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Abstract: In this article, we describe the Differential Equations and Optimization Environment
(DOpElib). DOpElib is a software library that provides a unified interface to high level algorithms
such as time-stepping methods, nonlinear solvers and optimization routines. This structure
ensures that, first of all, the user is only required to write those sections of code that are specific
to the considered problem. Second, the exchange of parts of the used routines is possible with
only a few lines of code to change instead of large reimplementations. The article illustrates the
design principles, their reasoning, and various features of DOpElib and provides some numerical
results as demonstration for the versatility of the software.

1 Introduction

Today, there exists a broad variety of software libraries that provide numerical tools for solv-
ing partial differential equations (PDEs). Prominent examples are deal.II [Arndt et al., 2017],
dune [DUNE], FreeFem++ [Hecht, 2012], OpenFOAM [openfoam], FEniCS [FEniCS], PETSc [Balay
et al., 2013], Trilinos [Heroux et al., 2003], Gascoigne [Gascoigne], DAKOTA [Adams et al., 2009],
and many more. In addition, a lot of work is done in Matlab. In fact, all these libraries provide
very useful tools for many applications.

Typically, all resources that are required to implement and solve PDEs are provided. Depending
on the design decisions, some of these tools can be exchanged easily, while others can not. These
can be, for instance, linear solvers or the finite element (FE) shape functions under consideration.
Recently, there is an increasing demand to couple such PDE solvers with optimization routines to
solve PDE-constrained optimization problems, as it is demonstrated for instance by PETSc [Balay
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et al., 2013] including its TAO project [Munson et al., 2012], the Trilinos [Heroux et al., 2003] rapid
optimization library (ROL) or FEniCS [FEniCS] together with its Dolfin library [Logg and Wells,
2010] in the Dolfin-Adjoint project [Farrell et al., 2012, Funke and Farrell, 2013], in which the
discretized optimization problem is solved. Alternatively, the infinite-dimensional optimization
problem can be approximated, as it is proposed, for instance in [Kirchner et al., 2011, Clever et al.,
2012]. Such implementations are realized for example in FreeFem++ [Hecht, 2012], or in the
optimization toolkit RoDoBo [RoDoBo] based on Gascoigne [Gascoigne], from which the authors
obtained the initial idea for DOpElib.

The presented toolkit DOpElib has started with the aim to provide such optimization algorithms
for PDE constrained optimization problems based upon a flexible finite element toolkit. To allow
switching of optimization routines as well as finite elements and PDE-solvers, DOpElib provides
both, modules for the solution of optimization problems, as well as modules providing tools for
the solution of PDEs discretized using deal.II.

Of course other software libraries or combinations of such libraries are also capable of providing
the desired main goal, to solve PDE-constrained optimization problems. However, they are all of
very recent origin leaving a lot of room for competing implementations. Second, when starting
from the capability to solve a PDE using any of the available toolkits, the efficient coupling with
the desired optimization routines requires additional work, unique to the chosen PDE toolkit, in
any case.

From our perspective the power of DOpElib is three-fold:

• Structured interface for high-level optimization routines integrated with tools to solve PDEs;

• Link to deal.II that is used around the world and provides a powerful basis;

• A collection of many challenging numerical benchmark examples.

Moreover, DOpElib features:

• An extensive online documentation (see also Section 2.4);

• A well-documented source code;

• Regression tests to check the library after modifications.

Our article is organized as follows. In Section 2, we formulate the goals of our software package
and its main features. In Section 3, we provide three representative numerical examples illustrat-
ing the versatile features of DOpElib. In Section 4, we provide a short description that explains
how to obtain DOpElib.

2 Goals and Features of DOpElib

As our guiding design principle, we note that in many numerical studies, the main task is the
computation of some target functional, e.g., error norms, point values, mean values or technical
quantities such as drag or lift coefficients. As a second motivating principle, there is interest in
solving optimization problems in which a PDE is included as a constraint. Such optimization
problems comprise optimal control, parameter estimation, inverse problems, or optimal experi-
mental design. To do this in complex applications requires tremendous work already on the PDE
itself before considering optimization of the processes modeled by this PDE. Thus it is advanta-
geous to have an environment that allows to focus on the development of an appropriate code
for the PDE at first but ensures, due to the required interface, that the code written for the PDE is
then reusable for the application of state-of-the-art optimization routines.

