experiences and,
therefore, to more complex links among retrieved dream
elements.

Regarding daydreaming experiences, particularly mind-
wandering, the unrestrained flow of mental scenes could
also be the result of noise injection during wakefulness, but
perhaps to a lesser degree than that implicated in dream
mentation. The numerous overlaps, both phenomenologi-
cally and neurally, between dreaming and mind-wandering
(Fox et al., 2013) seem to indicate that this is a plausible
hypothesis.

g chocolate fish

B toy

. fjhot

# chicken
1pig
gcat & cats

j catcher

L
catile

Eagl-e- & pet
zhepherd gratl ¥

#. Ecow
% demaon ;

“"OHGdO‘g A

@ creature

duck

gfihorse

girl : bear.

Figure 5. Distance between word vectors.

legs
|

* #catch

joke

5. Limitations and discussion

The aim of the DDM is to serve as a descriptive model ac-
counting for phenomenological occurrences and variances
across different sleep stages, synthetizing previous find-
ings regarding the qualitative differences between REM and
NREM dreams, the continuity hypothesis between experi-
ences in waking life and oneiric material in dreaming life,
the unlikeliness of dream experience while in SWS, and the
main ideas proposed by the IWMT extrapolated to dreams
as altered states of consciousness. The guiding principle is
the notion that LDMs and dream-building mechanics share
core processes when generating output. Because of this
mainly descriptive proposition, the DDM does not attempt
to explain a well-defined causal relation between waking-
life indicators and dream content, nor does it claim to im-
prove dream predictability. Quite on the contrary, it sug-
gests that the complex mechanisms of the dreaming brain,
although seemingly arbitrary, rely on a myriad of waking-life
experiences and complex conditioners by which it attempts
to generate virtual models and make ongoing predictions
under cortically impaired conditions (phenomenologically
expressed in noise injection).

Perhaps the most robust limitation of the DDM is that it
is mostly supported by studies made in Western societ-
ies with fairly homogeneous samples. This cultural bias
crosses most theoretical models of dreams since cultur-
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The vector representing the word “dog” is shown in a three-dimensional space along with its neighbouring context words. Source: Embeddings Projector, Word2Vec 10K model.
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ally, ethnically and idiosyncratic heterogeneous samples are
somewhat lacking in the current oneiric literature. In spite
of that, research also suggests that there seem to be no
significant differences in dream content based on nation-
ality and cross-cultural differences, except in terms of ag-
gressive elements (Domhoff, 2022). Whether current studies
about dream phenomenology can be generalized to all cul-
tural contexts remains unclear, and it raises questions about
the degree to which contextual or contingent conditioners
shape dream content.

It is also worth considering that cortical connectivity as-
sociated to loss (and recovery) of consciousness in certain
sleep stages may not be as discrete as the scheme of the
model might graphically suggest; instead, sleep stages
have a great deal of overlapping when shifting from one an-
other, as Banks et al. (2020) have pointed out. ®-coefficient
is useful in understanding consciousness fluctuations, but
empirical research testing DDM’s hypothesis on these val-
ues would be of great utility.

Given its descriptive nature (i.e., how dreams come to be),
DDM can engage with multiple causal theories of dream-
ing (i.e., why do people dream). Biologically, The Defensive
Activation Theory ([DAT], Eagleman & Vaughn, 2021) argues
that dreams are predominantly visual to prevent the plastic
takeover of the otherwise inactive visual cortex during sleep;
given the intrinsically visual emphasis of the DDM, it could
be argued that these hypotheses can complement each
other. However, empirical evidence supporting this theory is
still needed. Cognitive-wise, the Neurocognitive Theory of
Dreaming (INTD] Domhoff, 2022), strongly emphasizes the
role of the Default Network Mode (DNM) and its activation in
the generation of dreams as embodied simulations, and the
idea that dreams are the by-product of waking-life cognitive
capacities that are of great value for adaptation and sur-
vival. These dreams would mostly enact personal concerns,
which “usually relate to important people and avocations in
the dreamers’ lives” and “dramatize the dreamers’ concep-
tion of themselves and their relationships with other peo-
ple” (p. 3). Taking this into consideration, one could argue
that personal concerns are of great importance for dream-
building and have a greater degree of influence among other
conditioners; likewise, these concerns could be categorized
into ST concerns (those that are normative within certain
stages of the psychological development, like choosing a
career path or having children) and TS concerns, regarding
daily-basis worries. These theories, along with some predic-
tive hypotheses such as that from Deperrois et al. (2023)
or the OBH (Hoel, 2021), seem to be more prominent and
best fitting for DDM implementation, as they work within the
paradigmatic frameworks of neurosciences and/or compu-
tational sciences.

Further research oriented towards the neural substrates
supporting or challenging the premises of this model is
required. Implications of the DDM in psychopathological
states and other altered states of consciousness ought to
be thoroughly examined, as well as the extent to which ST
and TS each act as conditioners influencing dream building.
It would also be of great importance to explore how specific
criteria, such as time, can be accounted for to include cer-
tain conditioners in either ST or TS categories. Finally, it is
worth exploring what functions noise injection underlies in
daydreaming, given the notion that the same mechanisms
governing dream mentation are at work.

Dream Denoising Model
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