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Abstract: We present FoamGrid, a new implementation of the Dune grid interface. FoamGrid
implements one- and two-dimensional grids in a physical space of arbitrary dimension, which
allows for grids for curved domains. Even more, the grids are not expected to have a manifold
structure, i.e., more than two elements can share a common facet. This makes FoamGrid the
grid data structure of choice for simulating structures such as foams, discrete fracture networks,
or network flow problems. FoamGrid implements adaptive non-conforming refinement with
element parametrizations. As an additional feature it allows removal and addition of elements
in an existing grid, which makes FoamGrid suitable for network growth problems. We show
how to use FoamGrid, with particular attention to the extensions of the grid interface needed
to handle non-manifold topology and grid growth. Three numerical examples demonstrate the
possibilities offered by FoamGrid.

1 Introduction

Various simulation problems are posed on domains that are not open subsets of a Euclidean
space. Frequently, such domains are surfaces or curves embedded in a higher-dimensional
Euclidean space. Equations on such domains, sometimes called geometric partial differential
equations, comprise diffusion and transport on the surface [Dziuk and Elliott, 2007b], flow prob-
lems [Nitschke et al., 2012, Reuther and Voigt, 2015], and phase-field equations [T. Witkowski,
2012]. Sometimes, movement of the surface itself is modeled [Dziuk and Elliott, 2007a], and this
movement may couple with processes on the surface [Gross and Reusken, 2011].

As an additional difficulty, some boundary value problems are posed on domains Ω that do not
even have the structure of a topological manifold. That is, not every point of Ω has a neighborhood
that is homeomorphic to an open subset of Rd. Figure 1 illustrates this: While the surface patch
on the left is locally homeomorphic to Euclidean space, the one in the middle is a T-junction, and
the one on the right is a touching point. Two-dimensional domains with such features appear in
applications like the simulation of closed-cell foams [Nammi et al., 2010], or networks of fractures
in rock mechanics [McClure and Horne, 2013, McClure et al., 2015]. Of considerable importance
are also one-dimensional networks embedded into a two- or three-dimensional Euclidean space.
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Figure 1: Computational domains might not be topological manifolds. Left: manifold; center:
T-junction; right: touching point

Figure 2: One- and two-dimensional network grids

They appear in models of traffic networks [Garavello and Piccoli, 2006], supply chains [D’Apice
et al., 2010], but also in simulations of biological systems like root networks [Dunbabin et al., 2013],
neural networks [Lang et al., 2011], or blood vessel networks [Cattaneo and Zunino, 2014a]. An
overview over flow problems on networks is given in [Bressan et al., 2014]. Figure 2 shows two
example domains for network problems.

Various discretization methods have been proposed for surface and network equations [Dziuk
and Elliott, 2013, Olshanskii et al., 2009]. Explicit discretizations, which are the focus of this work,
use a grid of the same dimension as the domain. For manifold surface grids it is reasonably
simple to generalize grid data structures to such a setting. The main hurdles are admitting that
the number of coordinates of a vertex can be different from the effective grid dimension, and
making sure that grids are not required to have a boundary. Several standard simulation codes
support such surface grids. We mention Alberta [Schmidt and Siebert, 2005] (standalone and as
part of Dune), AMDiS [Vey and Voigt, 2007], and FEniCS [Rognes et al., 2013]. Moreover, the
GeometryGrid Dunemeta grid allows to embed any Dune grid into a Euclidean space of higher
dimension.

Grid data structures for non-manifold grids are more challenging. To handle T-junctions, for
example, the data structure must cope with the fact that element facets (i.e., edges in a 2d grid)
may have more than two neighbors (Figure 1). While this is not very difficult to implement, it
requires the introduction of additional data fields and logic, which is not used when the grid
happens to be a manifold. Since the latter case is predominant, such additional features mean
space and run-time overhead for most users. Therefore, standard grid data structures do not allow
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for non-manifold topologies. Numerical examples of processes on non-manifold topologies in the
literature are typically done using ad hoc implementations of the necessary grid data structures.

Unfortunately, using ad hoc implementations wastes a lot of human resources. While the domain
may be non-standard, many of the equations on network grids differ little from their Euclidean
counterparts. However, existing code like finite element assemblers for diffusion and transport
processes cannot be reused on ad hoc grid data structures. They require detailed knowledge of
the grid, and it is a challenge to port an existing assembler to a new grid data structure. Also,
since the data structure is ad hoc, it is difficult to reuse it in other contexts. In particular, it is
difficult to share it with other groups working in the same field.

The Dune software system1 [Bastian et al., 2008b,a] has found an elegant solution for both prob-
lems. Dune is a set of open-source C++ libraries dedicated to various aspects of finite element
and finite volume methods. Its grid component, implemented in the dune-gridmodule, specifies
an abstract interface for computational grids. The specification mandates what a data structure
should be able to do to qualify as a Dune grid, and how this functionality should be accessible
from C++ code. Examples of such functionality include being able to iterate over the elements
and vertices, and getting the maps from the reference element to the grid elements. Those parts of
a numerical simulation code that use the grid, such as the matrix assemblers or error estimators,
are written to use only the abstract grid interface. Grid data structures implementing this interface
are then completely decoupled from the algorithms that use them.

This decoupling has various interesting consequences. Using the Dune grid interface, it is easy
to swap a given grid implementation for another one. Indeed, in typical Dune applications the
C++ grid type is set once in the code, and handed around as a template parameter. Changing the
initial typedef and recompiling the code is usually sufficient to switch to an alternative grid data
structure. This possibility to easily switch between grid implementations allows to provide tailor-
made grid data structures for special simulation needs. For example, dune-grid itself provides
YaspGrid, the implementation of a structured grid with very little run-time and space overhead.
In contrast, UGGrid implements a very flexible unstructured grid with non-conforming and
red–green refinement.

In this paper we present FoamGrid, a new implementation of the Dune grid interface that is
dedicated to surface and network grids. Its main features are:

• FoamGrid implements one- and two-dimensional simplex grids embedded in a physical
Euclidean space of arbitrary dimension w. Hence, it targets geometric and surface PDEs.

• The grids do not need to have the structure of a topological manifold. Network configura-
tions like the ones in Figures 1 and 2 are supported.