It is the observation of the authors that in many master or dissertation projects much work
is first spent on implementing a solver for a particular, complicated, PDE and then once this
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is done very basic optimization routines are used since the code does not allow for an easy
enough implementation of the needed routines for the optimization constrained by this PDE.
The Differential Equations and Optimization Environment DOpElib DOpElib solves this problem by
providing a well structured interface for high-level routines integrated with tools to solve PDEs.
At the present stage, we provide an interface to the finite element library deal.II and a collection
of algorithms to solve both pure PDE problems as well as optimization problems constrained by
a PDE.

2.1 Global Features

The main feature of DOpElib is to provide a unified interface to high level algorithms such as
time-stepping methods, nonlinear solvers, and optimization routines. DOpElib is designed in
such a way that the user only needs to write those parts of the code that are problem dependent
while all invariant parts of the algorithms are reusable without any need for further coding. In
particular, the user is enabled to switch between various different algorithms without the need
to rewrite the problem dependent code, though obviously he or she will have to replace the
algorithm object with another one. This replacement can be done by replacing the appropriate
object at only one point in the code. For instance, if the user wishes to change the time-stepping
scheme, only one line of the code, identifying the scheme, needs to be changed in the main file
without adjusting the specific PDE implementation. Similarly, if within an optimization problem
the optimization solver should be changed, this can again be done by changing one line of the
main file, plus possibly, additional include files. Furthermore, the exchange of many deal.II
objects, e.g., different vector and matrix types (e.g., Vector and BlockVector) and finite elements,
can be done with one line of code.

In addition to the finite element code provided by deal.II (which at present is the FE-toolkit
to which we provide an interface) the presented library DOpElib is user-focused by delivering
prefabricated tools which require adjustments by the user only for parts connected to his specific
problem. This is in contrast to deal.II, which leaves the implementation of many high-level algo-
rithms to the user, either by writing the code themselves or by writing an interface to appropriate
libraries.

To accomplish these goals, the interfaces of the library are chosen in such a way that certain features
(e.g. time stepping schemes, linear solvers, switching between stationary and nonstationary code
versions) can be done by changing a few lines of code. This modularity is achieved by using
a template-based approach, since methods of these objects tend to be called on each element
of the finite element subdivision. The alternative choice would have been the use of a class
hierarchy, i.e., the usage of virtual interface-classes instead of template parameters. However, we
opt to utilize templates for two reasons mainly. First, and most important, the use of template
parameters instead of base-classes provides a possible advantage in runtime at the cost of a longer
compile time. In a typical program solving a sophisticated PDE or optimization problem, the
runtime is magnitudes larger than compile time, thus aforementioned trade off looks attractive.
Second, the prerequisites for an interface class are not always fulfilled. We have, for example, a
template parameter PROBLEM, which describes the problem we try to solve. This can be a pure
stationary or nonstationary partial differential equation, or an optimization problem, that can also
be stationary or nonstationary. Using the template approach rather than class inheritance allows
stationary problems to have significantly fewer methods since several functions are not required
for the solution of stationary problems.

2.2 Specific Features

To achieve the previously formulated goals, in coupling the finite element toolkit deal.II with
state of the art optimization routines as provided for instance by, SNOPT or IPOPT [Wächter and
Biegler, 2006], we provide an interface that is capable of separating the following components
into independent modules:
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• Time discretization (i.e., different time-stepping schemes);

• Nonlinear solvers for PDEs;

• Linear solvers;

• Optimization solvers;

• Handling of unknowns in space and time;

• Using different meshes and finite elements for different variables;

• Description of the problem (e.g., the PDE, goal functional evaluations, and the objective
functional for optimization).

A change in any of these modules requires very little effort for the user. In particular, the modules
are independent of the specific implementation done in any of the other modules. On the other
hand, adaptation of each module to the specific needs of the given problem is possible.

To provide a more detailed overview, the following key features are currently supported by the
library. First, we provide wrappers and classes encapsulating several of the standard tasks in the
PDE solution using deal.II. These are

• Solvers for nonlinear stationary and nonstationary PDEs in any dimension (1, 2, and 3 are
as well supported by deal.II).

• Various, easily exchangeable, time-stepping schemes (based on finite differences), such as
forward Euler, backward Euler, Crank-Nicolson, shifted Crank-Nicolson, and Fractional-
Step-Θ scheme.

