
Archive of Numerical Software
vol. 4, no. 2, 2016, pages 1–23

DOI: 10.11588/ans.2016.2.22317

On the implementation of the eXtended Finite
Element Method (XFEM) for interface problems

Thomas Carraro∗1 and Sven Wetterauer†1

1Institute for Applied Mathematics, Heidelberg University

Received: July 15th, 2015; final revision: April 26th, 2016; published: May 9th, 2016.

Abstract: The eXtended Finite Element Method (XFEM) is used to solve interface problems with
an unfitted mesh. We present an implementation of the XFEM in the FEM-library deal.II. The
main parts of the implementation are (i) the appropriate quadrature rule; (ii) the shape functions
for the extended part of the finite element formulation; (iii) the boundary and interface conditions.
We show how to handle the XFEM formulation providing a code that demonstrates the solution of
two exemplary interface problems for a strong and a weak discontinuity respectively. In the weak
discontinuity case, the loss of conformity due to the blending effect and its remedy are discussed.
Furthermore, the optimal convergence of the presented unfitted method is numerically verified.

1 Introduction

The eXtended Finite Element Method (XFEM) is a flexible numerical approach developed for
general interface problems. Numerical methods to solve interface problems can be classified as
fitted or unfitted methods. In the first case, the methods use a fitted mesh approach such that the
interface is composed of element sides. The generation of a fitted mesh in case of complex interface
geometry can be very time consuming. In many cases it cannot be done without handwork using
a program for mesh generation. In the unfitted case, the mesh is independent of the interface
position and therefore unfitted methods are highly flexible. Since standard finite element methods
perform poorly in the unfitted case, different alternative approaches have been introduced in the
last years.

The XFEM is a partition of unity finite element method (PUFEM). The first formulation of the
PUFEM has been derived in the work of Melenk and Babus̆ka [15]. The main features of this
method can be summarized as follows:

• a priori knowledge about the local behavior of the solution can be included in the formula-
tion;

• arbitrary regularity of the FE spaces can be constructed;
• the approach can be understood as a meshless method;
• it is a generalization of the h, p and hp version of the FEM.

∗thomas.carraro@iwr.uni-heidelberg.de
†sven.wetterauer@iwr.uni-heidelberg.de

2 T. Carraro and S. Wetterauer

In particular two important aspects are essentially relevant for this method: local approxima-
bility and the capability to enforce inter-element continuity, i.e. conformity. Among different
PUFEM approaches, the generalized finite element method (GFEM) and the extended finite ele-
ment method are the most versatile and the most used in many applications. Their elaboration
developed from the area of meshfree methods [9] and are based on the same principles: partition
of unit and degree of freedom enrichment [12]. An overview of these methods can be found for
example in [1, 4].

The XFEM strategy to solve a problem with strong or weak discontinuities, i. e. discontinuities of
the solution or of the fluxes respectively, is to extend the approximation space with discontinuous
basis functions or basis functions with a kink, respectively. Since the discontinuities are typically
local features, the XFEM offers great flexibility by using a local modification of the standard
FEM methods. In fact, it avoids the use of complex meshing, which is substituted by a specific
distribution of the additional degrees of freedom (DoFs).

The XFEM has broad use in different disciplines including fracture mechanics, large deformation,
plasticity, multiphase flow, hydraulic fracturing and contact problems [14]. However, the first
developments of the XFEM were done to simulate crack propagation [17]. Further applications
for the XFEM in material science comprise: problems with complex geometries, evolution of
dislocations, modeling of grain boundaries, evolution of phase boundaries, modeling of inclusions
and homogenization problems. In particular, the combination of the XFEM with a level set
approach [20] has been shown to be a very versatile tool to solve the above class of problems.
In the level set approach two strategies can be used to define the interfaces: (i) an analytical
description of interfaces as the iso-zero of a function can be given or (ii) data from an image
segmentation can be used to define interfaces locally or globally.

The goal of this work is to present all essential steps for the implementation of the XFEM. In
addition, we make available a code that can be further extended for specific applications. The
practical implementation is done in the open source FEM library deal.II [5]. As application we
consider an interface problem with a weak or a strong discontinuity. In the case of a strong
discontinuity we consider only weak interface conditions of Robin type. In particular, we do not
consider Dirichlet conditions on the interface. In this case the formulation of the problem has
to be changed and possible formulations are based either on the Nitsche’s method [19], see for
example [13, 7], or on a Lagrange multipliers method [16, 6]. The extension of the code including
the Dirichlet case is left for a further development. In addition, we illustrate the problem of the
blending effect, i.e. of the loss of conformity in the elements adjacent to the interface, and show the
implementation of a standard method to restore the optimal convergence behavior. The focus
of this work is on implementation aspects for the stationary XFEM. We do not consider moving
interfaces. The development of a proper time stepping technique and an adequate quadrature
rule goes beyond the scope of this paper. We present examples in the two-dimensional case.
Specific aspects related to the extension to three-dimensional problems are also discussed.

This article is organized as follows. In section 2 we introduce the general interface problem and the
level set method. In section 3 the formulation of the XFEM for strong and weak discontinuities
is depicted. Furthermore, the blending effect in case of weak discontinuities is discussed. In
section 4, we briefly report some theoretical results on the convergence of the XFEM. In section 5
we describe in detail our implementation in deal.II. Specifically we discuss the XFEM quadrature
rule and the application of boundary conditions to cut cells. In the final section 6 we show some
numerical results on problems with weak and strong discontinuities including convergence tests.

2 Interface problems

2.1 Problem setting

Let Ω be an open, bounded domain in Rd with boundary ∂Ω. The considered model problem is
the stationary heat conduction. We construct an interface problem by taking a domain Ω divided

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 3

in two open subdomains Ω1 and Ω2 by a line Γ = Ω \ (Ω1 ∪Ω2), called interface.

We consider three cases of interface problem with discontinuity on Γ. Case I: the solution has
a discontinuity gs; Case II: the solution has a weak discontinuity gw; Case III: the solution has
a discontinuity which depends on some functions g1, g2 as shown below. The problem can be
formulated as

Problem 2.1 (Interface problem) Given the function f , the strong and weak discontinuity at Γ, gs and
gw respectively, or the functions g1, g2, find the solution u of the following system

−∇ · (µi∇ui) = f in Ωi, (1a)
ui = g, on ∂Ωi ∩Ω, (1b)

Case I : [u] = gs on Γ, (1c)
Case II : [µ∇u · n] = gw on Γ, (1d)

[u] = 0 on Γ, (1e)
Case III : µi∇ui · ni = gi(u1,u2) on Γ, (1f)

for i = 1, 2, with [u] = u1 − u2 and [µ∇u · n] = µ1∇u1 · n1 + µ2∇u2 · n2, where ui is the restriction of u to
Ωi, µi is a constant assumed positive, and ni is the outward pointing normal to Ωi at Γ, see Figure 1.

