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Abstract: In this document we present higher order Discontinuous Galerkin discretization of a
two-phase flow model describing subsurface flow in strongly heterogeneous porous media. The
flow in the domain is immiscible and incompressible with no mass transfer between phases. We
consider a fully implicit, locally conservative, higher order discretization on adaptively generated
meshes. The implementation is based on the open-source PDE software framework Dune.

1 Introduction

Simulation of multi-phase flows and transport processes in porous media requires careful nu-
merical treatment due to the strong heterogeneity of the underlying porous medium. The spatial
discretization requires locally conservative methods in order to be able to follow small concentra-
tions [6]. Discontinuous Galerkin (DG), Finite Volume and Mixed Finite Element, are examples
of discretization methods which achieve local conservation at the element level [13]. The first
DG method was originally developed for solving the neutron transport problem [19]. Since then,
numerous DG methods have been developed for hyperbolic problems, the Bassi and Rebay [5]
method and the Local Discontinuous Galerkin (LDG) method introduced in [11] are some ex-
amples among others. Independently of the development of the DG methods for hyperbolic
equations, Interior Penalty (IP) Discontinuous Galerkin methods for elliptic and parabolic equa-
tions were introduced in [2], [4], [14], [23]. DG methods present attractive features such as an
inherent local and global conservation, a high-order accuracy, a high parallel efficiency and a
geometric flexibility (unstructured meshes and non-conforming grids) allowing an easier local
hp-adaptivity. Furthermore, the ability of DG methods to treat rough coefficient problems and
capture discontinuities in solutions allows them to be suitable candidates for the discretization of
PDE’s arising in Environmental Engineering.

Application of DG methods to incompressible two-phase flow started with [7], [18], [21]. The
initial approach consisted in a decoupled formulation where first a pressure equation is solved
implicitly and then the saturation is advanced by an explicit time stepping scheme (Implicit
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Pressure Explicit Saturation). Upwinding, slope limiting techniques, and sometimes H(div) pro-
jection were required in order to remove unphysical oscillations and to ensure convergence.
More recently, Bastian [8] presented a fully coupled symmetric interior penalty DG formulation
for incompressible two-phase flow based on a formulation using a wetting-phase potential/cap-
illary potential formulation. Discontinuity in capillary pressure functions is taken into account
by incorporating the interface conditions into the penalty terms for the capillary potential. Het-
erogeneity in absolute permeability is treated by weighted averages. A higher-order diagonally
implicit Runge-Kutta method in time is used and there is no post processing of the velocity or
slope limiting. The author did not use any kind of adaptivity and only piecewise linear and
piecewise quadratic functions are employed.

In this work, we implement and evaluate numerically Interior Penalty DG methods for 2d and
3d incompressible, immiscible, two-phase flow. We consider a strongly heterogeneous porous
medium and discontinuous capillary pressure functions. We write the system in terms of a
phase-pressure/phase-saturation formulation. Adams-Moulton schemes of first and second or-
der in time are combined with various Interior Penalty DG discretizations in space such as the
Symmetric Interior Penalty Galerkin (SIPG), the Nonsymmetric Interior Penalty Galerkin (NIPG)
and the Incomplete Interior Penalty Galerkin (IIPG) [3]. This implicit space time discretization
leads to a fully coupled nonlinear system requiring to build a Jacobian matrix at each time step
for the Newton-Raphson method. We include in our implementation local mesh adaptivity on
non-conforming grids. To our knowledge, this is the first time the concept of local h-adaptivity is
incorporated in the DG discretization of a 3d two-phase flow with strong heterogeneity, discon-
tinuous capillary pressure functions and gravity effects. The milestone contribution of Klieber
& Rivière [18] restrained itself to a decoupled formulation with continuous capillary pressure
functions and only 2d flow on non-conforming simplicials grids were considered. We use higher
order polynomial degree up to piecewise cubics.

The rest of this document is organised as follows. In the next section, we describe the two-phase
flow model. The DG discretization is introduced in section 3. The adaptive strategy in space is
outlined in section 4. The implementation with Dune-Fem is described in section 5. Numerical
examples are provided in section 6. Finally concluding remarks are provided in the last section.

2 Problem Setting

This section introduces the mathematical formulation of a two-phase Darcy problem modeling
porous-media flow. The flow is immiscible and incompressible with no mass transfer between
phases.

2.1 Two-phase flow model

We consider an open and bounded domain Ω ∈ Rd, d ∈ {1, 2, 3} and the time interval J = (0,T),
T > 0. The flow of the wetting-phase and the nonwetting-phase is described by the Darcy’s law
and the continuity equation for each phase, namely,

vα = −λαK(∇pα − ραg), (2.1)

φ
∂ραsα
∂t

+ ∇ · (ραvα) = ραqα, (2.2)∑
α

sα = 1, (2.3)

pn − pw = pc(sw,e). (2.4)

Here, we search for the phase pressures pα and the phase saturations sα, α ∈ {w,n}. We denote with
subscript w the wetting-phase and with subscript n the nonwetting-phase. K is the permeability
of the porous medium, ρα is the phase density, qα is a source/sink term and g is the constant
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gravitational vector. We assume the porosity φ is time independent and uniformly bounded from
above and below; that is there exist φ1, φ2 > 0 such that:

0 < φ1 ≤ φ ≤ φ2.

Phase mobilities λα are defined by

λα =
krα

µα
, α ∈ {w,n}, (2.5)

where µα is the phase viscosity and krα is the relative permeability of phase α. The relative
permeabilities are functions that depend nonlinearly on the phase saturation (i.e. krα = krα(sα)).
Models for the relative permeability are the van-Genuchten model [22] and the Brooks-Corey
model [10]. For example, in the Brooks-Corey model,

krw(sw,e) = s
2+3θ
θ

w,e , krn(sn,e) = (sn,e)2(1 − (1 − sn,e)
2+θ
θ ), (2.6)

where the effective saturation sα,e is

sα,e =
sα − sα,r

1 − sw,r − sn,r
, ∀α ∈ {w,n}. (2.7)

Here, sα,r, α ∈ {w,n} are the phase residual saturations. The parameter θ ∈ [0.2, 3.0] is a result of
the inhomogeneity of the medium. A highly heterogeneous porous medium is characterized by
a large θ.

The capillary pressure pc = pc(sw,e) is a function of the phase saturation. For the Brooks-Corey
formulation,

pc(s) = pds−1/θ
w,e . (2.8)

Here, pd ≥ 0 is the constant entry pressure, needed to displace the fluid from the largest pore.