• Integration routines that allow the user to implement the PDE by simply writing the element
or face contributions of the weak formulation.

• Use of all finite elements from deal.II including hp-support.

• Goal-oriented mesh adaptivity with the Dual Weighted Residual (DWR) method, see Becker
and Rannacher [1996, 2001] or Bangerth and Rannacher [2003], and standard residual based
error estimators (also for optimization problems).

• Several examples showing the numerical solution of PDEs including Poisson, Navier-Stokes,
plasticity, fluid-structure interaction problems, the coupled Biot-Lamé-Navier system in
subsurface modeling, and the Black-Scholes equations from financial mathematics.

Second, we have added several features useful for the solution of optimization problems subject
to PDEs:

• Line search and trust region Newton algorithms for the solution of optimization problems
with PDE constraints by elimination of the state variable, see, e.g., Becker et al. [2007]. In
contrast to standard optimization routines, these are aware of the problem dependent choice
of the topology.

• Interfaces to SNOPT and IPOPT for the solution of optimization problems with PDEs and
additional control and state constraints.

• Several examples showing how to solve various kinds of optimization problems involving
stationary and nonstationary PDE constraints.

• Different spatial triangulations for control and state variables without the need to reimple-
ment the user dependent code when switching from one common triangulation to different
ones.
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2.3 Numerous Numerical Tests and Benchmarks

To date, two highlights of DOpElib are, firstly, implementations of several challenging bench-
marks; and secondly, more than 30 tests in total that cover various aspects of stationary and non-
stationary PDEs, linear and nonlinear solvers, 2D and 3D, discontinuous Galerkin, hp-elements,
a posteriori error estimation, and different optimization settings with different controls as well as
different cost functionals.

The underlying configurations of the benchmarks and numerical tests come from different ap-
plication areas such as the Poisson problem, Navier-Stokes, elasticity, plasticity, fluid-structure
interaction problems, porous media, and finally from financial mathematics the Black-Scholes
equations.

The most important PDE examples are:

• Laplace equations in 2D and 3D

• Stationary elasticity benchmark Ramm et al. [2002]

• Stationary plasticity benchmark Ramm et al. [2002]

• Stationary Stokes equations with hp-finite elements

• Stationary fluid-structure interaction (FSI)

• Nonstationary Navier-Stokes benchmarks of Schaefer and Turek Turek and Schäfer [1996]

• Nonstationary fluid-structure interaction benchmarks FSI 1, 2, 3 of Hron and Turek Hron
and Turek [2006], Bungartz and Schäfer [2006]

• Black-Scholes equation

• Heat equations

• Biot-Lamé-Navier problem from porous media with the Mandel-Cryer effect

• Isothermal Euler equations

The most important optimization examples are:

• Distributed and parameter control of linear elliptic PDEs

• Control in Dirichlet boundary values

• Distributed control with different meshes for control and state

• Distributed control showing how to interface external third party optimization libraries

• Topology optimization

• Parameter control with stationary Navier-Stokes equations

• Parameter control with stationary fluid-structure interaction

• Control of a semi-linear heat equation

2.4 Documentation / Manual

DOpElib comes with an extensive online documentation (pdf manual and doxygen) at http:
//www.dopelib.net/. The manual describes the features of this section in more detail. Moreover,
detailed installation instructions and license information including FAQ are provided. Next, all
examples are well-documented therein, including links to library parts that are unique to each
specific example. Finally, an explanation of the purpose and usage of the regression tests is given.
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3 Applications

In this section, we present three representative numerical tests demonstrating different features
of DOpElib. For further details on the implementation, we provide the references to the corre-
sponding examples of DOpElibwhich can be seen in the libraries manual:

• In the first numerical example, we consider goal-oriented mesh refinement with the help
of the DWR method for the stationary Navier-Stokes equations. The code is a simple
combination of the stationary Navier-Stokes problem, which can be easily obtained from
Examples/PDE/InstatPDE/Example1 and the DWR method whose usage is described in
Examples/PDE/StatPDE/Example5 for the Laplace equation.

• In the second application, we consider flow in and deformation of a porous medium. Here,
numerical results of the augmented Mandel’s configuration Girault et al. [2011] using the
Biot equations (a PDE system that couples stationary linearized elasticity and a parabolic
pressure equation) are presented. The code of this example can be found in the library
under Examples/PDE/InstatPDE/Example6.