We consider a general discretization with finite elements and use the notation with subscript h to
indicate discretized functions. The same interface Γ of the continuous problem is used also for the
discretized problem if an exact quadrature formula can be employed. An exact representation of
Γ used in the discretized problem can be obtained adopting the level set method [20].

2.2 Level set method

The level set method is used to implicitly define the position of the interface Γ independently of
the underlying mesh used to discretize the interface problem. The interface is defined by a scalar
function φ : Ω→ R that is (uniquely) zero on Γ and has different sign on different subdomains:

φ = 0 on Γ,

φ < 0 in Ω1, (2)
φ > 0 in Ω2.

Typically, the distance function (with sign) to the interface Γ is used as level set function

φ(x) = ±min
y∈Γ
‖x − y‖.

This is not the only choice, but it is often used because it can be exploited to calculate the normal
vector at any point on Γ, since ∇φ/|∇φ| represents the normal vector if φ is the distance function
to Γ. Following a standard definition of XFEM we use the level set function to extend the space
of finite elements with functions that incorporate the needed discontinuity.

3 Extended finite elements

Generally, Galerkin finite elements are defined as the triple

(T ,Qp,Σ), (3)

where T is the mesh, Qp is the space of test and trial functions and Σ is a set of linear functionals
that defines the degrees of freedom of the FEM formulation. To build the XFEM in deal.II, we
consider an extension of Lagrange finite elements. These are FE for which the degrees of freedom

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

4 T. Carraro and S. Wetterauer

Ω2

Φ = 0

Φ < 0

n1Φ > 0

Ω1

Γ n2

Figure 1: Level set function

are the values of the test functions at the nodes of the mesh elements. Since our implementation
is done in deal.II we consider only quadrilateral elements K ∈ T .

The space Qp is the space of polynomial functions of degree at most p

Qp = { f (x) =
∑

α1,...,αd≤p

aαxα1
1 . . . xαd

d }

defined on a unit cell K̂ = (0, 1)d. The test and trial functions on a real cell K are obtained through
a transformation σ : K̂ → K of a function from Qp. We will use the notation ϕK = σ−1(ϕ|K) and
ϕh,K = σ−1(ϕh|K).

The scope of this work is to describe the implementation of the XFEM in deal.II, so we restrict
our test cases to linear problems without loss of generality. We consider a general elliptic bilinear
form and a linear functional:

a : V × V → R (4)
f : V → R, (5)

where V is an appropriate Hilbert space. The general weak formulation of our test cases is:

Problem 3.1 Find u ∈ V such that

a(u, ϕ) = f (ϕ), ∀ϕ ∈ V. (6)

A typical choice for V is the Hilbert space H1(Ω) where Ω is the problem domain.

The discrete approximation of Problem 3.1 using finite elements is

Problem 3.2 Find uh ∈ Vh such that

a(uh, ϕh) = f (ϕh), ∀ϕh ∈ Vh, (7)

where Vh is the finite dimensional space of H1-conform functions

Vh = {ϕ ∈ V : ϕK ∈ Qp ∀K ∈ T },

The solution vector is a linear combination of the basis functions of Vh

uh(x) =

n∑
j=1

u jN j(x). (8)

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 5

In the following we restrict our formulation to the space of bilinear functions Q1, i.e. the shape
functions Ni are piecewise bilinear and globally continuous.

For interface problems described by the system of equations (1) there is the need to approximate
a solution with a discontinuity. As illustrated above in Problem 2.1, we consider three cases of
boundary conditions on the interface leading to a weak discontinuity or a strong discontinuity. In
case of a weak discontinuity the standard Q1 space can reach the optimal convergence rate (for a
solution smooth enough) only if the mesh is fitted with the weak discontinuity. In case of strong
discontinuity, we consider convergence in a norm in the space H1(Ω1 ∪Ω2) instead of the space
H1(Ω), because the solution is not continuous on Γ and therefore it does not belong to H1. Also in
this case, the standard Q1 space can achieve the optimal convergence rate (in H1(Ω1 ∪Ω2)) only
if the degrees of freedom lie on Γ.

If the interface cuts some elements K, a better approximation can be achieved by incorporating
the discontinuity in the space in which we approximate the solution.

t
t
t
t
t
t

t
t
t
t
t
t

t
t
t
t
t
t

t
t
t
t
t
t

t
t
t
t
t
t

t
t
t
t
t
t

i
i

i
i

i
i

i
i

i
i

i
i

Γ

Figure 2: Single dots depicts normal degrees of freedom. Double dots depicts the extended
degrees of freedom.

In the considered XFEM formulation we extend therefore the space Q1 with some additional
shape functions that represent the given discontinuity. This is obtained by enriching the degrees
of freedom of the elements cut by the interface. We will use the notation I′ for the standard
degrees of freedom and I∗ for the set of the extended degrees of freedom, respectively represented
with single points and double points in Figure 2. The set of all degrees of freedom is denoted I.

In the next subsection we construct the XFEM shape functions.

3.1 Strong and weak discontinuity

In case of strong discontinuity, a typical function with a jump along Γ is the sign function:

sign : R→ {−1, 0, 1}

sign(x) =

1 for x > 0
0 for x = 0
−1 for x < 0.

Since the jump is at the point x = 0, the sign function applied to the level set function can be used
to obtain a function with a jump along the interface.

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

6 T. Carraro and S. Wetterauer

In case of weak discontinuity, a function with a kink can be used, as for example the absolute
value:

abs : R→ R+

abs(x) =

x for x > 0
0 for x = 0
−x for x < 0,

which applied to the level set function defines a weak discontinuity along the interface.

In the following we use the general notation

ψ : Ω→ R

ψ(x) =

sign(φ(x)) for strong discontinuity
abs(φ(x)) for weak discontinuity,

ψ is called enrichment function.

In Figure 2 the extended degrees of freedom are depicted. These are additional Lagrangian degrees
of freedom defined on a subset of existing mesh nodes. To construct the XFEM, additional shape
functions have to be defined. Following the above construction, we take functions that have a
discontinuity along Γ

Mi(x) := Ni(x)ψ(x). (9)

We consider thus the following discrete spaces for test and trial functions

• strong discontinuity

Vs
h := {ϕ ∈ V : ϕK ∈ Q1, ϕK′i ∈ Q1, i = 1, 2},

where K are standard cells and K′ are the cells cut by the interface and K′i are the two parts
of the cut cell K′ that have the interface as common edge.

• weak discontinuity:

Vw
h := {ϕ ∈ V : ϕK ∈ Q1, ϕK′ ∈ Q1 ⊕ |φ|Q1}.