2.1.1 Wetting-phase-pressure/nonwetting-phase-saturation formulation From the con-
stitutive relations (2.3) and (2.4), we can rewrite the two-phase flow problem as a system of two
equations with two unknowns pw and sn,

−∇ · (λtK∇pw + λnK∇pc − (ρwλw + ρnλn)Kg) = qw + qn,

φ
∂sn

∂t
− ∇ · (λnK(∇pw − ρng)) − ∇ · (λnK∇pc) = qn.

(2.9)

Here, λt = λw + λn denotes the total mobility. The first equation of (2.9) is of elliptic type with
respect to the pressure pw. The type of the second equation of (2.9) is either nonlinear hyperbolic
if ∂pc(sn)

∂sn
≡ 0 or degenerate parabolic if the capillary pressure is not neglected. The diffusion term

might degenerate if λn(sn = 0) = 0.

2.1.2 Boundary properties In order to have a complete system we add appropriate boundary
and initial conditions. Thus, we assume that the boundary of the system is divided into disjoint
open sets ∂Ω = Γ̄D ∪ Γ̄N. We denote by n the outward normal to ∂Ω.

sn(x, 0) = s0
n(x), pw(x, 0) = p0

w(x) ∀x ∈ Ω, (2.10)
pw(x, t) = pwD (x, t), sn(x, t) = snD (x, t) ∀x ∈ ΓD, (2.11)

vα · n = Jα(x, t), Jt =
∑
α∈{w,n}

Jα ∀x ∈ ΓN. (2.12)

Here, Jα, α ∈ {w,n} is the inflow. In order to make pw uniquely determined the Dirichlet boundary
ΓD should be of positive measure.
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3 Discretization

Let Th = {E} be a family of non-degenerate, quasi-uniform, possibly non-conforming partitions
of Ω consisting of Nh elements (quadrilaterals or triangles in 2d, tetrahedrons or hexahedrons
in 3d) of maximum diameter h. Let Γh be the union of the open sets that coincide with internal
interfaces of elements of Th. Dirichlet and Neumann boundary interfaces are collected in the set
Γh

D and Γh
N. Let e denote an interface in Γh shared by two elements E− and E+ of Th; we associate

with e a unit normal vector ne directed from E− to E+. We also denote by |e| the measure of e. The
discontinuous finite element space is Dr(Th) = {v ∈ L2(Ω) : v|E ∈ Pr(E) ∀E ∈ Th}, where Pr(E)
denotes Qr (resp. Pr) the space of polynomial functions of degree at most r ≥ 1 on E (resp. the
space of polynomial functions of total degree r ≥ 1 on E). We approximate the pressure and the
saturation by discontinuous polynomials of total degrees rp and rs respectively.
For any function q ∈ Dr(Th), we define the jump operator ~·� and the average operator {·} over
the interface e:

∀e ∈ Γh, ~q� := qE− − qE+
, {q} := 1

2 qE− + 1
2 qE+

,

∀e ∈ ∂Ω, ~q� := qE− , {q} := qE− .
In order to treat the strong heterogeneity of the permeability tensor, we follow [16] and introduce
a weighted average operator {·}ω:

∀e ∈ Γh, {q}ω = ωE−qE− + ωE+
qE+

,

∀e ∈ ∂Ω, {q}ω = qE− .

The weights are ωE− =
δE+

K

δE+
K +δE−

K
, ωE+

=
δE−

K

δE+
K +δE−

K
with δE−

K = nT
e KE−ne and δE+

K = nT
e KE+

ne. Here, KE−

and KE+
are the permeability tensors for the elements E− and E+.

3.1 Semi discretization in space

The derivation of the semi-discrete DG formulation is standard (see [8], [16], [18]). First, we
multiply each equation of (2.9) by a test function and integrate over each element, then we apply
Green formula to obtain the semi-discrete weak DG formulation. Hence, the aforementioned
formulation consists in finding the continuous in time approximations pw,h(·, t) ∈ Drp (Th), sn,h(·, t) ∈
Drs (Th) such that:

Bh(pw,h, ϕ; sn,h) = lh(ϕ) ∀ϕ ∈ Drp (Th), ∀t ∈ J , (3.1)
(Φ∂tsn,h, ψ) + ch(pw,h, ψ; sn,h) + dh(sn,h, ψ) = rh(ψ) ∀ψ ∈ Drs (Th), ∀t ∈ J . (3.2)

The bilinear form Bh in the total fluid conservation equation (3.1) is expressed as:

Bh(pw,h, ϕ; sn,h) = Bbulk,h +Bcons,h +Bsym,h +Bstab,h. (3.3)

The first term Bbulk,h of (3.3) is the volume contribution:

Bbulk,h := Bbulk,h(pw,h, ϕ; sn,h) =
∑
E∈Th

∫
E
(λtK∇pw,h + λnK∇pc,h − (ρnλn + ρwλw)Kg) · ∇ϕ. (3.4)

The second term Bcons,h, is the consistency term:

Bcons,h := Bcons,h(pw,h, ϕ; sn,h) = −
∑

e∈Γh∪Γh
D

∫
e
{λtK∇pw,h}ω~ϕ�

−

∑
e∈Γh∪Γh

D

∫
e
{λnK∇pc,h}ω~ϕ�

+
∑

e∈Γh∪Γh
D

∫
e
{(ρnλn + ρwλw)Kg)}ω~ϕ�.

(3.5)
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The third term Bsym,h, is the symmetry term. Depending on the choice of ε we get different DG
methods (ε = −1 SIPG, ε = 1 NIPG, ε = 0 IIPG):

Bsym,h := Bsym,h(pw,h, ϕ; sn,h) =ε
∑

e∈Γh∪Γh
D

∫
e
{λtK∇ϕ}ω · ne~pw,h�

+ ε
∑

e∈Γh∪Γh
D

∫
e
{λnK∇ϕ}ω · ne~sn,h�.

(3.6)

The last term Bstab,h is the stability term:

Bstab,h := Bstab,h(pw,h, ϕ) =
∑

e∈Γh∪Γh
D

γp
e

∫
e
~pw,h�~ϕ�. (3.7)

The right hand side of the total fluid conservation equation (3.1) is a linear form including the
Neumann and Dirichlet boundary conditions and the source terms.

lh(ϕ) =

∫
Ω

(qw + qn)ϕ −
∑
e∈ΓN

∫
e

Jtϕ + ε
∑
e∈Γh

D

∫
e
λtK∇ϕ · nepD

+ ε
∑
e∈Γh

D

∫
e
λnK∇ϕ · nesD + lstab, ∀ϕ ∈ Drp (Th).