• A FoamGrid can be adaptively refined. In the standard setup, refining a triangle results
in four coplanar triangles. Additionally, FoamGrid elements can be parameterized, i.e.,
they can be given a map that describes a nonlinear embedding of the element into Rw. As
the element gets refined more and more, its shape approaches the one described by the
parameterization (Figure 4).

• Finally, the domain of a FoamGrid can grow and shrink at run-time. Elements can be added
and removed even when there is no coarser “father” element, without invalidating the
grid data structure. Data can be transferred during this process. This allows to elegantly
simulate network growth and remodeling processes.

1www.dune-project.org
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FoamGrid is available in a Dune module dune-foamgrid,2 and is installed just like any other
Dune module. dune-foamgrid is free software, available under the either the LGPLv3+, or the
GPLv2 with a linking exception clause.

Using Dune and FoamGrid for simulations of network and surface PDE problems has a number
of important advantages. First of all, you do not have to implement the grid data structure
yourself. While not overly difficult, quite a bit of thought has gone into FoamGrid, which would
need work to be replicated. Then, since FoamGrid implements the Dune grid interface, large
amounts of existing application and infrastructure code can be used directly with FoamGrid.
This includes things like finite element spaces and assemblers, error estimators, and grid file
readers and writers. This advantage is demonstrated in particular by the numerical example in
Section 4.1, which required no additional coding at all to extend an existing planar code to a
network setting.

As a further advantage, once a user starts employing FoamGrid and the Dune grid interface, he
immediately has the power of all other Dune grid implementations at his disposal. All of these are
easily usable together with FoamGrid. Hence, e.g., in simulations that couple network grids with
background grids, several implementations of such background grids are readily available.3 Since
the Dune grid interface is a well-established standard, it is easy to learn how to use FoamGrid. If
a user already knows Dune, there is little additional knowledge needed. Since FoamGrid is open
source, sharing code based upon it is particularly easy.

While FoamGrid has many interesting features, there is also a number of things it does not
currently support. For example, elements can only be simplices, and they must be one- or two-
dimensional. (The authors could not think of a use case for a higher-dimensional network grid.
Write us if you know one.) Adaptive grid refinement is currently non-conforming, which leads
to hanging nodes, and, possibly, to holes in the surface (Figure 5). Finally, the current FoamGrid
implementation is purely sequential, and FoamGrid objects cannot be distributed across several
processes. However, the development of FoamGrid is ongoing, and these features may appear
in later releases.

The present article is structured as follows. Chapter 2 briefly explains how to use FoamGrid.
Everything mentioned there is codified in the Dune grid interface specification, and hence you
can also read this chapter as an introduction to the use of the Dune grid interface. Chapter 3
then explains the special features that FoamGrid offers. In particular, these are support for
T-junctions, adaptive refinement with element parameterizations, and the ability to “grow”.
Finally, in Chapter 4 we give three numerical examples showcasing the different features of
FoamGrid. The first shows unsaturated flow through a two-dimensional fracture network using
finite elements. The second example shows h-adaptive, locally mass-conservative transport of
a therapeutic agent in a microvascular network using finite volumes. The third one models the
growth of plant root networks.

2 FOAMGRID and the DUNE grid interface

In this chapter, we start by describing the programmer interface of FoamGrid. FoamGrid im-
plements the Dune grid interface, hence in many central aspects, it can be used just like any
other Dune grid. This chapter focuses on these aspects. You can therefore also read it as a brief
review of the Dune grid interface. For more details, you may want to consult the Dune online
documentation and [Bastian et al., 2008b,a].

The central class of the FoamGrid grid implementation is

2http://users.dune-project.org/projects/dune-foamgrid
3And the Dune extension module dune-grid-glue offers a convenient way to do the coupling (www.dune-project.

org/modules/dune-grid-glue).
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C++ code
1 template <int dim, int dimworld>
2 class FoamGrid;

available from the header dune/foamgrid/foamgrid.hh. This class implements a hierarchical grid
as defined in [Bastian et al., 2008b, Def. 13], i.e., a coarse (or macro) grid, and element refinement
trees rooted in each of its elements. The first template parameter dim is the grid dimension d,
which must be either 1 or 2. The second template parameter dimworld is the dimension w of
the Euclidean embedding space. It must be equal to or greater than the grid dimension, but can
otherwise be arbitrary. For the rest of this article we use dim and dimworld in code examples, and
d and w in text to denote the dimensions of the grid and the physical space, respectively.

To construct FoamGrid objects, the FoamGrid class implements the entire Dune grid interface for
the setup of unstructured grids. In particular, the class GridFactory is implemented for FoamGrid.
Thus, all file-reading methods based on this interface are available. For example, files in the gmsh
format [Geuzaine and Remacle, 2015] can be read by using the line

C++ code
1 std::shared_ptr<FoamGrid<2,3> grid( GmshReader<FoamGrid<2,3>>::read("filename.msh")

);

This will read the file named “filename.msh”, and set up a new FoamGrid<2,3> object with it.
The new grid object is returned in a shared pointer called grid. Note that vertex coordinates in
gmsh files always have three components, so reading a gmsh file into a FoamGrid<1,2> object will
discard the third entry. As a special feature, gmsh files can contain elements with polynomial
geometries of order up to five. While FoamGrid element geometries are always affine, FoamGrid
can use the higher-order geometries during mesh refinement (Section 3.2).

Writing FoamGrid objects to disk is equally straightforward. All Dune file writing codes rely on
the grid interface only, and can therefore be used with FoamGrid. For example, writing the object
pointed to by the grid shared pointer into a VTK file called my_filename.vtu can be achieved by
including the header dune/grid/io/file/vtk.hh from the dune-gridmodule, and writing

C++ code
1 typedef FoamGrid<2,3> GridType;
2 VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView());
3 vtkWriter.write("my_filename");

The resulting file can be visualized, e.g., with the ParaView software.

2.1 Elements and geometries

In Dune, finite element assembly typically takes place on the leaf elements of the refinement
trees. These elements form the leaf grid view, which encapsulates the notion of a textbook non-
hierarchical finite element grid. From a FoamGrid, the leaf grid view can be obtained in the usual
way, i.e.,

C++ code
1 auto foamGridLeafView = grid->leafGridView();

which already has been used in the VTK example above.