The discrete solution is now defined using the enriched basis

uh(x) =
∑
i∈I′

uiNi(x) +
∑
j∈I∗

a jM j(x).

From the practical point of view, it is desired that the discrete solution has the Kronecker delta
property

uh(xi) = ui i = 1, . . . ,n, (10)

where xi is the position of the ith degree of freedom. To obtain this property, the extended basis
functions are shifted, i.e. we use a different basis. The modified extended basis function of the
node i becomes

Mi(x) = Ni(x)(ψ(x) − ψ(xi)). (11)

In Figure 3 two additional basis functions are depicted, for the cases of weak and strong discon-
tinuity. The extended basis functions depend on the position of the interface. In case of weak
discontinuity, the use of standard enriched basis functions can lead to the loss of conformity in
the elements adjacent to the cut cells. This so called blending effect introduces a reduction of the
convergence rate as it is shown later in the numerical experiments.

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 7

Figure 3: XFEM basis functions for weak discontinuity (left) and strong discontinuity (right).

3.2 Blending effect

In this subsection we discuss the blending effect. Let’s consider the basis functions for the weak
discontinuity

Mi(x) = Ni(x)(abs(φ(x)) − abs(φ(xi))), (12)

which is given by the product of a polynomial basis function Ni and the level set function, which
is in general a C2 function. Considering the term abs(φ(x))− abs(φ(xi)) along an edge E of the cell
where the function Ni is not zero, it is

abs(φ(x)) − abs(φ(xi))

= constant for E ‖ Γ

, constant for E ∦ Γ.
(13)

Since the function Ni along the edge E is linear, the product with the enrichment function gives
a function that is non linear. In Figure 4 an additional basis function is depicted that shows the
blending effect. The depicted function has a nonlinear behavior on the right side along the x axis

Figure 4: Extended basis function with blending effect

and on the left side along the y axis. The nonlinearity along the x axis is not a problem, since the
edge is in common with a cut neighbor cell, which is also enriched in the same manner. On the
other side, the edge along the y axis causes problems, because the neighbor element is not cut by
the interface and has only standard basis functions, which are linear on the common edge. We
have thus linear behavior on one side and nonlinear on the other. Due to the discontinuity along
this edge the enriched space Vw

h is not H1-conform anymore. Only in the case that the interface
is parallel to the edges there is no blending effect, because the enrichment function is constant
along such edges, see (13).

There are different approaches to recover the H1-conformity:

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

8 T. Carraro and S. Wetterauer

Figure 5: Ramp function in a blending cell which neighbor cell on the right is a cut cell.

• use of higher order elements in the standard space Vh [10],

• smoothing techniques as used in [23],

• use of a corrected XFEM formulation adding a ramp function [11].

Note that the use of higher order elements works only if the extended functions on the cell edges
have polynomial behavior. In this work we use the third method using a correction with the ramp
function:

r(x) :=
∑
i∈I◦

Ni(x), (14)

where I◦ depicts the set of standard degrees of freedom that lie on cut cells.
The idea is to enrich not only the cells that are cut by the interface, but also the neighbor cells that
are called blending cells. In these cells the basis functions are modified so that they are nonlinear
on the common edge with a cut cell and linear on the other edges recovering the global continuity.
Figure 5 shows the ramp function on the neighbor of the cut cell depicted in Figure 4. The ramp
function has the value 1 along the edge that creates the blending effect and is zero on the opposite
edge. By multiplying the XFEM basis functions with the ramp function, new basis functions
are defined that impose the continuity along the common edge with cut cells thus deleting the
blending effect. Therefore, in the blending cells we use the extended functions:

Mi(x) := Ni(x)(abs(φ(x)) − abs(φ(xi)))r(x). (15)

which are depicted in Figure 6. It can be observed that these additional functions behave nonlin-
early along the common edge with a cut cell and a blending cell (in Figure 6 depicted on the right
side and on the bottom side respectively) and go to zero on common edges with normal cells (left
and top side).

4 A note on a priori error estimation

In this section we briefly present some known results on a priori convergence estimates for
the XFEM for interface problems. A result on optimal convergence rate of the XFEM for crack

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 9

Figure 6: Extended basis functions on blending cells.

propagation can be found in [18]. Let’s consider the interface problem of the type III using the
same notation as in Problem 2.1

−µi∆u = f in Ωi (16a)
u = 0 on ∂Ω (16b)

µ1∂n1 u1 = α11u1 + α12u2 on Γ (16c)
µ2∂n2 u2 = α21u1 + α22u2 on Γ. (16d)

Note that continuity along the interface Γ is not enforced. For this problem we consider the weak
formulation

Problem 4.1 (Interface problem: Weak formulation) Let the problem data be regular enough and let
Ωi be two domains with smooth boundaries so that the regularity u ∈ H2(Ω1∪Ω2) is assured. Find u ∈ V,
such that for all ϕ ∈ V it is

a(u, ϕ) = (f , ϕ)Ω1∪Ω2 (17)

with

a(u, ϕ) = (µ1∇u,∇ϕ)Ω1 + (µ2∇u,∇ϕ)Ω2

− (α11u1, ϕ1)Γ − (α12u2, ϕ1)Γ − (α21u1, ϕ2)Γ − (α22u2, ϕ2)Γ,
(18)

and V = H1
0(Ω1 ∪Ω2; ∂Ω), where we have used the notation ∂Ω := ∂(Ω1 ∪Ω2) \ Γ.

Let’s consider the mesh T and the finite dimensional space Vh ⊂ V:

Vh := span{ϕh ∈ V : ϕh,Ki ∈ Q1, ϕh,K1 ≡ 0 ∨ ϕh,K2 ≡ 0, ∀K ∈ T , i = 1, 2} (19)

with Ki := K ∩ Ωi. The basis functions ϕh are the unfitted basis functions used in [13] to show
the convergence results. It can be shown that XFEM basis functions together with standard basis
functions build a basis for the finite dimensional space Vh. In fact, as observed by Belytschko in
[8] the unfitted basis functions in [13] are equivalent to the XFEM basis functions. Therefore it is

Vh = span{Ni, M j : i ∈ I′, j ∈ I∗}, (20)

where I′ and I∗ are defined as in section 3. We consider the following XFEM approximation of the
Problem 4.1

Problem 4.2 (Interface problem: Discrete formulation) With the same data as the above continuous
problem, find uh ∈ Vh, such that for all ϕh ∈ Vh it is

a(uh, ϕh) = (f , ϕh)Ω. (21)

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

10 T. Carraro and S. Wetterauer

Following [13] it can be shown that for the finite element solution uh using the XFEM it is

‖∇(u − uh)‖Ω1∪Ω2 ≤ ch‖u‖H2(Ω1∪Ω2), (22)

and

‖u − uh‖Ω1∪Ω2 ≤ ch2
‖u‖H2(Ω1∪Ω2). (23)

Note that to show these error estimations using the results in [13], one has to perform a change
of basis since Hansbo and Hansbo use different basis functions than the XFEM ones as pointed
out above.