• In the third numerical test, an optimization problem for structural mechanics is discussed.
The code of this example can be found in the library underExamples/OPT/StatPDE/Example8.

3.1 Goal-Oriented Mesh Refinement for Navier-Stokes

In this example, we consider a laminar flow around a cylinder in 2d. To be more precise, we
compute the benchmark 2D-1 from Turek and Schäfer [1996]. The equation is discretized with
the Taylor-Hood element. We want to compute the drag force on the enclosed cylinder

J(u) =
1

20

∫
Γcirc

(ν∂nv1 − pn1) ds, (1)

with the solution u = (v, p), the normal n and the viscosity ν = 0.001.

Figure 1: Locally adapted grid after eight refinement steps.

To achieve an efficient computation of the quantity J, we employ goal-oriented mesh refinement
with the help of the DWR-method. The method delivers error indicators and by this way com-
putational grids tailored to minimize the error in the previously given functional J. The price we
have to pay is the additional computation of a (linear) dual problem. In Fig. 1 we show a resulting
triangulation after eight refinement steps with roughly 320 000 degrees of freedom.

In Fig. 2 we compare the errors in the functional obtained by using uniform and local mesh
refinement. We see clearly that local mesh refinement allows for substantial savings with respect
to degrees of freedom.
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Figure 2: Comparison of uniform and local mesh refinement with respect to the error in the
drag-functional J.

3.1.0.1 What needs to be implemented? In order to realize the above configuration, the user
needs to provide the following problem-specific data:

• A file describing the initial mesh, readable by deal.II’s GridIn class.

• A deal.II function describing the inflow profile.

• A class implementing the local element and face contributions required for the PDE. A
template that can be adjusted is available within DOpElib. For details, we refer to the
manual.

• A class implementing the local face contributions of the drag functional. The implementa-
tion is quite similar to the PDE.

• Optionally, a parameter file for setting run time values, e.g., steering the nonlinear and
linear solvers, can be given.

With these data, the user can initialize the methods from DOpElib. To this end, the user has to:

• Select the spatial discretization (finite elements) and quadrature rules.

• Attach the Dirichlet values to appropriate sections of the boundary.

• Set the functional in which the error should be estimated.

• Select the nonlinear and linear solvers to be used.

With these preparations, the solution of the benchmark, can be obtained by calling a method
named ComputeReducedFunctionals from the appropriate solver object. To obtain the DWR
error indicators, the same objects provides a method named ComputeRefinementIndicators, that
internally solves the required adjoint problem and assembles the element-wise error indicators.
To adjust the mesh according to these indicators, the DoF-handling object of DOpElib, provides a
method RefineSpace.

It would be very simple to change the previous stationary problem to a nonstationary version,
the only change needed is that the user also needs to:

• Select the time-stepping scheme.

• Select how the space-time unknowns should be stored, e.g., all in main memory or partly
on disk.

• Replace some of the stationary objects by nonstationary ones as described in the manual.

c© by the authors, 2017 Archive of Numerical Software 5(2), 2017
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3.2 Augmented Mandel’s benchmark with Mandel-Cryer effect

In this example, a porous media zone is coupled with an overburden solid zone. The porous
medium is described with the help of the Biot equations Biot [1941a,b, 1955]. The nonstationary
coupled system for the state is formulated within a variational monolithically-coupled framework.

Let d be the dimension and VP := {ϕp
∈ H1(ΩB)| f = pDon Γp} and VS := {ϕu

∈ [H1(ΩB ∪ΩS)]d
|g =

uDon Γu} be Hilbert spaces and pD and uD extensions of Dirichlet data.

Formulation 3.1 (Biot-Lamé-Navier Problem) Find {p,u} ∈ {pD+VP}×{uD+VS}, such that p(0) = p0,
for almost all times t ∈ I, and

cB(∂tp, ϕp) + αB(∇ · u, ϕp) +
K
νF

(∇p,∇ϕp)

−ρF(g, ϕp) − (q, ϕp) = 0 ∀ϕp
∈ VP,

(σB,∇ϕ
u) − αB(pI,∇ϕu) − ( fB, ϕu) = 0 ∀ϕu

∈ VS,

(σS,∇ϕ
u) − ( fS, ϕu) = 0 ∀ϕu

∈ VS.