Access to grid elements and vertices is provided by the grid view. Elements can be iterated over
using begin/end-iterators
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C++ code
1 for (auto it = foamGridLeafView.begin<0>();
2 it != foamGridLeafView.end<0>();
3 ++it)
4 {
5 // do something with the element in ’*it’
6 }

where the number 0 specifies that the loop is to be over the grid elements (it is the codimension
of the grid elements with respect to the grid). Using the C++11 range-based-for syntax, the same
loop can be written more concisely

C++ code
1 for (const auto& element : elements(foamGridLeafView))
2 {
3 // do something with the element in ’element’
4 }

Similarly, a loop over all vertices of the grid is written as

C++ code
1 for (auto it = foamGridLeafView.begin<dim>();
2 it != foamGridLeafView.end<dim>();
3 ++it)
4 {
5 // do something with the vertex in ’*it’
6 }

In this code, the number dim (i.e., the grid dimension), specifies that the loop is to be over
the grid vertices, because vertices are zero-dimensional and hence have codimension dim in a
dim-dimensional grid. Alternatively, one can write

C++ code
1 for (const auto& vertex : vertices(foamGridLeafView))
2 {
3 // do something with the vertex in ’vertex’
4 }

The objects vertex and element (or *it in the iterator loops) are instances of what in Dune ter-
minology are called entities. Entities are implemented by the Entity interface class in dune-grid.
They provide topological information about the grid elements and vertices, like links to the cor-
ners vertices of an element, and to the father and descendant elements in the refinement tree. In all
these aspects, FoamGrid objects behave just like any other Dune grids. Furthermore, each element
entity provides a Geometry object, which represents the affine map F : Tref → T ⊂ Rw from the ref-
erence element Tref to the grid element T. This map provides the geometrical information needed
to assemble finite element and finite volume systems, like evaluation of F and its inverse F−1, the
inverse transposed Jacobian matrix ∇F−T, and the functional determinant J B

√

det∇FT∇F. Note
that since for surface grids the world dimension w is larger than the dimension of the reference
element Tref, the image of Tref under F is a set of measure zero inRw. In finite-precision arithmetic
the argument of the method implementing F−1 will typically not be in the domain of F−1. The
Geometry implementation of FoamGrid therefore extends F−1 to the entire space Rw. Given a
point x ∈ Rw not necessarily in T, FoamGrid computes a point ξ in the plane spanned by Tref such
that |F(ξ) − x| is minimized. The affine function F is tacitly extended from Tref to its entire affine
hull here.

To compute element fluxes, elements in a Dune grid provide a set of so-called intersections, which
relate elements to their neighbors. This mechanism is very flexible, and in particular handles
general non-conforming situations very well. Nevertheless, using grids for network domains
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stretches the bounds of the current intersection concept, and some generalization is needed. We
have therefore dedicated a separate chapter to FoamGrid intersections (Chapter 3.1).

2.2 Attaching data to grids

Data is attached to FoamGrid objects in the same way as to other Dune grids. Each grid view
object can provide a corresponding IndexSet object

C++ code
1 const auto& indexSet = foamGridLeafView.indexSet();

This index set provides an integer number for each entity (i.e., vertex, edge, or element) of the
grid view. For each dimension and reference element type, these numbers are consecutive and
start at zero. They can hence be used to address random-access containers holding the simulation
data. This approach is convenient, flexible, and efficient.

Data stored in arrays is lost if the grid changes, either by refinement (Section 2.3) or by grid
growth (Section 3.4). To preserve data across grid modifications, FoamGrid, just like any other
Dune grid, additionally provides a set of persistent numbers. These are obtained by an IdSet
object

C++ code
1 const auto& idSet = grid->localIdSet();

(remember that in our initial example the variable grid was a shared pointer to a FoamGrid).
Persistent numbers are neither consecutive nor restricted to start at zero, but they can be used to
access search trees or hash maps. Before modifying the grid, all simulation data must be copied
into such data structures, and copied back to arrays after the modification is completed. While
such copying is costly, its run-time is usually negligible compared to the cost of the actual grid
modification.

2.3 Adaptive refinement

FoamGrid supports red refinement (non-conforming refinement) of simplices, where each triangle
is split into four congruent smaller triangles. If a two-dimensional FoamGrid is refined locally,
then hanging nodes appear in the grid. Depending on the discretization used, this may or may
not be a problem. True red–green refinement, which avoids the hanging nodes, may appear in
later versions of FoamGrid.

Adaptive grid refinement in FoamGrid is controlled via the standard Dune grid interface. In a
first step the method

C++ code
1 bool mark (int refCount , const Codim<0>::Entity& element);

is used to mark an element element for refinement (refCount > 0) or coarsening (refCount
< 0). The method returns true if the element was successfully marked. The mark of an element
element can be obtained with the method

C++ code
1 int getMark (const Codim<0>::Entity& element) const;

which returns 1 for elements marked for refinement, -1 for elements marked for coarsening, and
0 for unmarked elements.

The grid is then modified in a second step with the methods

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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C++ code
1 bool coarsen = grid.preAdapt(); // true if at least one element
2 // will be coarsened
3 bool refined = grid.adapt(); // true if at least one element
4 // was refined
5 grid.postAdapt();

Between preAdapt() and adapt() it is possible to check the following flag

C++ code
1 bool mightVanish = element.mightVanish(); // true if the element might
2 // vanish due to coarsening
3 // by grid.adapt()

Similarly, between adapt() and postAdapt() one can check the flag

C++ code
1 bool isNew = element.isNew(); // true if element was created by last
2 // call to adapt()

Both are useful to manage the transfer of data associated with the grid. As FoamGrid itself does
not store any associated data, the data transfer from the old grid to the adapted grid is managed
by the user. An example featuring adaptive refinement and coarsening is presented in Section 4.2.

3 Additional features

The previous chapter has described those aspects where FoamGrid behaves just like any other
Dune grid. However, FoamGrid also has a few features that set it apart from most other Dune
grids. The present chapter is dedicated to those features.

3.1 Handling intersections in a non-manifold grid

The defining feature of FoamGrid is its capability to handle network grids, i.e., grids with a
non-manifold topology (Figures 1 and 2). In particular, more than two elements can meet in a
common vertex in a one-dimensional grid, and more than two triangles can meet in a common
edge in a two-dimensional grid.