Therefore, optimal convergence behavior has to be expected in our numerical tests with strong
discontinuity. Indeed, also in case of weak discontinuity, using the ramp correction on blending
cells, we observe the same convergence behavior. Nevertheless, the a priori convergence estimates
for the weak discontinuity case cannot be derived in the same way following the work of Hansbo
and Hansbo.

However, an a priori estimation of convergence for the weak discontinuity can be proved follow-
ing the idea of Babus̆ka and Banerjee in [3]. For the proof, it has to be shown that the enrichment
function is bounded by O(h) in the energy norm. It can be easily shown that this is the case for
the particular enrichment functions used in section 6. Therefore, the same estimation as in (22)
and (23) can be obtained also for the weak discontinuity case.

Remark 4.1 For the numerical solution of (21) we will introduce a quadrature formula in section 5 that
is based on a linearized interface. This will introduce a perturbation of the bilinear form a(·, ·) that can
be reduced to an integration error. The influence of this perturbation to the a priori error estimation of
the finite element approximation is given by the Lemma of Strang [22]. Under the assumption that the
interface allows a C2 parametrization, it can be shown that the integration error converges faster than the
discretization error, as it will be discussed in section 5.

5 Implementation in deal.II

To implement the XFEM in deal.II we consider Problem 2.1 as a vectorial problem. The solution is
therefore represented with two components. One component is the standard part of the solution
and the other is the XFEM extension. The standard part of the solution exists in all cells, whereas
the extended part exists only in the cells that are cut by the interface, and their neighbors (blending
cells) in case of weak discontinuity. Due to an implementation constraint, both components of
the vector-valued function must however exist in all cells. Therefore, we prolongate the extended
part of the solution with the zero function in uncut cells by using a special kind of finite element
with zero degrees of freedom.

This is obtained in the implementation in deal.II with two main objects: the class FE_Nothing and
the class hp::DoFHandler. The object FE_Nothing is the special finite element class that has zero
degrees of freedom. The object hp::DoFHandler allows to distribute different finite element types
on different cells. Since we use the vector-valued finite element FESystem with two components,
we can arbitrarily assign to each cell the two types of finite element either FE_Nothing or Q1. We
assign thus a Q1 finite element object to the first component (standard FE) of all cells, while we
consider the following three cases for the second component of the FESystem:

(i) for cells cut by the interface we use a Q1 object to define the extended part of the space;

(ii) for the blending cells we use a Q1 object to define the extended part of the space including
the ramp functions.

(iii) for the rest of the cells we use a FE_Nothing object (the extended part is set to zero);

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 11

The distribution of degrees of freedom with hp::DoFHandler is controlled by the value active_fe_index
of the cell iterator. Furthermore, the classes XFEValues_strong and XFEValues_weak, derived by
the base class FEValues, have been implemented to define the shape functions for the XFEM.

5.1 Quadrature formula

An essential part of the XFEM implementation is the quadrature formula. Generally, a quadrature
formula such as the Gauss quadrature designed to integrate smooth functions would fail to
integrate a function with a discontinuity. A proper quadrature formula must take into account
the position of the interface to integrate a function with a weak or strong discontinuity. In
our deal.II implementation this is done by subdividing the cut cells in subelements, on which
a standard quadrature formula can be used. Since we restrict our implementation to standard
elements in deal.II, i.e. quadrilateral elements in 2D, the subdivision is done by quadrilateral
subelements. In 2D there are only four types of subdivisions and the respective rotated variants,
see Figure 7, i.e. four of type (a), eight of type (b), two of type (c) and two of type (d). Let’s use the

(a) (b) (c) (d)

Figure 7: Subdivisions of the unit cell.

notation K for the cell in real coordinates, K̂ and K̃ for the unit cell, and Ŝ1, . . . , Ŝn for the subcells
of K̂. Since in deal.II the quadrature formula is defined for the reference unit cell, we have to
construct a quadrature formula with points and weights to integrate a transformed function on
the unit cell. To this aim, the cut cell K is transformed into the unit “cut” cell K̂ and with the help
of the transformed level set function it is subdivided according to the schemes in Figure 7. Each
subcell is then transformed into the unit “uncut” cell K̃ in order to calculate the local quadrature
points and weights through the standard tools in deal.II. Note that to make clear the use of the
unit cell in different situations we use two notations for it, i.e. K̂ and K̃. Subsequently they are
transformed back to the cell in “real” coordinates that in this case are the coordinates of the unit
cell K̂. Different transformations are used to transform K to K̂ and each Ŝi into K̃ as depicted in
the same figure. The transformation σ: K̂ → K is the standard transformation used in deal.II.
Furthermore, to construct the appropriate XFEM quadrature formula we transform, see Figure 8,
the subcell through the transformations:

σ̂1, . . . , σ̂n : K̃→ Ŝ1, . . . , Ŝn. (24)

The XFEM quadrature formula is therefore derived by a standard quadrature formula. For given
quadrature points xi and weights wi of a standard formula, i = 1, . . . ,m, the XFEM quadrature on
K̂ is defined through the points

yi, j = σ̂ j(xi), i = 1, . . . ,m, j = 1, . . . ,n, (25)

and weights

wi, j = wi det
(
∇σ̂ j(xi)

)
. (26)

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

12 T. Carraro and S. Wetterauer

K̂

σ Ŝi

σ̂i

Γ̂K

K̃K

Figure 8: Transformations to construct the XFEM quadrature formula.

We define the degree of exactness of a quadrature formula as the maximal degree of polynomial
functions that can be exactly integrated on an arbitrary domain. The optimal position of the
quadrature points depends on the shape of the domain on which the integration is done. The
degree of exactness of the XFEM quadrature formula is at least of the same degree as the standard
formula from which it is derived. In addition, it allows by construction to integrate discontinuous
functions along the interface. From the implementation point of view this formula is highly
flexible because it is built as a combination of standard formulas. The construction of an XFEM
quadrature formula is simplified in our implementation since the subdivision of a cut cell is done
by using the same type of cells, i.e. quadrilateral cells in our two-dimensional case.

The idea of this quadrature formula is to integrate a discontinuous function piecewise by integra-
tion of contributions on subelements, in which the function is smooth. In fact, the restriction of
this function on the subelements is smooth, only if the line of discontinuity aligns with the edges
of subelements. However, the additional shape functions use the exact interface, while the subele-
ments are defined with respect to a linearized interface. This leads to non-smooth functions in
the subelements, where the discontinuity is in a distance of orderO(h2) to the linearized interface.
Therefore, it can be shown that the contribution to the integration error due to the linearization
of the interface is of the order O(h5). The details will be shown in a forthcoming publication.