We first discretize in time and then in space. Temporal discretization is based on the backward
Euler scheme. We simply employ a CG finite element Galerkin discretization in space for both sub-
domains. Specifically, in the pay-zone (porous medium), we use an inf-sup stable element Qc

1/Q
c
2

(continuous bi-linear pressures and continuous bi-quadratic displacements) quadrilaterals Girault
and Raviart [1986]. However, equal order elements Liu [2004] or mixed finite element methods
could have been used as well. The non-pay zone, the solid overburden, is discretized with Qc

2
elements.

The computational domain is given by [0, 100m] × [0, 40m] and is sketched in Figure 3.

ΩB

Γb

Γr,BΓl,B

Γtop

ΩSΓl,S Γr,S

Γi

Figure 3: Configuration of augmented Mandel’s problem.

The first delicate issues is the prescription of the interface conditions on Γi between the porous
medium and the solid domain. Secondly, the pressure variable only lives in the pay-zone ΩB.
Here, the FE Nothing element provided by deal.II is very useful.

In more detail, the interface conditions on Γi are:

uB = uS,

σB(uB)nB − σS(uS)nS = αpBnB,

−
1
η f

K(∇pB − ρ f g) · nS = 0.
(2)
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It is the second condition in (2), which requires careful implementation on the interface. As outer
boundary conditions, we choose:

σBn = t̄ on Γtop,

σBn = 0 on Γr,S,

p = 0 on Γr,B,

uy = 0 on Γb,

ux = 0 on Γl,B ∪ Γl,S.

As parameters, we choose: MB = 2.5 · 1012 Pa, cB = 1
MB Pa , αB = 1.0, νF = 1.0 · 10−3 m2

s , KB =

100 m d = 10−13 m2 (where d is the unit for Darcy. It holds 1d = 9.87 × 10−13 m2.), ρF = 1.0 kg
m3 ,

t̄ = F = 1.0 · 107 Pa ·m. As elasticity parameters in Biot’s model, we use µS = 108 Pa, νS = 0.2.
In addition, we use in the pure elastic zone the same Lamé coefficients, such that µB = µS and
λB = λS. The time step is chosen as k = 1000s. The final time is 5 · 106s (corresponds to computing
5000 time steps).

We observe the pressure and the horizontal displacements for different time steps t1 = 1×103, t2 =
5 × 103, t3 = 1 × 104, t4 = 1 × 105, t5 = 5 × 105 and t10 = 5 × 106[s] (the numeration of time steps is
taken from Gai [2004]).

This problem does also show the well-known Mandel-Cryer effect (first increasing pressure, later
decreasing pressure; for detailed references, we refer to Chapter 5 in Gai [2004]) as illustrated in
Figure 4. Graphical solutions of the surfaces of pressure distribution are shown in Figure 5. Here,
we detect the typical pressure behavior on the x-axis.
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Figure 4: Augmented Mandel’s problem: Pressure trace and x-displacement on the x-axis (when
y = 0). The last two pressure curves t5 and t10 are nearly invisible because they coincide with the
x-axis (the pressure being nearly 0). The first increasing and then decreasing pressure is known
as Mandel-Cryer effect.
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Figure 5: Augmented Mandel’s problem: Pressure surface for two time steps t1 and t4. The
pressure is only present in the lower half of the domain because the top is the overburden in
which only elasticity is solved.

3.2.0.2 What needs to be implemented? Similarly to the first example, the user needs to
provide the following problem-specific data:

• A class implementing the local element and face contributions required for the PDE. A
template that can be adjusted is available within DOpElib. For details, we refer to the
manual and in particular to the implementation of the example PDE/InstatPDE/Example6.
Specifically, the interface terms (2) are implemented here.

• A class implementing the evaluation of the point values.

• A class indicating which finite elements should be used based upon the subdomain, distin-
guished by deal.II’s material_id().

• Optionally, a parameter file for setting run time values, e.g., steering the nonlinear and
linear solvers, can be given.

With these data, the user can initialize the methods from DOpElib. To this end, the user has to:

• Select the spatial and temporal discretization (finite elements and time-stepping scheme,
respectively) and quadrature rules.

• Create a mesh describing the rectangular domain including the colorization according to
the subdomains. Attach this mesh to the space-time DoF-handler object of DOpElib, which
automatically create the tensor-product structure in space-time.