(3.8)

Here, lstab(ϕ) is the stability term for the linear form:

lstab(ϕ) =
∑
e∈Γh

D

γp
e

∫
e
pDϕ. (3.9)

Equation (3.2) is the discrete weak formulation of the nonwetting-phase conservation equation
where the convection term−∇· (λnK(∇pw−ρng)) might be approximated by an upwind discretiza-
tion technique.

ch(pw,h, ψ; sn,h) =
∑
E∈Th

∫
E
(Kλn(∇pw,h − ρng)) · ∇ψ −

∑
e∈Γh∪Γh

D

∫
e
{Kλ#

n∇pw,h}ω · ne~ψ�

+
∑

e∈Γh∪Γh
D

∫
e
{ρnKλ#

ng}ω · ne~ψ� + ε
∑

e∈Γh∪Γh
D

∫
e
{Kλ#

n∇ψ}ω · ne~pw,h�,
(3.10)

where λ#
n = (1 − %)λn,E + %λ↑n and λ↑n is the upwind mobility:

∀e ∈ ∂E− ∩ ∂E+, λ
↑

n =

λn,E− if − K(∇pw + ∇pc − ρng) · n ≥ 0,
λn,E+

else.

Hence depending on the value of % ∈ {0, 1}, we might use central differencing or upwinding of
the mobility for internal interfaces.
The diffusion term −∇ · (λnK∇pc) is discretized by a bilinear form similar to that of (3.3).

dh(sn,h, ψ) =
∑
E∈Th

∫
E
λnK∇pc,h · ∇ψ −

∑
e∈Γh∪Γh

D

∫
e
{λnK∇pc,h}ω · ne~ψ�

+ ε
∑

e∈Γh∪Γh
D

∫
e
{λnK∇ψ}ω · ne~sn,h� +

∑
e∈Γh∪Γh

D

γs
e

∫
e
~sn,h�~ψ�.

(3.11)

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



134 Birane Kane

The right hand side rh includes the Neumann and Dirichlet boundary condition and the nonwet-
ting source term.

rh(ψ) =

∫
Ω

qnψ −
∑
e∈ΓN

∫
e

Jnψ + ε
∑
e∈Γh

D

∫
e
λnK∇ψ · nepD

+ ε
∑
e∈Γh

D

∫
e
λnK∇ψ · nepc(sD) +

∑
e∈Γh

D

γs
e

∫
e
sDψ, ∀ψ ∈ Drs (Th).

(3.12)

Remark 3.1 The penalty terms γp
e and γs

e are discrete positive functions that take constant values on the
interfaces. In order to ensure stability and convergence of the DG method, γp

e and γs
e must be chosen

properly. This choice is especially crucial for strongly heterogeneous problems where parameters such as
permeability, porosity, entry pressures can vary strongly, hence triggering a strong effect on the solution
behavior. Following [8], we use in this work, unless specified otherwise, the penalty formulation as below.

γp
e = Cp

rp(rp + d − 1) | e |
min(| E− |, | E+ |)

, Cp ≥ 0 (3.13)

and

γs
e = Cs

rs(rs + d − 1) | e |
min(| E− |, | E+ |)

, Cs ≥ 0. (3.14)

In the context of higher order discretization of large scale complex multiphase flow, the choice of
proper basis functions is decisive for the computational efficiency and accuracy of the solver. In
the sequel, we present the families of modal and nodal basis functions.

3.1.1 Modal basis The modal basis functions are sets of orthogonal polynomials w.r.t an
appropriate inner product. They are also designed to have desirable properties such as hierachism,
that is to say the basis for a given polynomial degree r includes the bases for polynomials degrees
less than r. The use of hierarchical basis is essential for the prospect of higher order methods and
local polynomial order adaptivity. The approximate solution sE

h (x, t) on each element E can be
expressed as:

sE
h (x, t) =

Nloc∑
j=1

ŝE
j (t)ψ j(x), ∀E ∈ Th, (3.15)

where the term {ŝ j(t)} j=1,...,Nloc denotes the time dependent modal dofs andψ j(x) is a d-dimensional
polynomial basis. In the case of piecewise polynomials of total degree at most r, the local
dimension Nloc is:

Nloc = #Pr =
(r + d)!

r!d!
. (3.16)

In the case of piecewise polynomial of degree at most r in each variable the local dimension is:

Nloc = #Qr = (r + 1)d. (3.17)

A classical choice to generate modal basis functions ψ j(x) is to choose:

ψ j(x) = P j+1(x) − P j(x), j = 1, ...,Nloc. (3.18)

where P j is the Legendre polynomial of degree j. It is also possible to use a Gramm-Schmidt
procedure with the usual inner product to build an orthonormal basis from an initial monomial
basis (see, e.g. [20]).
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3.1.2 Nodal basis The nodal approach is based on Lagrange polynomials with roots at a set
of nodal points. Therefore, the local approximation is:

sE
h (x, t) =

Nloc∑
i=1

s̃E(xi, t)lEi (x), (3.19)

where lEi (x) is the d-dimensional Lagrange polynomial based on the nodal set {xi}i=1,...,Nloc .

Following Heasthaven [17], it is possible to switch from modal to nodal and vice-versa.

s̃ = Vŝ, V>l(x) = ψ(x), Vi, j = ψ j(xi), (3.20)

where V is the Vandermonde matrix containing the evaluation of modal polynomials at the inter-
polation points. This transformation allows to evaluate efficiently higher dimensional Lagrange
polynomials li(x).

3.2 Fully coupled/Fully implicit DG scheme

The time interval [0,T] is divided into N intervals ∆ti = ti+1− ti as 0 = t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tN = T.
Let pi

w and si
n be the numerical solutions at time ti. We also denote λi

α = λα(si
n), pi

c = pc(si
n). The

approximation s0
n,h is chosen as the L2 projection of the saturation sn(0). For the sake of simplicity

and easier reading, we apply a first order Adams-Moulton (Backward Euler) time discretization
and Interior Penalty DG for space discretization to the semi-discrete system (3.1) - (3.2):

Bh(pi+1
w,h, ϕ; si+1

n,h ) = lh(ϕ), ∀ϕ ∈ Drp (Th), (3.21)

(Φ
si+1

n,h − si
n,h

∆t
, ψ) + ch(pi+1

w,h, ψ; si+1
n,h ) + dh(si+1

n,h , ψ) = rh(ψ), ∀ψ ∈ Drs (Th), (3.22)

(s0
n,h, ζ) = (s0

n, ζ), ∀ζ ∈ Drs (Th). (3.23)

(3.21)-(3.23) leads to a large, nonlinear system of algebraic equations written in the form:

G(p̄i+1
w,h, s̄

i+1
n,h ) =

Grp (p̄i+1
w,h, s̄

i+1
n,h )

Grs (p̄i+1
w,h, s̄

i+1
n,h )

 = 0, (3.24)

where p̄i+1
w,h = (pE)E and s̄i+1

w,h = (sE)E are vectors of unknowns for pi+1
w,h and si+1

n,h .
The system is solved by using a Newton-Raphson method.