We would like to underline, that the XFEM formula is not optimal from the theoretical point of
view, since it does not use the minimal number of points needed to integrate a given function over
the specific subdivisions. In fact, the degree of exactness of the formula could be higher than the
one inherited by the standard formula, but never less accurate. Therefore, the use of the XFEM
formula can result in unnecessary higher costs to integrate a given function and therefore higher
costs, for example, in assembling system matrices and vectors. As an example, let’s consider the
integration of a quadratic function on the triangle resulting from the cut depicted in Figure 7 in
the case (a). The unit cut cell is divided in two parts, one triangle and one pentagon. For the
pentagon part, quadrature rules would be necessary that are not typical on finite elements codes
and therefore are not present as standard implementation. Therefore the division in two parts
of the pentagon to obtain two quadrilaterals on which we can use standard formula is a desired
feature. On the contrary on the triangle part one could use a more efficient formula, for example
we could use a symmetric Gauss quadrature with 3 points, while the XFEM quadrature rule is
build with 12 points as depicted in Figure 9. The code can be slightly more efficient changing the
quadrature rule for the triangles obtained by the cut. We do not consider this modification for
two reasons. On one side, we expect a great gain in computing time only in cases with a very high
number of cut cells. On the other, we want to produce a code that can be used in a dimension
independent way. In the two dimensional case the two parts of a cut cell can only be quadrilaterals,
triangles or pentagons. In the three dimensional case there are 16 cases (and their respective
symmetric configurations) and the partitions are more complex polyhedra as can be seen in the
two depicted cases of Figure 10. Therefore, in our implementation instead of considering a
complex quadrature formula that can cope with all possible subdivisions, we apply subdivisions

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 13

(a) (b)

Figure 9: Sketch of the position in a triangle of the XFEM quadrature points (a) and of the
symmetric Gauss formula (b).

using only standard cells of deal.II in two and three dimensions, i.e. quadrilaterals and hexahedra
respectively. The extension to the three dimensional case is theoretically straightforward. In
practice the subdivision of hexahedral cut cells in hexahedral subcell is not a trivial task and it is
left for a forthcoming work in which we will consider a comparison of different quadrature rules.

(a) (b)

Figure 10: Sketch of two partitions in the three dimensional case.

5.2 Boundary and interface conditions

This section is dedicated to the boundary and interface conditions. We consider Dirichlet and
Neumann boundary conditions on the external boundary. Furthermore, we describe the imple-
mentation of Robin interface conditions on the interface Γ.

5.2.1 Dirichlet and Neumann boundary conditions In the following we consider the Dirich-
let boundary condition (1b) on the boundary of the domain. Nevertheless, the case with Neumann
conditions can be treated in a similar way.

The Dirichlet boundary condition in deal.II is set by an appropriate modification of the system
matrix and right hand side, and optionally performing one step of the Gaussian elimination
process to recover original properties of the matrix as, e. g., the symmetry.

Owing to the Kronecker delta property of the XFEM formulation, no special care has to be taken in
case the Dirichlet condition is given by a continuous function. The degrees of freedom associated
with the standard part of the FE are used to set the boundary values, while the degrees of freedom
of the extension are set to zero at the boundary. In case of discontinuous boundary condition,
see Figure 11 on the left side, the extended FE are used to approximate the discontinuity. On
the edge at the boundary there are two extended degrees of freedom, whose basis function are
discontinuous at one point. Due to the shift (12) used to construct the extended basis functions,

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

14 T. Carraro and S. Wetterauer

d2 d1
d2

Γ
Γ

xcxc

d1

Figure 11: Discontinuous boundary condition.

these are nonzero only on one side of the edge. Therefore they can be used uncoupled to
approximate the discontinuous Dirichlet value.

Let’s consider the point xc of the discontinuity of g on the edge with vertex x1 and x2, and the two
limit values of the Dirichlet function d1(xc) and d2(xc). The two degrees of freedom a1 and a2 of
the extended part at the boundary are uniquely defined by the following limit:

lim
x→xc, x∈∂Ωi

uh(x) = di(xc), (27)

which leads to

a1 =
d2(xc) − d1(x1)N1(xc) − d2(x2)N2(xc)

2N1(xc)
, (28)

a2 =
d1(xc) − d1(x1)N1(xc) − d2(x2)N2(xc)

−2N2(xc)
. (29)

In case of a weak discontinuity at the point xc, the formulation needs a similar condition as in (27)
for the normal derivatives. The two extended degrees of freedom are therefore coupled and their
value can be calculated solving a system of dimension 2 × 2.

5.2.2 Robin interface conditions Following the notation of (1f) (strong discontinuity), to
simplify the description of the interface conditions we assume that g1 and g2 are linear in both
arguments. For the discretized variational formulation of Problem 2.1, with interface conditions
(1f), we define the bilinear form

a(ϕh, ψh) = a(ϕh, ψh)Ω + a(ϕh, ψh)Γ,

with
a(ϕh, ψh)Ω = (µ1∇ϕh,∇ψh)Ω1 + (µ2∇ϕh,∇ψh)Ω2

and the boundary integrals

a(ϕh, ψh)Γ = (g1(ϕh,1, ϕh,2), ψh,1)Γ + (g2(ϕh,1, ϕh,2), ψh,2)Γ,

where the subscript 1 and 2 denotes the limit to the interface of the restriction on the subcells of
the basis and test functions, e.g. for x̄ ∈ Γ

ϕh,1(x̄) = lim
x→x̄, x∈Ω1

ϕh(x) (30)

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 15

The bilinear form is used to build the system matrix and the scalar product has to be imple-
mented considering all mixed products between standard and extended part of the finite element
formulation.

In the case of continuous basis functions (standard FE part)ϕh,1 andϕh,2 coincide. On the contrary,
in the extended part of the XFEM formulation the basis and test functions are discontinuous and
one of the two functions in the scalar product vanishes due to the shift (11). To determine the
value of the limit (30) we use the system_to_component_index in deal.II, which is a pair containing
the component of the current DoF and the index of the shape function of the current DoF. With
the help of the level set function we can determine on which side of the interface the current DoF
lies. This uniquely determines the zero part of the function.

6 Numerical examples

In this section we consider the solution of a linear elliptic interface problem in case of strong
and weak discontinuity. Furthermore, we show the effect of the blending cells. To simplify the
notation in the following we use the symbol Ω instead of Ωh. The latter is the approximation of
the boundary given by the adopted finite element formulation.