Information about how a given element relates to its neighbors is essential for finite volume and
DG methods, or more generally all methods involving element boundary fluxes. For this, the
Dune grid interface provides the notion of intersections. In Dune terminology, an intersection is the
set-theoretic intersection between the closures of two neighboring elements. Only intersections
that have positive (d − 1)–dimensional measure qualify as intersections in the Dune sense, and
those are equipped with a coordinate system, i.e., a map from a (d − 1)–dimensional reference
element Tref,i to the intersection (Figure 3). Note that if the grid is conforming, then intersections
will be geometrically the same as shared element faces. However, in general non-conforming
grids, intersections are only subsets of element faces.

Intersections provide all information needed to compute element boundary fluxes. In particular,
for each point on an intersection, you can get the vector n that is tangent to the element at that
point, and normal to the element boundary. Also, you get the embeddings of the intersection into
the two elements, in form of maps from the intersection reference element Tref,i to the element
reference elements Tref,tr (Figure 3). Those maps pick up the same ideas used to model element
geometries in Section 2.1. They are called geometry-in-inside and geometry-in-outside, respectively.

In C++ code, intersections are objects of type Intersection. For any given element (which is
then called the inside element), all its intersections with neighboring elements can be accessed
by traversing them with a dedicated iterator. Using range-based for syntax, a loop over all
intersections of the element called element is written as

Archive of Numerical Software 1(S1), 2011 c© by the authors, 2011
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T1

T2

n

Tref,tr

Tref,i

Tref,tr

Rw

Figure 3: Intersection between two elements T1 and T2. From its reference element Tref,i, there are
two maps to Tref,tr (the reference element of T1 and T2), and one to Rw, which describe the shape
of the intersection in T1, T2, and Rw, respectively.

C++ code
1 for (const auto& intersection : intersections(foamGridLeafView ,element))
2 {
3 // do something with ’intersection’
4 }

See the dune-grid class documentation for the details on the user interface of the Intersection
class.

Unfortunately, the Dune intersection mechanism, as flexible as it is, is not flexible enough for
network grids. The original idea was that while elements may have more than one neighbor
across a given facet, there is (even in non-conforming situations) at most one neighbor at any
given point on that facet. This reflects the assumption that computational domains are expected
to be topological manifolds. At the time of writing, this assumption is still reflected in the grid
interface. In particular, the method

C++ code
1 bool neighbor() const;

(a public member of the Intersection class), informs whether there is a neighbor across a
given intersection. However, this information is insufficient in network grids, where even in a
conforming grid there may be an arbitrary number of neighbors meeting at a common intersection.
Finite volume and DG methods need access to this group of neighbors, to know how to distribute
the flux across this intersection.

For this reason the intersection concept and programmer interface is being revisited, and is likely
to undergo changes in the future to better support network grids. Changes to the Dune interface
can only be made in a democratic process, and it is therefore unclear at what point in time such a
change will happen.

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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Two different approaches have been proposed to the Dune grid development community. We
describe them both briefly here. The full proposal text is available at www.dune-project.org/
modules/dune-foamgrid.

The first approach tries to be as minimally invasive as possible. In particular, it retains the
notion of an intersection as an object that relates two elements. The extension consists of two
semantic rules, and a change to the neighbormethod. The first of the semantic rules makes sure
that the “number of neighbors” across a given intersection is well-defined. Remember that the
geometry-in-inside is, roughly speaking, the intersection interpreted as a subset of the element T1.

Rule 1 For any two intersections of a given element T1, the geometries-in-inside are either disjoint or
identical.

With the number of neighbors properly defined, the neighbor method is generalized to return
this number instead of a yes/no answer:

C++ code
1 std::size_t neighbor() const;

Note that this change is fully backward-compatible, as intersections in a non-network grid will
return either 1 or 0 here, which casts to the values true or false as used previously.

The second semantic rule provides a way to find all intersections that share a common geometry-
in-inside. No additional interface method is added for this. Rather, it is guaranteed that all
such intersections appear consecutively when traversing the intersections with the intersection
iterator.

Rule 2 If more than one neighbor is reachable over a given geometry-in-inside, then all intersections for
this geometry-in-inside shall be traversed consecutively by the intersection iterator.

With this rule, groups of neighbors can be identified and used in flux computations.

The second approach is more radical, because it changes the idea of an intersection itself. Inter-
sections cease to be objects that relate pairs of elements. Rather, they now become objects that
relate groups of elements. As a consequence, each intersection still has only one geometry-in-
inside. However, for each intersection there is now more than one outside element, each with
corresponding geometry-in-outside and index-in-outside.

To access this information, more interface methods need to be changed. First of all, the neighbor
method needs to be changed as proposed above. Secondly the methods

C++ code
1 Entity outside () const;
2 LocalGeometry geometryInOutside () const;
3 int indexInOutside () const;

of the Intersection interface class need to be replaced by

C++ code
1 Entity outside (std::size_t i=0) const;
2 LocalGeometry geometryInOutside (std::size_t i=0) const;
3 int indexInOutside (std::size_t i=0) const;

Archive of Numerical Software 1(S1), 2011 c© by the authors, 2011
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Figure 4: Grid refinement with element parametrizations

respectively. Rather than returning the unique outside element or its geometry or index, the
methods must now return the corresponding quantity for the i-th outside element.

These changes are again fully backward-compatible. In grids without multiple intersections,
at most the 0-th outside element will be available. The default parameter ensures that this
intersection will be returned when the method is called without argument.

As an advantage, this proposal retains the rule that the geometries-in-inside must form a disjoint
partition of the element boundary (modulo zero-sets). Also, it is easier to attach data to such
intersections, which is a feature that has been requested various times in the past. On the
downside, to iterate over all neighbors of an element, two nested loops are needed, instead of
only one. This will make some code a bit longer, and more difficult to read.

Both proposals are currently under discussion. However, even with the current status quo,
applications involving fluxes can be written for network domains. One-dimensional domains
are straightforward as there the intersections are a fortiori conforming (see Sections 4.2 and 4.3).
Two-dimensional networks need more trickery, but can also be made to work. Once either of the
proposed interface extensions has been officially accepted, implementations of such methods will
be much simpler.