JG(p̄i+1,r
w , s̄i+1,r

n )δr+1 = −G(p̄i+1,r
w , s̄i+1,r

n ), (3.25)

(p̄i+1,r+1
w , s̄i+1,r+1

n ) = δr+1 + (p̄i+1,r
w , s̄i+1,r

n ). (3.26)

Here, r denotes the rth Newton iterate and for a coupled system such as (3.25), the Jacobian JG is:

JG =

Jpp Jps

Jsp Jss

 =


∂Grp

∂p
∂Grp

∂s

∂Grs

∂p
∂Grs

∂s

 .
4 Adaptivity strategy

For the considered DG discretization of porous media two-phase flow problem, derivation of
error estimates based on rigorous a-posteriori error estimates is out of the scope of this paper.
Hence, we use heuristic indicators which depend on the local gradient of the nonwetting-phase-
saturation sn measured in the L2 norm. We define on each element E of the mesh, the indicator
ηi

E at time step i, such that:

ηi
E = ‖∇si

n‖L2(E), ∀E ∈ Th. (4.1)

Each element whose indicator ηi
E is greater than a treshold value ηTol ≥ 0 is refined.
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5 Implementation using Dune-Fem

This section is dedicated to an overview of the implementation of the DG two-phase flow simulator
based on Dune-Fem. For a more in-depth description of the Dune-Fem interface, we refer to [12].

5.1 Library requirements

Dune-twophaseDG needs the Dune core modules Dune-Common, Dune-Grid, Dune-Localfunctions,
Dune-Istl at version 2.3 (or later) and the Dune-Fem module at version 1.4 (or later). For per-
forming h-adaptivity, one has to use adaptive grids such as Alugrid_Cube or Alugrid_Simplex
from the library Dune-Alugrid, non-adaptive grids such as YaspGrid or SGrid do not provide
local adaptivity.

5.2 Structure and code description

We describe the structure of the directory of Dune-twophaseDG in terms of subdirectories, header
files and executable files. The following subdirectories are within the module:

• CMake: configuration options for building the module while using Cmake.

• doc: doxygen documentation.

• dune: header files.

• src: source files for the numerical examples.

5.2.1 The directory dune The directory dune contains different subdirectories:

• algorithm: contains the header files algorithm.hh, femscheme.hh, phaseflowscheme.hh,
probleminterface.hh and temporalprobleminterface.hh.

• estimator: contains the header file estimator.hh providing a heuristic estimator for the
numerical solution.

• models: contains the header file phaseflowmodel.hh.

• operator: contains the header filesoperator.hhproviding the classes which build the discrete
stiffness matrix and the right hand side. The header file newtoninvop.hh provides the
Newton inverse operator.

5.2.2 The directory examples The directory examples contains the lenspb folder holding the
infiltration problem header files lenspbbndmodel.hh, lenspbinitialdata.hh, lenspbmodel.hh
and lenspbphysicalparmodel.hh.

5.2.3 The directory src The src directory contains the source files for the different numerical
modules:

• 3dlens: 3d infiltration problem with gravity forces and capillarity effects,

• 2dlens: 2d infiltration problem with gravity forces and capillarity effects.

In each test, we have a source file for the main program (i.e. 3dlens.cc, 2dlens.cc).
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5.3 Features of the implementation

The implementation of the discrete formulation (3.21)-(3.23) is realized in a similar fashion as
most of the tutorial examples from the Dune-Fem-howto. Starting from the included heat DG
problem, we extend it to a system of two equations and two unknowns and we add the non-
linear formulation. First, we describe the PDE by a class phaseflowmodel, which serve as an
interface for general test cases. This is also the interface used to implement the operator. In
the phaseflowmodel (see Code 1), the methods wetting_Pressure_DiffusiveFlux() for the
wetting pressure flux, capillary_Pressure_DiffusiveFlux() for the capillary pressure flux
and gravity_Flux() for the gravity flux will return the terms multiplied with ∇v. The source()
method will return the parts of the operator multiplied with v. In order to handle the non-
linearity, we also add the methods linSource() (resp. linWetting_Pressure_DiffusiveFlux(),
linCapillary_Pressure_DiffusiveFlux() and linGravity_Flux()) returning the linearization
of the source term (resp. flux terms). The DNAPL infiltration test case has its own model
lenspbmodelwhich derives from the phaseflowmodel. The initial and boundary data are specified
respectively in lenspbinitialdata.hh and lenspbbndmodel.hh. The lenspbphysicalparmodel
class specifies the different physical properties of the lens problem such as the mobility and the
capillary pressure function formulations.

1 template < c l a s s FunctionSpace , c l a s s GridPart , c l a s s PhysParModel >
2 s t r u c t PhaseFlowModel
3 {
4 template < c l a s s Ent i ty , c l a s s Point >
5 void source ( const E n t i t y &e n t i t y ,
6 const Point &x ,
7 const RangeType &value ,
8 RangeType &f l u x ) const ;
9

10 template < c l a s s Ent i ty , c l a s s Point >
11 void l inSource ( const RangeType& valueUn ,
12 const E n t i t y &e n t i t y ,
13 const Point &x ,
14 const RangeType &value ,
15 RangeType &f l u x ) const ;
16

17

18 / / ! re turn the wetting pressure f l u x
19 template < c l a s s Ent i ty , c l a s s Point >
20 void wet t ing_Pressure_Di f fus iveF lux ( const E n t i t y &e n t i t y ,
21 const Point &x ,
22 const RangeType &value ,
23 const JacobianRangeType &gradient ,
24 JacobianRangeType &flux ,
25 const double lambda_n_upw=1 ,
26 const bool &useupw= f a l s e ,
27 const bool &buildRhs= f a l s e ) const ;
28

29 / / ! re turn the l i n e a r i z e d wetting pressure f l u x
30 template < c l a s s Ent i ty , c l a s s Point >
31 void l inWet t ing_Pressure_Di f fus iveF lux ( const RangeType &valueUn ,
32 const JacobianRangeType &gradientUn ,
33 const E n t i t y &e n t i t y ,
34 const Point &x ,
35 const RangeType &value ,
36 const JacobianRangeType &gradient ,
37 JacobianRangeType &flux ,
38 const double lambda_n_upw = 1 ,
39 const double gradnonwetmob_upw = 1 ,
40 const bool useupw= f a l s e ) const ;
41 }

Code 1: Excerpt from phaseflowmodel.hh.

The assembly process of the operator and the right hand side is done in the file operator.hh.
The class FlowOperator is derived from the Dune::Operator class. This is why we need
to override the operator() method. In order to build the jacobian, we introduce a class
DifferentiableFlowOperator (see Code 2) which derives from the FlowOperator and from
the interface class DifferentiableOperator:
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1 template < c l a s s JacobianOperator , c l a s s Model >
2 s t r u c t Di f ferent iab leF lowOperator
3 : publ ic FlowOperator< typename JacobianOperator : : DomainFunctionType , Model > ,
4 publ ic Dune : : Fem : : D i f f e r e n t i a b l e O p e r a t o r < JacobianOperator >

Code 2: DifferentiableFlowOperator.