• Attach the Dirichlet and Neumann values to appropriate sections of the boundary.

• Select the nonlinear and linear solvers to be used.

With these preparations, the solution of the problem, can be obtained by calling a method named
ComputeReducedFunctionals from the appropriate solver object.

Archive of Numerical Software 5(2), 2017 c© by the authors, 2017
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3.3 Compliance Minimization

In this example, we consider the compliance minimization of a standard MBB beam (Messerschmidt-
Bölkow-Blohm beam), see, e.g., Bendsøe and Sigmund [2003]. In order to enforce thickness values
to be either 1 or 0 we employ the so-called SIMP-model (Solid Isotropic Material with Penaliza-
tion), see Bendsøe and Sigmund [2003]. The discretization is done using Q2 elements for the
displacements and discontinuous P0 elements for the thickness.

Here, we consider the domain Ω = (0, 2) × (0, 1) in R2. On the upper boundary Γ1 = (0, 0.25) × {1}
we consider the constant force f = (0,−1)T. For a given parameter p > 0, the discretized minimum
compliance problem is to find a thickness ρ, and a corresponding displacement

u ∈ Vh := {v = (v1, v2)T
∈ Q2 | v1 = 0 on {0} × (0, 1), v2(2, 0) = 0.}

solving

min
ρ,u

∫
Γ1

f · u ds

s.t.



∫
Ω

ρp
∇u : ∇ϕ dx =

∫
Γ1

f · ϕ ds ∀ϕ ∈ Vh,∫
Ω

ρ dx ≤ 0.5,

10−4
≤ ρ ≤ 1.

If we pick the SIMP parameter p = 1 the thickness variable is allowed to take intermediate values
other than 0 and 1, i.e., we consider a variable thickness sheet. A typical thickness distribution is

Figure 6: Thickness distribution for the MBB-beam minimum compliance problem using SIMP
parameter p = 1 (left) and p = 4 right.

shown in the left image in Fig. 6. To obtain thickness values that are, mostly, either 1 or 0 we need
to pick a larger value for p. The distribution given in the right image in Fig. 6 has been obtained
using p = 4. Both results are in good agreement with the available literature, see, e.g., Bendsøe
and Sigmund [2003], noting that no filter was applied for p = 4.

3.3.0.3 What needs to be implemented? In this third example, the user needs to provide
the following problem-specific data:

• A class implementing the local element contributions required for the PDE. A template that
can be adjusted is available within DOpElib. For details, we refer to the manual and in
particular to the implementation of the example OPT/StatPDE/Example8.

• A class implementing the cost functional.

• An analogous class implementing the additional constraints on the mean value and the
point value of the density.

c© by the authors, 2017 Archive of Numerical Software 5(2), 2017
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• Optionally, a parameter file for setting run time values, e.g., steering the nonlinear and
linear solvers, can be given.

With these data, the user can initialize the methods from DOpElib. To this end, the user has to:

• Select the spatial discretization (finite elements) and quadrature rules.

• Create a mesh describing the rectangular domain.

• Attach the Dirichlet and Neumann values to appropriate sections of the boundary. In
particular the vertex (0, 2) is constrained to a Dirichlet value.

• Select the nonlinear and linear solvers for the solution of the PDE.

• Select an appropriate optimization algorithm.

With these preparations, the solution of the problem, can be obtained by calling a method named
Solve from the appropriate (optimization-) solver object.

4 How to get DOpElib

1. For all releases, tar-balls are provided at the web-site http://www.dopelib.net.

2. Alternatively, the current developer sources, including all features, bugs, and adjustments
to, e.g., newer deal.II versions, can be obtained via git:

git clone git://git.mathematik.tu-darmstadt.de/dopelib

Before installing DOpElib, the user is asked to install deal.II as the finite element tool. A detailed
description for this process can be obtained on the projects web-site http://www.dealii.org/.

For the installation of DOpElib, we refer to the pdf documentation which can be found on http:
//www.dopelib.net/. The installation of optional third party libraries such as SNOPT and IPOPT,
for the solution of constrained optimization problems, is described in the documentation as well.
For the freely available library IPOPT an installation script is provided.

If you have made modifications to the code that you would like to share you can contact the
maintainers by sending an E-Mail to dope@dopelib.net.
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