3.2 Element parametrizations

In a standard non-conforming red refinement algorithm, new vertices are placed at the edge
midpoints of refined elements. That way, while the grid gets finer and finer, the geometry of the
grid remains identical to the geometry of the coarsest grid. To also allow improvements to the
geometry approximation, FoamGrid can use element parametrizations. Each coarse grid element
T with reference element Tref of a FoamGrid can be given a map

ϕT : Tref → R
w,

which describes an embedding of T into physical spaceRw. This does not influence the grid itself
— elements of a FoamGrid are always affine. However, when refining the grid, new elements
are not inserted at edge midpoints. Rather, for each new vertex which would appear at an edge
midpoint in standard refinement, the corresponding local position in its coarsest ancestor element
T is determined using the refinement tree. This position is then used as an argument for ϕT, and
the result is used as the position of the new vertex. That way, the grid approaches the shape
described by the parametrization functions ϕT more and more as the grid gets refined (Figure 4).

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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In dune-grid, element parametrizations are implemented as small C++ objects. These must
inherit from the abstract base class

C++ code
1 VirtualFunction<FieldVector<double,dim>,
2 FieldVector<double,dimworld> >;

declared in dune/common/function.hh.4 One object of this type needs to be created for each
element of the coarse grid. The base class has a single pure virtual method

C++ code
1 virtual void evaluate(const FieldVector<double,dim>& x,
2 FieldVector<double,dimworld>& y) const = 0;

which implements the evaluation of ϕT. The first argument x is a position in local coordinates of
the corresponding coarse grid triangle. The result ϕT(x) is returned in the second argument y.

Element parametrizations are handed to the GridFactory during grid construction. Normally,
grid elements are entered using the method

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices);

of the GridFactory class. For parametrized elements, there is the alternative method

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices,
3 const std::shared_ptr<VirtualFunction<
4 FieldVector<ctype,dim>,
5 FieldVector<ctype,dimworld>
6 > >& elementParametrization);

This inserts the element with vertex numbers given in the array vertices and an element
parametrization given by the object elementParametrization into the grid. The GmshReader
uses this method for some of the higher-order elements that can appear in gmsh grid files.

To see the effect of element parametrizations, Figure 4 shows an example where the coarsest grid
consists of only two triangles covering the domain Ω = [−1, 1]2

× {0}. As a parametrization we
use the global function

ϕ : R2
→ R3, ϕ

(
x1
x2

)
=

 x1
x2

0.2 · exp(−|x|) cos(4.5π|x|)

 , (1)

and each element parametrization ϕT first maps its local coordinates to R2, and then applies
the global function ϕ. Hence, upon refinement, the grid will approach the graph of the func-
tion (1). The code for this example is provided in the dune-foamgrid module itself, in the file
dune-foamgrid/examples/parametrized-refinement.cc.

There is one pitfall when using element parametrizations together with non-conforming adaptive
refinement for two-dimensional grids. If a hanging node appears in the course of refinement,
the position of this node is determined by the parametrization functions of the corresponding

4For various reasons there is discontent with using the VirtualFunction class to implement element parametrizations.
Therefore, it is expected to be replaced by something else eventually. However, at the time of writing, there is no specific
proposal for such a replacement. In any case, while the details of the implementation are under discussion, the general
idea of element parametrizations is not disputed, and can be expected to remain the way it is described here.
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Figure 5: Adaptive refinement with element parameterizations leads to non-conforming geome-
tries

element, which is typically not the midpoint of the adjacent longer edge. As a consequence, the
grid will have holes wherever different refinement levels meet (Figure 5). While this may seem
surprising at first sight, it is nevertheless a logical consequence of the hanging nodes refinement.
The continuous domain is approximated by discontinuous grids, in direct correspondence to how
discontinuous FE functions may be used to approximate continuous PDE solutions.

The non-conforming geometry approximation shows another shortcoming of the current Dune
intersection concept. There, intersections are defined as set-theoretic intersections of (closures
of) neighboring elements. However, in the geometrically non-conforming situation, neighboring
elements do not actually intersect, and one can only speak of logical intersections. The practical
consequence of this is that intersections do not have a single well-defined shape in Rw anymore.
Rather, there are now two of them. This possibility to have two global element shapes is not
currently reflected by the Dune grid interface. In the current implementation of FoamGrid, the
method Intersection::Geometrywill always return the global shape of the intersection as seen
from the inside element.

3.3 Moving grids

Many interesting geometric PDE problems are posed on surfaces that change their shape over
time. Discretization of such PDEs can require a surface grid that can move and deform during
a simulation (see, e.g., [Dziuk and Elliott, 2007a]). FoamGrid caters to such applications by
providing a method that allows to reset the position of any grid vertex at any time. This method
is a public member of the FoamGrid class and has the signature

C++ code
1 void setPosition(const Traits::Codim<dimgrid>::Entity& vertex,
2 const FieldVector<ctype, dimworld>& pos);

It will reset the position of the vertex given in vertex to the position given in pos.

While setPosition can be called for grid vertices on any level, it is really only advisable to call it
for vertices from the leaf grid view. Recall that in a globally or locally refined Dune grid, copies
of the same vertex exist on different refinement levels. The setPosition method will set the
position of any ancestor and descendant vertices of the argument vertex to the position given in
the pos argument. That way, the grid hierarchy remains consistent, and the grid will not “move
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back” to its original shape after eventual coarsening. However, this only works if setPosition is
called for the leaf vertices.

3.4 Grid growth

A certain number of network problems is posed on domains that grow and/or shrink in the course
of the simulation. Examples are fracture growth processes and simulations of bone trabeculae
remodeling. To support such simulations, FoamGrid objects are allowed to grow and shrink,
i.e., elements can be added and removed from the grid at runtime. Finite element and finite
volume data is kept during such grid changes, using an approach much like the one used for
grid adaptivity. Of all Dune grids, FoamGrid is currently the only one to support this feature.
The programmer interface combines ideas from the GridFactory class to insert new vertices and
elements, with the adaptivity interface to allow to keep data across steps of grid growth.

Growth and shrinkage of grids is a two-step process. First, new elements and vertices are handed
to the FoamGrid object. These are not inserted directly; rather, they are queued for eventual
insertion. In addition, individual elements can be marked for removal. Once all desired elements
and removal marks are known to the grid, the actual grid modification takes place in a second
step.

Queuing elements for insertion and removal is controlled by three methods. The first,

C++ code
1 unsigned int insertVertex(const FieldVector<double,dimworld>& x);

queues a new vertex with coordinates x for insertion. The return value of the method is an index
that can be used to refer to this vertex when inserting new elements. The index remains fixed
until all queued elements are actually inserted in the grid (by the growmethod), but may change
during the execution of that method. Inserting elements is done using

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices);

which mimics the corresponding method from the GridFactory class. The argument type has
to be a simplex type, because (currently) FoamGrid supports only simplex elements. The array
vertices must contain the indices of the vertices of the new element to be inserted. These
can be either indices of existing vertices, or new indices obtained as the return values of the
insertVertexmethod.