In order to build the operator, we iterate over the intersections of the elements. For each in-
tersection, we evaluate the local functions on the elements on both sides of the intersection
by using a FaceQuadratureType::INSIDE for the element and FaceQuadratureType::OUTSIDE
for the neighboring element. Code 3 shows the assembly process of the operator where the
method volumetricPart() (line 24) computes the local contribution from each element and
internal_Bnd_terms() (line 34) computes local contribution from interfaces and boundaries.

1 template < c l a s s DiscreteFunct ion , c l a s s Model >
2 void FlowOperator< DiscreteFunct ion , Model >
3 : : operator ( ) ( const DiscreteFunctionType &u , DiscreteFunctionType &w ) const
4 {
5 / / c l e a r d e s t i n a t i o n
6 w. c l e a r ( ) ;
7 / / get d i s c r e t e funct ion space
8 const DiscreteFunctionSpaceType &dfSpace = w. space ( ) ;
9

10 / / i t e r a t e over grid
11 const I t e r a t o r T y p e end = dfSpace . end ( ) ;
12 f o r ( I t e r a t o r T y p e i t = dfSpace . begin ( ) ; i t != end ; ++ i t )
13 {
14 / / get e n t i t y ( here element )
15 const EntityType &e n t i t y = ∗ i t ;
16 / / get elements geometry
17 const GeometryType &geometry = e n t i t y . geometry ( ) ;
18 / / get l o c a l r e p r e s e n t a t i o n of the d i s c r e t e f u n c t i o n s
19 const LocalFunctionType uLocal = u . l o c a l F u n c t i o n ( e n t i t y ) ;
20 LocalFunctionType wLocal = w. l o c a l F u n c t i o n ( e n t i t y ) ;
21 / / obta in quadrature order
22 const i n t quadOrder = uLocal . order ( ) + wLocal . order ( ) ;
23 / / Computing l o c a l c o n t r i b u t i o n from elements
24 volumetr icPar t ( e n t i t y , quadOrder , geometry , uLocal , wLocal ) ;
25

26 i f ( ! dfSpace . continuous ( ) )
27 {
28 const I n t e r s e c t i o n I t e r a t o r T y p e i i t e n d = dfSpace . gr idPar t ( ) . iend ( e n t i t y ) ;
29 / / looping over i n t e r s e c t i o n s
30 f o r ( I n t e r s e c t i o n I t e r a t o r T y p e i i t = dfSpace . gr idPar t ( ) . ibeg in ( e n t i t y ) ; i i t != i i t e n d ; ++ i i t

)
31 {
32 const I n t e rs e c t i o n T yp e &i n t e r s e c t i o n = ∗ i i t ;
33 / / Computing l o c a l c o n t r i b u t i o n from i n t e r f a c e s and boundaries
34 internal_Bnd_terms ( e n t i t y , quadOrder , geometry , i n t e r s e c t i o n , dfSpace , uLocal , u , wLocal ) ;
35 }
36 }
37 }
38 / / communicate data ( in p a r a l l e l runs )
39 w. communicate ( ) ;
40 }

Code 3: Operator building.

The selection of the type of discrete function space is done in the femscheme class. The discrete
function space depends on the GridPartType and the FunctionSpace (see Code 4). It allows
to choose the polynomial order by setting the parameter POLORDER, hence permitting the use of
higher order polynomials without any further changes in the code. For the sake of simplicity and
usability, the code only supports the case rp = rs = POLORDER.

1 / / ! choose type of d i s c r e t e funct ion space and the polynomial order POLORDER
2 # i f USE_LAG_DG
3 typedef Dune : : Fem : : LagrangeDiscontinuousGalerkinSpace < FunctionSpaceType , GridPartType , POLORDER

> DiscreteFunctionSpaceType ;
4 # e l s e
5 typedef Dune : : Fem : : DiscontinuousGalerkinSpace < FunctionSpaceType , GridPartType , POLORDER >

DiscreteFunctionSpaceType ;
6 # endi f

Code 4: Type of discrete function space and polynomial order.
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In order to achieve an adaptive scheme, we implement an estimator class which supports a
method mark() (see Code 5) to mark the elements for the next refinement step. Our marking
strategy consist in looping over the mesh and selecting for refinement all elements where the L2

norm of the saturation gradient is larger than a certain tolerance ηTol. The value of the ηTol can be
specified in the parameter file with the variable phaseflow.tolerance.

1 / / ! mark a l l elements due to given t o l e r a n c e
2 bool mark ( const double t o l e r a n c e ) const
3 {
4 i n t marked = 0 ;
5 / / loop over a l l elements
6 const I t e r a t o r T y p e end = dfSpace_ . end ( ) ;
7 f o r ( I t e r a t o r T y p e i t = dfSpace_ . begin ( ) ; i t != end ; ++ i t )
8 {
9 const ElementType &e n t i t y = ∗ i t ;

10

11

12 const Dune : : ReferenceElement < double , dimension > &refElement
13 = Dune : : ReferenceElements < double , dimension > : : genera l ( e n t i t y . type ( ) ) ;
14 RangeType val ;
15 / / evaluate the phase f i e l d a t the barycentre ( note
16 / / refElement . p o s i t i o n ( 0 , 0 ) i s the barycentre in l o c a l coordinates )
17 double markVal ;
18 JacobianRangeType grad ;
19 uh_ . l o c a l F u n c t i o n ( e n t i t y ) . j a c o b i a n ( refElement . p o s i t i o n ( 0 , 0 ) , grad ) ;
20 markVal = grad [ 1 ] . two_norm ( ) ;
21

22

23 i f ( markVal > t o l e r a n c e )
24 {
25 / / make sure grid i s not overly r e f i n e d . . .
26 / / maxLevel_ i s the maximum l e v e l of ref inement allowed
27 i f ( e n t i t y . l e v e l ( ) < maxLevel_ )
28 {
29 / / mark e n t i t y f o r ref inement
30 grid_ . mark ( 1 , e n t i t y ) ;
31 / / grid was marked
32 marked = 1 ;
33 }
34 }
35 e l s e
36 {
37 / / mark f o r coarsening
38 grid_ . mark ( −1 , e n t i t y ) ;
39 }
40 }
41 / / get g loba l max
42 marked = grid_ .comm( ) . max( marked ) ;
43 re turn bool ( marked ) ;
44 }

Code 5: Excerpt from estimator.hh.