6.1 Weak discontinuity

Let’s consider the following domains Ω1 := {x ∈ R2 : ‖x‖2 < 0.5}, Ω2 := {x ∈ R2 : 0.5 < ‖x‖2 < 1}
and Ω := {x ∈ R2 : ‖x‖2 < 1}, with the interface Γ = {x ∈ R2 : ‖x‖2 = 0.5}. We define the following
problem

Problem 6.1 (Weak discontinuity) Given µ1 = 20 and µ2 = 1, find the solution u

−∇ · (µi∇u) = 1 in Ωi, (31)
u = 0 on ∂Ω, (32)

[u] = 0 on Γ, (33)
[µ∂nu] = 0 on Γ. (34)

The exact solution of Problem 6.1 is the function uw
ex

uw
ex : Ω→ R (35)

x 7→

1

20 · (−
1
4 · ‖x‖

2 + 61
16), x ∈ Ω1,

1
4 · (1 − ‖x‖

2), x ∈ Ω2,
3

16 , x ∈ Γ.

In Figure 12 a XFEM approximation of this problem is shown.

Problem 6.2 (Weak formulation of weak discontinuity) Find u ∈ H1
0(Ω), such that

(µ∇u,∇ϕ)Ω = (f , ϕ)Ω ∀ϕ ∈ H1
0(Ω), (36)

with µ = µ1 in Ω1 and µ = µ2 in Ω2. The conditions (32) – (33) are naturally fulfilled by the weak
formulation.

We consider in the following two approximations calculated using two different finite dimensional
spaces to show the blending effect. For a given mesh T let’s consider the three subsets

• Tcut := {K ∈ T : K ∩ Γ , ∅}: the set of cells cut by the interface;
• Tbl: the set of blending cells, i.e. those cells that are neighbors of cut cells;
• Tstd := {K ∈ T : K <

(
Tbl ∪ Tcut

)
}: the set of standard cells.

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

16 T. Carraro and S. Wetterauer

Figure 12: Exact solution of Problem 6.2.

We can thereby define the H1-conform space Vh and the non-conform space Ṽh:

Vh := {ϕh ∈ H1
0(Ω) :ϕh,K ∈ Q1 for K ∈ Tstd,

ϕh,Ki ∈ Q1 ⊕ |φ|Q1 for K ∈ Tcut,

ϕh,K ∈ Q1 ⊕ r|φ|Q1 for K ∈ Tbl,

ϕh ∈ C(Ω)},

Ṽh := {ϕh :ϕh,K ∈ Q1 for K ∈ (Tstd ∪ Tbl),
ϕh,Ki ∈ Q1 ⊕ |φ|Q1 for K ∈ Tcut,

ϕh ∈ C(Ω \ E)},

where E is the union of all edges between cut and blending cells.

For comparison we will also show the convergence rate for the standard FE space

V̂h := {ϕh ∈ H1
0(Ω) :ϕh,K ∈ Q1 for K ∈ (Tstd ∪ Tbl ∪ Tcut),

ϕh ∈ C(Ω)}.

With this notation the discretized problem is given by:

Problem 6.3 (Discrete formulation of weak discontinuity) With the data from Problem 6.2, find
uh ∈ Vh, so that

(µ∇uh,∇ϕh)Ω = (f , ϕh)Ω ∀ϕh ∈Wh, (37)

with Wh = Ṽh, Wh = Vh or Wh = V̂h.

We use an unfitted mesh, i.e. the interface Γ intersects some cells. Therefore the underlying
computing mesh is a shape regular mesh as shown in Figure 13 (a). Figures 13 (b) and (c) show
the subdivisions in subcells for two level of the mesh. Remind that the subcells in the XFEM
formulation are not finite element cells. They are only used to build the XFEM quadrature
formula. In particular, even if the subcells are close to be degenerated this does not effect the
quality of the mesh.

The numerical convergence results, shown in Table 1 for the case with blending cells with ramp
correction, show an optimal convergence rate. As expected for bilinear finite elements we observe
a quadratic and linear convergence in the L2 norm and energy norm respectively. Table 2 shows
the case without ramp correction for the blending cells. In this case, as expected, we observe a
reduction of the convergence rate. For comparison Table 3 shows the convergence rate for the
standard FEM. In this case we observe linear convergence in the L2 norm and convergence 1/2 in
the energy norm, as shown in [2], [21].

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 17

DoF ‖uh − u‖ Conv.rate ‖∇(uh − u)‖ Conv.rate
161 1.519e-02 - 7.007e-02 -
493 4.026e-03 1.92 3.870e-02 0.86

1621 9.980e-04 2.01 1.999e-02 0.95
5841 2.533e-04 1.98 1.003e-02 1.00

21969 6.311e-05 2.00 5.026e-03 1.00
84945 1.575e-05 2.00 2.519e-03 1.00

Table 1: Convergence rates of Problem 6.3 in L2 and energy norm with conform space Vh.

DoF ‖uh − u‖ Conv.rate ‖∇(uh − u)‖ Conv.rate
133 1.155e-02 - 1.002e-02 -
417 3.472e-03 1.73 4.222e-02 1.25

1469 8.671e-04 2.00 2.317e-02 0.87
5517 2.214e-04 1.97 1.176e-02 0.98

21293 5.894e-05 1.91 6.559e-03 0.84
83565 2.007e-05 1.55 3.986e-03 0.72

Table 2: Convergence rates of Problem 6.3 in L2 and energy norm with non-conform space Ṽh.

DoF ‖uh − u‖ Conv.rate ‖∇(uh − u)‖ Conv.rate
89 3.419e-02 - 1.565e-02 -

337 1.191e-02 1.52 9.942e-02 0.65
1313 3.230e-03 1.88 5.025e-02 0.98
5185 1.611e-03 1.00 3.681e-02 0.45

20609 9.070e-04 0.83 2.632e-02 0.48
82177 4.737e-04 0.94 1.873e-02 0.49

Table 3: Convergence rates of Problem 6.3 in L2 and energy norm with standard FE space V̂h.

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

18 T. Carraro and S. Wetterauer

(a) (b) (c)

Figure 13: (a) Computing mesh at the coarsest level. (b) Coarsest mesh with visualized subcells;
(c) Mesh at the second refinement level with visualized subcells.