Analogously a new element with a parametrization can be inserted by calling

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices,
3 const std::shared_ptr<VirtualFunction<
4 FieldVector<ctype,dim>,
5 FieldVector<ctype,dimworld>
6 > >& elementParametrization);

Finally, the method

C++ code
1 void removeElement(const Codim<0>::Entity& element);

marks the given element for removal.

Once all desired elements are queued for insertion or removal, the actual grid modification takes
place in a second step. The grid is modified using the method
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C++ code
1 bool elementsInserted = grid->grow(); // true if at least one element was inserted

While element removal is guaranteed, queuing elements does not assure that the element will
be inserted. New elements are restricted by the fact that Dune grids are hierarchic objects. The
vertices given by the user to form an element are always leaf vertices but may be contained in
different hierarchic levels. However, elements can only be constituted by vertices of the same
level. Therefore, new elements in FoamGrid are always inserted on the lowest possible level
substituting the given vertex by its hierarchic descendants or ancestors. Note that it is not
generally guaranteed that relatives of the given vertices on the same level can be found. In that
case, the element will not be inserted. The method grow will return true if it was possible to
insert at least one element.

After the call to grow, it is possible to check whether a given element has been created by the last
call to the growmethod:

C++ code
1 bool isNew = element.isNew(); // true if element was created by last growth step

which is a method of the interface class Entity<0>, i.e. elements. Observe that this is the same
method that returns whether an element has been created by grid refinement. Hence its semantics
depends on whether it is queried after a call to grow or after a call to adapt. Using this method is
helpful, e.g., when setting initial values and/or boundary conditions for newly created elements.

The growth is completed with the call

C++ code
1 grid->postGrow();

which removes all isNewmarkers.

Summing up, growing or shrinking the grid while keeping grid data consists of the following
steps. Note the relationship to grid adaptivity with data transfer.

1. Mark elements for removal; queue new vertices and elements for insertion.

2. Transfer all simulation data attached to the grid into an associative container indexed by
the entity ids described in Section 2.2.

3. Call grow().

4. Resize data array; copy data from the associative container into the array.

5. Set initial data at newly created elements and vertices and boundary conditions at newly
formed boundaries. Note that element removal always creates new boundaries.

6. Finalize by calling postGrow().

While grid growth itself is straightforward, it is difficult to use in combination with adaptive
refinement. Grid refinement in Dune leads to hierarchical grids, which are forests of refinement
trees. Not every element of such a forest can be added or removed without violating certain
consistency conditions. In one-dimensional grids, there are relatively few problems, and grid
growth and refinement can be used together to good effect. For two-dimensional grids we have
tried to be as general as possible, but there are limits.

There are obstacles both to the removal of elements and to the insertion of new ones, if grid
refinement is involved. First of all, only leaf grid elements can be removed. There is no conceptual
problem with element removal if the element has no father. If it does have a father, however,
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Figure 6: Grid for a discrete fracture network, courtesy of Patrick Laug. The network and grid
were generated using the software described in [Borouchaki et al., 2000].

removing only a subset of its 2d sons is a violation of the Dune grid interface specification,
which mandates that the sons of an element must (logically) cover their father [Bastian et al.,
2008b, Def. 11.1]. Deliberately allowing this violation nevertheless appears to be the only viable
solution, as all other possibilities amount to only allowing the removal of large groups of elements,
which is rarely desired.5

Inserting new elements into a refinement forest of elements is even more problematic, because
the new element needs to be assigned a level number in the hierarchy. Ideally, this level would
always be zero, because if the element had a larger level number it would be expected to have a
father. FoamGrid does violate this assumption if necessary, which does not lead to problems in
practice, unless multigrid-type algorithms are used. On the other hand, the element level must
be the same as the levels of all of its vertices. If the vertices are new, their levels can be freely
chosen. However, grid growth almost always involves vertices that already exist in the grid.
When trying to insert elements with vertices having different level numbers, FoamGrid currently
tries to replace existing vertices by their father vertices, to obtain a set of d+1 vertices on the same
level (which then determines the element level).

4 Numerical examples

We close the article with three numerical examples. These show how seemingly challenging
algorithms can be implemented with ease using the FoamGrid grid manager.

4.1 Unsaturated Darcy flow in a discrete fracture network

For our first example we simulate unsaturated Darcy flow through a network of two-dimensional
fractures embedded intoR3. We only consider the flow in the network itself, but FoamGrid can be
easily coupled to higher-dimensional background grids using the dune-grid-gluemodule [Bas-
tian et al., 2010, Engwer and Müthing, to appear].

Let the computational domain Ω be the union of a finite number of closed, bounded hypersurfaces
inR3. We use the Richards equation to model the flow in Ω [Bear, 1988]. That is, we suppose that
the state of the system in a time interval [0,T] can be described by single scalar pressure field

p : Ω × [0,T]→ R.

5Another Dunemodule which violates this assumption to good effect is dune-subgrid, see [Gräser and Sander, 2009].
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From this pressure field, the fluid saturation θ and permeability kr can be computed using the
Brooks–Corey and Burdine parameter functions

θ(p) =

θm + (θM − θm)
( p

pb

)−λ
for p ≤ pb

θM for p ≥ pb,
kr(θ) =

(
θ − θm

θM − θm

)3+ 2
λ

,

where θm, θM, pb, and λ are scalar parameters. The saturation θ satisfies the Richards equation

∂
∂t
θ(p) + div v(x, p) = 0, v(x, p) = −K(x) kr(θ(p))∇(p − %gz). (2)

For simplicity we suppose that the flow is purely driven by the boundary conditions, and omit
the gravity term %gz.

Equation (2) is a quasilinear equation in the pressure p. In [Alt and Luckhaus, 1983] (see also
[Berninger et al., 2011]) it was shown how the Kirchhoff transformation can be used to transform
it to a semilinear equation for a generalized pressure

u : Ω × [0,T]→ R, u(x, t) = u(p(x, t)) B
∫ p

0
kr(θ(q(x, t))) dq.