In the main function (see Code 6), we first initialize MPI, then read the parameters and construct
the grid based on the grid implementation provided in CMakeLists.txt. After initializing the
grid, we get an instance of the class Algorithm containing the algorithm (line 26). After that, the
function compute is executed in line 30.

1 i n t main ( i n t argc , char ∗ ∗ argv )
2 t r y
3 {
4 / / i n i t i a l i z e MPI , i f necessary
5 Dune : : Fem : : MPIManager : : i n i t i a l i z e ( argc , argv ) ;
6 / / append overloaded parameters from the command l i n e
7 Dune : : Fem : : Parameter : : append ( argc , argv ) ;
8 / / append p o s s i b l e given parameter f i l e s
9 f o r ( i n t i = 1 ; i < argc ; ++ i )

10 Dune : : Fem : : Parameter : : append ( argv [ i ] ) ;
11 / / append d e f a u l t parameter f i l e
12 Dune : : Fem : : Parameter : : append ( " . . / data / parameter " ) ;
13 / / type of h i e r a r c h i c a l gr id
14 typedef Dune : : G r i d S e l e c t o r : : GridType HGridType ;
15 typedef Algorithm< HGridType > AlgorithmType ;
16 / / c r e a t e grid from DGF f i l e
17 const std : : s t r i n g gridkey = Dune : : Fem : : I O I n t e r f a c e : : defaultGridKey ( HGridType : : dimension ) ;
18 const std : : s t r i n g g r i d f i l e = Dune : : Fem : : Parameter : : getValue< std : : s t r i n g >( gridkey ) ;
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19 / / the method rank and s i z e from MPIManager are s t a t i c
20 i f ( Dune : : Fem : : MPIManager : : rank ( ) == 0 )
21 std : : cout << " Loading macro grid : " << g r i d f i l e << std : : endl ;
22 / / c o n s t r u c t macro using the DGF Parser
23 Dune : : GridPtr < HGridType > g r i d P t r ( g r i d f i l e ) ;
24 HGridType& grid = ∗ g r i d P t r ;
25

26 AlgorithmType myalgorithm ( grid ) ;
27 / / Compute algorithm
28 Dune : : Timer computetimer ;
29 / / Compute the algorithm
30 myalgorithm . compute ( ) ;
31 const double compuTime = computetimer . elapsed ( ) ;
32

33 . . .
34

35 re turn 0 ;
36 }

Code 6: main function of 2dlens.cc.

In the compute() method of the class Algorithm (Code 7), we initialize two model instances
which are passed on to the Scheme class. Here, two elliptic operators are constructed and used
to evolve the solution from one time level to the next. The TimeProvider class is used to handle
time dependency.

1 / / c r e a t e time provider
2 Dune : : Fem : : GridTimeProvider< HGridType > t imeProvider ( grid_ ) ;
3 / / we want to solve the problem on the l e a f elements of the grid
4 GridPartType gr idPar t ( gr id_ ) ;
5 / / type of the mathematical model used
6 ProblemType problem ( timeProvider ) ;
7 / / i m p l i c i t model f o r l e f t hand s ide
8 ModelType implic i tModel ( problem , gr idPart , t rue ) ;
9 / / e x p l i c i t model f o r r i g h t hand s ide

10 ModelType expl i c i tModel ( problem , gr idPart , f a l s e ) ;
11 / / c r e a t e scheme
12 SchemeType scheme ( gr idPart , implicitModel , expl i c i tModel ) ;
13 / / ! input / output tuple and setup d a t a w r i t t e r
14 IOTupleType ioTuple ( &(scheme . s o l u t i o n ( ) ) ) ; / / tuple with p o i n t e r s
15 DataOutputType dataOutput ( grid_ , ioTuple ) ;
16

17 const bool loca l_adapt = Dune : : Fem : : Parameter : : getValue< bool >( " phaseflow . loca l_adapt " , f a l s e
) ;

18 const double endTime = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . endtime " , 3 . 0 ) ;
19 const double d t r e d u c e f a c t o r = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow .

re d uc e t im es te pf a c t or " , 1 ) ;
20 double timeStep = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t imestep " , 0 .00125 ) ;
21 double t o l e r a n c e = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t o l e r a n c e " , 0 . 5 ) ;
22

23 i n t s tep =1;
24 t imeStep ∗= pow( dtreducefac tor , s tep ) ;
25 / / i n i t i a l i z e with f i x e d time step
26 t imeProvider . i n i t ( t imeStep ) ;
27 scheme . i n i t i a l i z e ( ) ;
28 / / write i n i t i a l so lve
29 dataOutput . wri te ( t imeProvider ) ;
30

31

32 / / time loop , increment with f i x e d time step
33 f o r ( ; t imeProvider . time ( ) < endTime ; t imeProvider . next ( t imeStep ) )
34 {
35 std : : cout << " t=" << t imeProvider . time ( ) << std : : endl ;
36

37 i f ( loca l_adapt )
38 {
39 / / mark element f o r adaptat ion
40 scheme . mark ( t o l e r a n c e ) ;
41 / / adapt grid
42 scheme . adapt ( ) ;
43 scheme . prepare ( ) ;
44 scheme . solve ( t rue ) ;
45 scheme . postpro ( ) ;
46 }
47 . . .
48 }

Code 7: Excerpt from algorithm.hh.
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5.4 Input & Output files

5.4.1 Input files
We use parameter files (see Code 8) to set parameters for the simulation.

1 # GENERAL #######################
2 #−−−−−−−−
3

4

5 #### Parameters f o r output ######
6 phaseflow . computeEOC : 0
7 # p r e f i x data f i l e s
8 fem . io . d a t a f i l e p r e f i x : 2dtwophase
9 # save every i−th step

10 fem . io . savestep : 4 0 . 0 e00
11

12

13 # s p e c i f y d i r e c t o r y f o r data output ( i s crea ted i f not e x i s t s )
14 fem . p r e f i x : . . / Output2D / Deg3 / LagBasis
15

16

17 # upwinding of advect ive term
18 phaseflow . with_upw : f a l s e
19

20

21 # l o c a l a d a p t i v i t y
22 phaseflow . loca l_adapt : t rue
23

24

25 # t o l e r a n c e f o r es t imator
26 phaseflow . t o l e r a n c e : 5
27

28

29 #number of l e v e l of ref inement
30 p h a s e f i e l d . maxlevel : 2
31

32

33 #DG penalty
34 phaseflow . penal typress : 1e−2
35 phaseflow . p e n a l t y s a t : 1e−3
36

37

38 #DG method NIPG=−1 SIPG=1 IIPG=0
39 phaseflow . DGeps : 1
40

41

42 # #################################

Code 8: Excerpt from the parameter file.

The input files are read in by the compiled program. Thus values can be modified at runtime (see
Code 9).