6.2 Strong discontinuity

We consider the same domains as in the case of a weak discontinuity, Ω1 := {x ∈ R2 : ‖x‖2 < 0.5},
Ω2 := {x ∈ R2 : 0.5 < ‖x‖2 < 1} and Ω := {x ∈ R2 : ‖x‖2 < 1}. On these domains we define the
following problem:

Problem 6.4 (Strong discontinuity) Find the solution u

−∆u = 1 in Ωi, (38)
u = 0 on ∂Ω, (39)

∇u1 · n1 = u1 − u2 on Γ, (40)
∇u2 · n2 = −u1 + u2 on Γ. (41)

The exact solution of Problem 6.4 is the function us
ex

us
ex : Ω1 ∪Ω2 → R (42)

x 7→

 1
4 (2 − ‖x‖2) , x ∈ Ω1,
1
4 (1 − ‖x‖2) , x ∈ Ω2.

In Fig 14 a XFEM approximation of this problem is shown.

Problem 6.5 (Weak formulation of strong discontinuity) Find u ∈ H1
0(Ω1 ∪Ω2), so that

(∇u,∇ϕ)Ω − (u1 − u2, ϕ1)Γ − (−u1 + u2, ϕ2)Γ = (f , ϕ)Ω ∀ϕ ∈ H1
0(Ω1 ∪Ω2). (43)

Using the same notation as above the finite dimensional conform subspace of H1
0(Ω1∪Ω2) is given

by:

Vh := {ϕh ∈ H1
0(Ω1 ∪Ω2) :ϕh,K ∈ Q1 for K ∈ (Tstd ∪ Tbl),

ϕh,Ki ∈ Q1 for K ∈ Tcut,

ϕh ∈ C(Ω \ Γ)}.

The discretized problem is then given by:

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 19

Figure 14: Exact solution of Problem 6.5.

Problem 6.6 (Discrete formulation of strong discontinuity) Find uh ∈ Vh, so that

(∇uh,∇ϕh)Ω − (uh,1 − uh,2, ϕh,1)Γ − (−uh,1 + uh,2, ϕh,2)Γ = (f , ϕh)Ω ∀ϕh ∈ Vh. (44)

The results of the numerical convergence analysis is given in Table 4. Again, we observe the
optimal convergence (quadratic in the L2 norm and linear in the energy norm) in an unfitted
mesh.

DoF ‖uh − u‖ Conv.rate ‖∇(uh − u)‖ Conv.rate
133 1.663e-02 - 8.278e-02 -
417 4.503e-03 1.88 4.231e-02 0.97

1469 1.045e-03 2.11 2.155e-02 0.97
5517 2.875e-04 1.86 1.072e-02 1.01

21293 7.203e-05 2.00 5.364e-03 1.00
83565 1.803e-05 2.00 2.683e-03 1.00

Table 4: Convergence rates of Problem 6.6 in L2 and energy norm.

7 Conclusions and possible extension of the program

We have presented an implementation of the eXtended Finite Element Method (XFEM) in the FEM
library deal.II. The implementation is mainly based on the objects hp::DoFHandler and FE_Nothing.

As part of this work, we make available a code that can be used to solve interface problems using
the XFEM in two dimensions. The main parts of the implementation are

• the XFEM quadrature formula;
• the assembling routine that uses the extended part of the finite element formulation;
• the visualization routine for cut cells.

We have presented two prototypical examples to numerically approximate interface problems
with strong and weak discontinuities respectively. The numerical results show the expected
convergence rates. In case of a weak discontinuity also the blending effect (nonconformity) and
the resulting loss of convergence rate are shown. Furthermore, we present the implementation
of a known remedy to restore conformity.

We underly that a possible extension of this code is the implementation of a more efficient
quadrature rule. The implementation shown here can be straightforwardly extended to the three

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

20 T. Carraro and S. Wetterauer

dimensional case by defining the necessary cell subdivisions. In practice, this leads to a limited
efficiency of the quadrature formula. Therefore, the focus of our next work is on an efficient
quadrature rule for the three dimensional case.

An other extension of the program is the inclusion of extended shape functions for the approxi-
mation of crack propagation problems.

A Note on how to produce the numerical results

The source codes for two exemplary problems is included in the tar-file xfem.tar. Extracting this
file a folder xfem with two subfolders is produced: one subfolder for each problem. Note that the
XFEM functions in the file xfem_functions.cc and xfe_values.cc are the same for both programs.
The used deal.II version needs to be at least version 8.3. To produce the Makefile for the code one
needs to run the command cmake . in the folder strong respectively weak. If the environment
variable deal.II_DIR is not set, the path to the deal.II installation has to be passed as an argument
as follows: cmake . -DDEAL_II_DIR=/path/to/deal.II/directory. The program can then be
compiled with the command make that produces the executable file xfem in the same folder. To
run the program the command ./xfem can be used.
Both programs (weak and strong) will run performing several cycles of global mesh refinement.
The expected output for both programs can be found in the file results.dat that can be used for
verify the correct behavior of the programs.

Strong discontinuity

The program in the subfolder strong produces the results shown in the Table 4 of the Section 6.2.
The following output is produced:

Cycle 0:
Number of active cells: 80
Number of degrees of freedom: 133
L2 error = 0.0166268
energy error = 0.0827805

Cycle 1:
Number of active cells: 320
Number of degrees of freedom: 417
L2 error = 0.00450276
energy error = 0.0423088

Cycle 2:
Number of active cells: 1280
Number of degrees of freedom: 1469
L2 error = 0.00104475
energy error = 0.0215455

Cycle 3:
Number of active cells: 5120
Number of degrees of freedom: 5517
L2 error = 0.000287494
energy error = 0.0107175

Cycle 4:
Number of active cells: 20480
Number of degrees of freedom: 21293
L2 error = 7.20349e-05
energy error = 0.0053637

Cycle 5:
Number of active cells: 81920

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 21

Number of degrees of freedom: 83565
L2 error = 1.80274e-05
energy error = 0.00268312

L2 Energy
1.663e-02 - 8.278e-02 -
4.503e-03 1.88 4.231e-02 0.97
1.045e-03 2.11 2.155e-02 0.97
2.875e-04 1.86 1.072e-02 1.01
7.203e-05 2.00 5.364e-03 1.00
1.803e-05 2.00 2.683e-03 1.00

In the first part of the output information on the mesh and the errors in every refinement cycle
is shown. In the last part of the output a table containing the L2 and energy errors with the
corresponding convergence rates is reported. Furthermore a file for the visualization of the
solution is produced for every cycle in the vtk format.