We discretize this equation in time using an implicit Euler method, and in space using first-
order Lagrangian finite elements. The resulting weak discrete spatial problem can be written as
a minimization problem for a strictly convex functional. At each time step, we determine the
minimizer of this functional by a monotone multigrid method [Berninger et al., 2011].

For the implementation we used the code used for the numerical examples in [Berninger et al.,
2011]. Since vertex-based finite elements were used for the discretization, no changes to the
numerical algorithm were needed to also apply it to network grids. Originally, the code used
the Dune libraries and the UGGrid grid manager for unstructured grids. Even though the code
for [Berninger et al., 2011] was not written with network flow problems in mind at all, it could
nevertheless be reused as is, after only a handful of trivial bugfixes. The only changes necessary
were replacing the line

C++ code
1 typedef UGGrid<2> GridType;

by

C++ code
1 typedef FoamGrid<2,3> GridType;

and adjusting the boundary data specification. This once more proves the point that using the
Dune grid interface gives great flexibility, and allows code to do more things than planned by the
original authors.

We present an example simulation using an artificially created network grid. The grid, which
can be seen in Figure 6, was created by Patrick Laug using the fracture network grid generator
described in [Borouchaki et al., 2000]. The grid spans the volume [−6.5, 6.5]2

× [−2.165, 2.165]
(length and pressure are given in meters). We assume the network to be filled with a sand-
like material with parameters θm = 0.0458, θM = 1, K = 6.54 · 10−5 m/s, bubbling pressure
pb = 0.0726 m, and λ = 0.694.

We assume the network to be initially devoid of water, setting p = −10 m. Then, water is injected in
a unit circle centered at the point (0, 6.5, 0) on the boundary ∂Ω∩{x1 = 6.5}with a constant pressure
of p = 3 m; no-flow boundary conditions are imposed at the remaining boundary. Figure 7 shows
several steps in the evolution of the physical pressure p. As expected, one can see the fluid
entering, and slowly filling almost the entire network. At the end, a steady state is reached, and
the pressure is constant in each connected component of the domain.
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Figure 7: Unsaturated Darcy flow in a fracture network. The color visualizes the physical
pressure p.

4.2 Transport of a therapeutic agent in the microvasculature

The next example demonstrates local grid adaptivity, and the treatment of network bifurcations.
We model the propagation of a therapeutic agent for cancer therapy in a network of small blood
vessels. To reduce the computational effort, the network of three-dimensional vessels is reduced
to a one-dimensional network Ω embedded in a three-dimensional tissue domain T .

We first discuss the one-dimensional model for flow in a blood vessel segment, disregarding any
bifurcations. Starting from a three-dimensional blood vessel domain Ξ, we describe blood in the
microvasculature as an incompressible Newtonian fluid with viscosity µ and density % governed
by the Stokes equation. Further, we assume an axially symmetric blood vessel segment with
constant radius R, cross-section area A, the parametrized tangent on the vessel centerline λ(s),
λ : R → R3, s 7→ λ(s), and a rigid vessel wall. Then, with the assumption of constant pressure p
in a cross-section and negligible radial velocities vr the Stokes equations can be integrated over a
vessel segment yielding the one-dimensional equation

A
%

∂p
∂s
λ + 2π

µ

%
(2 + γ)v̄λ = 0

∂
∂s

(
πR4

2µ(2 + γ)
∂p
∂s

)
= 0

 in Ω. (3)

The parameter γ shapes a power-type axial velocity profile with mean velocity v̄, yielding a
quadratic velocity profile for γ = 2 and flatter profiles for γ > 2. For a detailed derivation in
a more general setting, see the reduction of the Navier–Stokes equations to one-dimensional
equations in [Quarteroni and Formaggia, 2003]. Equation (3) is a simplified stationary version
of the one-dimensional blood flow equations described by Quarteroni and Formaggia [2003],
neglecting vessel wall displacement and intertial forces.

Small blood vessels are exchanging mass with the embedding tissue through the vessel wall. The
fluid exchange can be modeled by Starling’s law, and results in an additional source term. With
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Figure 8: Single-phase two-component flow in a blood vessel network. One-dimensional elements
are rendered as tubes. The color visualizes the fluid pressure. Left: stationary pressure p; right:
initial element sizes.

this modification, (3) becomes

A
%

∂p
∂s
λ + 2π

µ

%
(2 + γ)v̄λ = 0

∂
∂s

(
πR4

2µ(2 + γ)
∂p
∂s

)
− 2πRLp(p − p̄i) = 0

 in Ω, (4)

where Lp is the empirical filtration coefficient dependent on, e.g., the intrinsic permeability and
thickness of the membrane, and the viscosity of the interstitial fluid. The source term further
depends on the pressure in the surrounding tissue p̄i. For the sake of simplicity, this tissue
pressure is subsequently assumed constant. Equation (4) was also used by Cattaneo and Zunino
[2014a] in a finite element setting to model coupled vessel-tissue flow processes in a tumor tissue.

The transport of a therapeutic agent is modeled by an advection–diffusion equation using the
velocity field calculated by equation (4). Similar to the reduction of the Stokes equations we can
reduce the three-dimensional advection–diffusion equation by integration over a vessel segment
assuming a constant concentration c = x% on a given cross-section with area A = πR2 [D’Angelo,
2007, Cattaneo and Zunino, 2014b]. The transport over the vessel wall can be described by the
Kedem–Katchalsky equation [Kedem and Katchalsky, 1958], yielding

∂(Ac)
∂t

+ v̄
∂(Ac)
∂s
−De

∂2(Ac)
∂s2 − 2πR

[
Lc(c − c̄i) + Lp(p − p̄i)(1 − σc)c

]
= 0 in Ω. (5)

The last term in (5), accounting for transport across the vessel wall, consists of an advective
and a diffusive part where advection is reduced by the reflection coefficient σc ∈ [0, 1] for larger
molecules. Again, we assume the mean tissue concentration c̄i to be constant.

To model a network of such segments we split the blood vessel network Ω at junctions into pieces
yielding a set of vessel segments Ωi each governed by equations (4) and (5). At each junction we
require continuity of pressure

p = p1 = ... = p j.

Together with these coupling conditions, and boundary conditions on ∂Ω, Equation (4) has a
unique solution, which is the stationary pressure field p.
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For the transport at the junctions, we require continuity of concentration

c = c1 = ... = c j,

and, for Qi, the volume flux leaving segment Ωi at the junction, we require mass conservation

j∑
i=1

Qi = 0.