1 / / append d e f a u l t parameter f i l e
2 Dune : : Fem : : Parameter : : append ( " . . / data / parameter " ) ;

Code 9: Loading of the input file.

The Dune::Parameter singleton parses the given parameter file line by line. Code 10 shows how
to use Dune::Parameter. The method getValue() expects two parameters. The first one is a
std::string. The last one is a default value that will be used if the value of the parameter is not
provided in the input file. This last parameter is optional.

1 const bool loca l_adapt = Dune : : Fem : : Parameter : : getValue< bool >( " phaseflow . loca l_adapt " , f a l s e ) ;
2 const double endTime = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . endtime " , 3 . 0 ) ;
3 double timeStep = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t imestep " , 0 .00125 ) ;

Code 10: Example of the getValue()method utilisation.

The grid type can either be specified directly or obtained from the GridSelector. The type is
then specified during the make or CMake procedure.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



142 Birane Kane

1 add_definitions(
2 -DALUGRID_CUBE
3 -DPOLORDER=3
4 -DGRIDDIM=2
5 -DWORLDDIM=2
6 -DWANT_ISTL=0
7 -DUSE_LAG_DG=1
8 )
9 add_executable(2dlens 2dlens.cc)

10 add_dune_alugrid_flags(2dlens)

For more in-depth information on the input files we refer to the DUNE documentation [12].

5.4.2 Output files
The output is handled by the DataOutput class (see Line 4, Code 11) and a tuple holding pointers
to DiscreteFunction objects is passed as a parameter. The generated vtu files are exported into
the directory specified in the parameter file by fem.prefix (see Line 14, Code 8).

1 / / type of input / output
2 typedef Dune : : tuple < DiscreteFunct ionType ∗ > IOTupleType ;
3 / / type of the data w r i t e r
4 typedef Dune : : Fem : : DataOutput< HGridType , IOTupleType > DataOutputType ;
5 IOTupleType ioTuple ( &(scheme . s o l u t i o n ( ) ) ) ; / / tuple with p o i n t e r s
6 DataOutputType dataOutput ( grid , ioTuple , DataOutputParameters ( s tep ) ) ;

Code 11: Output handling.

6 Numerical simulations

In this section we present some numerical tests for the presented DG scheme. Unless specified
otherwise, all test cases are implemented with either the SIPG or the IIPG method. In order
to ensure second order accuracy, we employ a central differencing of the mobility for internal
interfaces thus following a similar approach to that of Rivière et al. [15]. We do not use any
kind of slope limiting or upwinding techniques. The linear solver used is GMRES and we do
not use any preconditioner. The maximal polynomial order employed for the 2d problem is
rp = rs = 3. Although it is possible to use higher polynomial order (quartics and quintics), the
schemes become computationally expensive in terms of both storage and CPU time for practical
use.

6.1 Test Case 1: A vertical DNAPL infiltration Flow over a low permeability lens

A container is filled with two kinds of sand and saturated with water with density ρw =
1000 Kg/m3 and viscosity µw = 1 × 10−3 Kg/m s. The DNAPL considered in the experiment
is Tetrachloroethylene with density ρn = 1460 Kg/m3 and viscosity µn = 9 × 10−4 Kg/m s.

Brooks-Corey’s constitutive relations are used for the capillary pressure and the relative per-
meabilities. Discretization of the system is performed by Interior Penalty DG methods with a
fully implicit/fully coupled approach. All test cases in this section include gravitational forces
and capillary pressure effects. We use ALUCubeGrid for the test cases, it implements the Dune
GridInterface for 3d hexahedral meshes. The grids can be locally adapted (non-conforming)
and used in parallel computations [1].
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6.1.1 2d infiltration problem We consider here a two-dimensional DNAPL infiltration prob-
lem with different sand types. The bottom of the reservoir is impermeable for both phases.
Hydrostatic conditions for the pressure pw and homogeneous Dirichlet conditions for the satura-
tion sn are prescribed at the left and right boundaries. A flux of Jn = −5.137 × 10−5 m s−1 of the
DNAPL is infiltrated into the domain from the top. Detailed boundary conditions are specified
in Table 2 and Figure 1. Initial conditions where the domain is fully saturated with water and
hydrostatic pressure distribution are considered (i.e. p0

w = (0.65 − y) · 9810, s0
n = 0). The initial

mesh consists of 600 quadrilateral elements. We choose a time step of size ∆t = 5 s. The final
time is T = 2000 s. We consider a Newton solver tolerance newtTol = 3 × 10−7 and a linear solver
tolerance linabstol = 2.7 × 10−7.

DNAPL

0.
65

m

0.9 m

Ω

Ωlens

0.39 m 0.48 m

0.52 m

0.465 m

0.33 m 0.54 m

DNAPL

ΓEΓW

ΓS

Ω

Ωlens

ΓNΓN ΓIN

Figure 1: Geometry and boundary conditions for the DNAPL infiltration problem.

Ωlens Ω\Ωlens
Φ [-] 0.39 0.40
k [m2] 6.64 × 10−16 6.64 × 10−11

Swr [-] 0.1 0.12
Snr [-] 0.00 0.00
θ [-] 2.0 2.70
pd [Pa] 5000 755

Table 1: Parameters.

ΓIN Jn = −5.137 × 10−5, Jw = 0
ΓN Jn = 0.00, Jw = 0.00
ΓS Jw = 0, Jn = 0.00
ΓE ∪ ΓW pw = (0.65 − y) · 9810, sn = 0

Table 2: Boundary conditions.

Figure 2 and Figure 3 show the numerical results for the IIPG scheme with polynomial order
rs = rp = 3 combined with first (resp. second) order Adams-Moulton method time discretization.
We use here Lagrange DG space. The implementation of the Lagrange DG space is done by the
mean of a Vandermonde matrix operating the transformation from spectral to physical space.

It took 520 s for the DNAPL to reach the lens and to spread out in the horizontal direction until
reaching the edge of the lens. Afterwards the nonwetting front propagates down the sides of the
lens. However as expected for advection dominated problems, we witness severe undershoots
in the vicinity of the free boundary. The local h-adaptivity allows us to reduce those undershoots
to small values. Figure 4 and Figure 5 show a comparison between the modal and Lagrange
DG schemes. We witness smeared fronts for the orthonormal monomial basis unless we use
small values of penalisation. The shape of the front for the Lagrange basis are less diffusive
for large values of the penalisation parameter. Table 3 throws light upon the columns labels
used in the numerical results. In Table 4, we provide details of the simulation including total
computation times. As expected, the total computation time increases substantially with higher
order polynomial degree. One can’t help but notice that almost 80% (resp. 70%) of the total
computing time is spent building the jacobian matrix for the DG/Q3 AM1 (resp. DG/Q3 AM2).
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Figure 2: DNAPL saturation distribution after 2000 s (left), mesh distribution (right). Polynomial
order p = 3.