Weak discontinuity

The program in the subfolder weak can be used to solve an interface problem with weak discon-
tinuities. There is an additional parameter file for the weak code, which contains the following
parameters:

set Using XFEM =true
set blending =true
set Number of Cycles =6
set q_points =3

Four different parameters can be adjusted. In the first line the XFEM is activated. Setting this
parameter to false the program will use the standard FEM with unfitted interface. With the
second parameter one can decide whether to use the ramp correction for the blending cells or not.
Remind that this parameter has no effect, if the XFEM is not used. The third and fourth parameter
set the number of refinement cycles and the number of quadrature points for each quadrature
formula.
This program produces the results shown in the Table 1 of the Section 6.1. Running it with the
parameter set as above, the following output is produced:

Cycle 0:
Number of active cells: 80
Number of degrees of freedom: 161
L2 error = 0.01519
energy error = 0.0700709

Cycle 1:
Number of active cells: 320
Number of degrees of freedom: 493
L2 error = 0.0040257
energy error = 0.0386981

Cycle 2:
Number of active cells: 1280
Number of degrees of freedom: 1621
L2 error = 0.00099799
energy error = 0.0199881

Cycle 3:
Number of active cells: 5120
Number of degrees of freedom: 5841

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

22 T. Carraro and S. Wetterauer

L2 error = 0.000253274
energy error = 0.0100287

Cycle 4:
Number of active cells: 20480
Number of degrees of freedom: 21969
L2 error = 6.31119e-05
energy error = 0.0050257

Cycle 5:
Number of active cells: 81920
Number of degrees of freedom: 84945
L2 error = 1.57511e-05
energy error = 0.00251584

L2 Energy
1.519e-02 - 7.007e-02 -
4.026e-03 1.92 3.870e-02 0.86
9.980e-04 2.01 1.999e-02 0.95
2.533e-04 1.98 1.003e-02 1.00
6.311e-05 2.00 5.026e-03 1.00
1.575e-05 2.00 2.516e-03 1.00

In the first part of the output information on the mesh and the errors in every cycle is shown.
In the last part of the output a table containing the L2 and energy errors with the corresponding
convergence rates is reported. Furthermore a file for the visualization of the solution is produced
for every cycle in the vtk format.

Acknowledgements

We are thankful to Wolfgang Bangerth (Texas A&M University) for helping with the initial
implementation of the XFEM classes. We acknowledge the work of Simon Dörsam (Heidelberg
University) for the visualization code for XFEM. T.C. was supported by the Deutsche Forschungs-
gemeinschaft (DFG) through the project “Multiscale modeling and numerical simulations of
Lithium ion battery electrodes using real microstructures (CA 633/2-1)”. S.W. was supported by
the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences.

References
[1] Y. Abdelaziz and A. Hamouine. A survey of the extended finite element. Computers &

Structures, 86(11–12):1141 – 1151, 2008.

[2] I. Babuška. The finite element method for elliptic equations with discontinuous coefficients.
Computing, 5(3):207–213, 1970.

[3] I. Babus̆ka and U. Banerjee. Stable generalized finite element method (sgfem). Computer
Methods in Applied Mechanics and Engineering, 201:91–111, 2012.

[4] I. Babus̆ka, U. Banerjee, and J. E. Osborn. Survey of meshless and generalized finite element
methods: A unified approach. Acta Numerica, 12:1–125, 5 2003.

[5] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.2. Archive of Numerical Software, 3, 2015.

[6] E. Béchet, N. Moës, and B. Wohlmuth. A stable lagrange multiplier space for stiff interface
conditions within the extended finite element method. International Journal for Numerical
Methods in Engineering, 78(8):931–954, 2009.

Archive of Numerical Software 4(2), 2016 © by the authors, 2016

On the implementation of XFEM for interface problems 23

[7] R. Becker, E. Burman, and P. Hansbo. A hierarchical nxfem for fictitious domain simulations.
International Journal for Numerical Methods in Engineering, 86(4-5):549–559, 2011.

[8] T. Belytschko. A Comment on the Article “A finite element method for simulation of strong
and weak discontinuities in solid mechanics” by A.Hansbo and P.Hansbo [Comput. Method
Appl. Mech. Engrg. 193 (2004) 3523-3540]. Comput. Methods Appl. Mech. Engrg., 195:1275–
1276, 2006.

[9] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An
overview and recent developments. Computer Methods in Applied Mechanics and Engineering,
139(1–4):3 – 47, 1996.

[10] J. Chesse, H. Wang, and T. Belytschko. On the construction of blending elements for local
partition of unity enriched finite elements. Int. J. Numer. Meth. Engng, 57:1015–1038, 2003.

[11] T. Fries. A corrected XFEM approximation without problems in blending elements. Int. J.
Numer. Meth. Engng, 75:503–532, 2008.

[12] T. B. R. Gracie and G. Ventura. A review of extended/generalized finite element methods for
material modeling. Modelling Simul. Mater. Sci. Eng., 17(4), 2009.

[13] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method,
for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191:5537–5552, 2002.

[14] A. R. Khoei. Extended Finite Element Method: Theory and Applications. John Wiley & Sons, Ltd.,
2015.

[15] J. Melenk and I. Babus̆ka. The partition of unity finite element method: Basic theory and
applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4):289 – 314, 1996.

[16] N. Moës, E. Béchet, and M. Tourbier. Imposing dirichlet boundary conditions in the extended
finite element method. International Journal for Numerical Methods in Engineering, 67(12):1641–
1669, 2006.

[17] N. Moës, J. Dolbow, and T. Belytschko. A Finite Element Method for Crack Growth without
Remeshing. Int. J. Numer. Meth. Engng., 46:131–150, 1999.

[18] S. Nicaise, Y. Renard, and E. Chahine. Optimal convergence analysis for the extended finite
element method. International Journal for Numerical Methods in Engineering, 86(4-5):528–548,
2011.

[19] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ.
Hamburg, 36(1):9–15, 1971.

[20] S. Osher and R. Fedkiw. Level Set Methods: An Overview and Some Recent Results. J.
Comput. Phys., 169:463–502, 2001.

[21] I. Ramière. Convergence analysis of the q1-finite element method for elliptic problems
with non-boundary-fitted meshes. International Journal for Numerical Methods in Engineering,
75(9):1007–1052, 2008.

[22] G. Strang. Variational crimes in the finite element method. In A. Aziz, editor, The Mathematical
Foundations of the Finite Element Method with Applications to Partial Differential Equations, pages
689 – 710. Academic Press, 1972.

[23] N. Sukumar, D. Chopp, N. Moës, and T. Belytschko. Modeling Holes and Inculsions by
Level Sets in the Extended Finite Element Method. Comput. Methods Appl. Mech. Engrg.,
190:6183–6200, 2001.

© by the authors, 2016 Archive of Numerical Software 4(2), 2016

	Introduction
	Interface problems
	Problem setting
	Level set method

	Extended finite elements
	Strong and weak discontinuity
	Blending effect

	A note on a priori error estimation
	Implementation in deal.II
	Quadrature formula
	Boundary and interface conditions
	Dirichlet and Neumann boundary conditions
	Robin interface conditions

	Numerical examples
	Weak discontinuity
	Strong discontinuity

	Conclusions and possible extension of the program
	Note on how to produce the numerical results