Figure 3: Comparison of non-wetting-phase saturation at T=2000 s. Center, profile along the
line x=0.3 m (yellow vertical line of the left figure). Right, profile along the line x=0.45 m (violet
vertical line of the left figure).

DG/Q1 AM1 Piecewise linear Lagrange DG combined with first order Adams-Moulton
DG/Q3 AM1 Piecewise cubic Lagrange DG combined with first order Adams-Moulton
DG/Q3 AM2 Piecewise cubic Lagrange DG combined with second order Adams-Moulton
Avg nb lin iter / Newton cycle Average number of linear iterations per Newton cycle
Avg assem time / lin iter Average time to assemble the Jacobian matrix per linear iteration
Avg inv time / lin iter Average time to invert the Jacobian matrix per linear iteration

Table 3: Notation in result representation.

DG/Q1 AM1 DG/Q3 AM1 DG/Q3 AM2
Avg nb lin iter / Newton cycle 486.869 310.574 517.365
Avg assem time / lin iter [sec] 0.75 9.78 9.25
Avg inv time / lin iter [sec] 0.21 2.67 4.03
Total cpu time [sec] 555.595 9669.63 10609.2

Table 4: Runtime overview for the 2d DNAPL infiltration problem.
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Figure 4: Contour plot of DNAPL saturation after 2000 s for modal orthonormal basis with
Cs = 1e−2 (left column), modal orthonormal basis with Cs = 1e−3 (center column) and Lagrange
basis with Cs = 1e − 2 (right column). Polynomial order p = 1.

Figure 5: Comparison of non-wetting-phase saturation at T=2000 s. Center, profile along the
line x=0.3 m (yellow vertical line of the left figure). Right, profile along the line x=0.45 m (violet
vertical line of the left figure).

6.1.2 3d infiltration problem In this section, we extend the previous results to the three-
dimensional case. We also consider different sand types with different permeabilities and different
entry pressures. The bottom of the reservoir is impermeable for both phases. Hydrostatic
conditions for the pressure pw and homogeneous Dirichlet conditions for the saturation sn are
prescribed at the lateral boundaries. A flux of Jn = −1.712×10−4 m s−1 of the DNAPL is infiltrated
into the domain from the top. The initial ALUCubeGrid mesh consist of 10 × 10 × 10 hexahedral
elements and resolves the interfaces between regions with different permeabilities. 60 time steps
of length ∆t = 60 s are computed (final time T = 3600 s). This grid is locally adapted (non-
conforming).
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Figure 6: Geometry of the domain for the
3d DNAPL infiltration problem.

Ω1 Ω2 Ω\Ω1 ∩Ω\Ω2

Φ [-] 0.39 0.39 0.40
k [m2] 6.64 × 10−16 6.64 × 10−15 6.64 × 10−11

Swr [-] 0.1 0.1 0.12
Snr [-] 0.00 0.00 0.00
θ [-] 2.0 2.0 2.70
pd [Pa] 5000 5000 755

Figure 7: 3d problem parameters.

Figure 8 illustrates the evolution of the nonwetting saturation during the simulation. We show
results at 3600 s of simulation time. As we increase the polynomial order, we notice undershoots
in the vicinity of the front of the propagation and a sharp discontinuity in the solution at the
lenses interfaces.

Figure 8: Contour plot of saturation distribution after 3600 s of DNAPL injection in a depth of 1 m (left col-
umn), mesh distribution (center column) and saturation profile along the line ((0.45,0.45,0);(0.45,0.45,1))(right
column).

7 Conclusion & Outlook

In this work, we presented a discontinuous Galerkin scheme for incompressible, immiscible
two-phase flow in strongly heterogeneous porous media with gravity forces and discontinuous
capillary pressures. Higher-order polynomials up to piecewise cubics are implemented. The
different test cases considered depict convection dominated problems such as DNAPL infiltration
in an initially water saturated reservoir. The oscillations appearing in the the vicinity of the front of
the propagation are reduced with the local mesh refinement. Undoubtedly this fully implicit DG
requires further theoretical and numerical research. DG schemes such as Compact Discontinuous
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Galerkin 2 (CDG2)[9], which are less sensitive to the penalty parameter value seem to be suitable
candidates for our models. Derivation of more rigorous a posteriori estimates that can robustly
estimate both temporal and spatial error are of dire interest for more efficient adaptive algorithms.
Effective local slope limiters are also needed in order to avoid the undershoots and overshoots
witnessed in the vicinity of the front of the propagation.

Apendix A

Building the library

We present here the main steps to create a local working installation of Dune-twophaseDG.

• Create a DuneWorkspace directory.

1 $ mkdir DuneWorkspace && cd DuneWorkspace

• Checkout the latest (stable) core modules from the Dune project homepage.

1 $ for MOD in common geometry grid localfunctions istl; do
2 $ git clone -b releases/2.4 https://gitlab.dune-project.org/core/dune-$MOD.git
3 $ done

• Checkout the latest (stable) version of Dune-Fem.

1 $ git clone -b releases/2.4 https://users.dune-project.org/repositories/projects/dune-fem.git

• Checkout Dune-Alugrid (required for the local grid adaptivity).

1 $ git clone -b releases/2.4 https://users.dune-project.org/repositories/projects/dune-alugrid.git

• Checkout Dune-twophaseDG.

1 $ git clone https://gitlab.dune-project.org/birane.kane/dune-twophaseDG.git

Remark 7.1 You can also download and unpack a Dune-twophaseDG tarball to a folder in your file
system and extract the content of the tar files. Make sure that the extracted Dune-twophaseDG is in
the DuneWorkspace directory.

• Configure and compile the library by typing the following command in the DuneWorkspace
directory.

1 $ cp dune-twophaseDG/scripts/opts/cmake.opts ./
2 $ ./dune-common/bin/dunecontrol --opts=cmake.opts all

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



148 Birane Kane

Run of a test application

We assume in this section that the compilation of all required libraries has been completed
in accordance with the description given in the previous section. The numerical model of
Dune-twophaseDG are compiled in a build-folder (default: build-cmake) and tested in the test
subfolder. For example, to run the 3d lens problem:

1 $ cd build-cmake/src/test/lenspb/3dlens
2 $ make 3dlens
3 $ ./3dlens -parameterFile ./../data/parameter3d

The parameter file specifies that all important parameters (like first time-step size, end of simu-
lation and location of the grid file) can be found in a text file in the data directory with the name
param*. The simulation starts and produces some .vtu output files and also a .pvd file in the
folder build-cmake/src/test/lenspb/Output3D.

Remark 7.2 All the test cases presented in this work can be executed with the following command.

1 $ cd build-cmake/src/test/lenspb
2 $ source ../../../../scripts/allnumtest.sh
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