We discretize equations (4) and (5) in space with a standard finite volume scheme and piecewise
linear one-dimensional grid elements. This demands balancing fluxes over the edges of the
elements. Assume that we have calculated all element transmissibilities

ti B
πR4

i

2µ(2 + γ)
. (6)

Then, the volume flux Qi j from element i to a neighboring element j can be calculated as

Qi j = ti j(pi − p j) =
tit j∑N
k=0 tk

(pi − p j). (7)

One can see that the transmissibility at branching points is dependent on the transmissibility of
all N neighboring elements. Assuming that all element transmissibilities ti reside in an array
transmissibility, the calculation of the two-point transmissibilities ti j could look as follows
using FoamGrid. Note that only a single loop over the grid entities is necessary to calculate the
transmissibilities.

C++ code
1 // for each element with index eIdx
2 std::vector<double> tSums(e.subEntities(/*codim=*/ 1), 0.0);
3 std::vector<double> tij;
4 std::vector<std::size_t> neighborFacetMap;
5
6 // loop over all intersections of this element
7 for(const auto& intersection : intersections(foamGridLeafView , element))
8 {
9 if(intersection.neighbor())

10 {
11 std::size_t nIdx = foamGridLeafView.indexSet().index(intersection.outside());
12 tij.push_back(transmissibility[eIdx]*transmissibility[nIdx]);
13 neighborFacetMap.push_back(intersection.indexInInside());
14 tSums[intersection.indexInInside()] += transmissibility[eIdx];
15 }
16 if(intersection.boundary())
17 // boundary treatment ...
18 }
19
20 // compute the two-point transmissibilities
21 for (std::size_t i = 0; i < tij.size(); i++)
22 transmissibilitiesIJ[i] /= tSums[neighborFacetMap[i]];

This code works well using the grid interface of dune-grid-2.4, even though that interface does
not have any provisions for network grids at all (Section 3.1). This is because the grid is one-
dimensional. In this case, each intersection always covers entire element facets (i.e., vertices).
Therefore, the indexInInsidemethod can be used to group intersections.

To reduce numerical diffusion induced by the implicit Euler scheme, the grid can be refined
adaptively around the concentration front. Initially, the grid is refined around inflow boundaries,
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(a) t = 3 s (b) t = 56 s

(c) t = 201 s (d) t = 501 s

Figure 9: Single-phase two-component flow in a blood vessel network. One-dimensional elements
are rendered as tubes. The gaps merely exist to better visualize the adaptive grid. The images
show the mole fraction x at different simulation times. Note how a concentration wave enters the
network from the top, and is tracked by a zone of high grid resolution, even as it goes through a
bifurcation point.

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011



22 O. Sander, T. Koch, N. Schröder, B. Flemisch

and during the simulation the grid is adapted by a local gradient-based concentration indicator
as described in [Wolff, 2013]. This indicator marks an element i for refinement if

maxi(∆ci j) − ∆cmin

∆cmax − ∆cmin
≥ εr,

and for coarsening if
maxi(∆ci j) − ∆cmin

∆cmax − ∆cmin
< εc,

where ∆ci j denotes the concentration difference between element i and a neighboring element j.
The parameters εr, εc ∈ [0, 1] (εr > εc) are problem dependent. We achieved robust adaptation
behavior in our example for εr = 0.3 and εc = 0.05. The indicator is evaluated before every time
step and marks elements for refinement or coarsening using the mark method, see Section 2.3.
The adaption of the grid is then handled by FoamGrid. Between the preAdapt and postAdapt
steps, we have to transfer data, i.e., primary variables and spatial parameters from the old grid to
the new adapted grid. As can be seen in Figure 9, the refinement scheme works well even around
network bifurcations.

We simulate a network of capillaries in rat brain tissue scanned by Motti et al. [1986] and recon-
structed as segment network with three-dimensional geometrical information by Secomb et al.
[2000]. The network data comprises three-dimensional location of vessel segments, inflow and
outflow boundary markers, vessel segment radii, and velocity estimates for each vessel segment.
The domain has a bounding box of 150µm×160µm×140µm. The given vessel radii vary between
2µm and 4.5µm. The estimated velocities are in a range of 0.5 mm

s to 7.5 mm
s . We choose the blood

viscosity µ = 3.0Pa · s, the filtration coefficient Lp = 3.33 · 10−12 m
Pa·s , the effective diffusion coeffi-

cient over the vessel wall Lc = 10−5 1
sm , and the diffusion coefficient of the transported agent trail

De = 2.93 · 10−14 1
s , calculated with the Stokes–Einstein radius. We assign the following boundary

conditions for the flow problem (4)

p = pD on ∂Ωoutflow,[
R2

µ(2 + γ)
∂p
∂z

]
· n = v̄ · n = vN on ∂Ωinflow.

The velocities for the inflow segments are set to the estimates provided by Secomb et al. [2000]
along with the grid geometry. We simulate the arrival of a therapeutic agent by a Dirichlet
boundary condition for equation (5) on a subset ∂Ωc of ∂Ωinflow, namely,

c = cD on ∂Ωc,

c = 0 on ∂Ωinflow \ ∂Ωc.

Specifically, we enforce a mole fraction of xD = 10−8 at one of the inflow vessel segments with a
Dirichlet boundary condition. At outflow boundaries, we neglect diffusive fluxes. Note that a
full upwind scheme is employed for the concentration, so no further boundary condition for the
advective fluxes is necessary at outflow boundaries.

Figure 8 shows the resulting stationary pressure field and the initial element size. In Figure 9, one
can see the resulting mole fraction at various times. Note how the local grid refinement follows
the steepest gradients, i.e., the transport front. The resulting mole fractions vary from segment
to segment due to different radii. This also automatically ensures a finer grid around vessel
bifurcations. The one-dimensional elements are depicted as three-dimensional tubes scaled with
their respective radius.
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4.3 Root water uptake and root growth at plant-scale

In environmental and agricultural research fields, models describing root architectures are used
to investigate water uptake and root growth behavior of plants [Dunbabin et al., 2013]. In our
final example, a one-dimensional network embedded intoR3 is used to describe such a plant root
architecture. We simulate water flow through the root network and root growth.

Plant roots can be described by a tree-like network of pipes which consist of xylem tubes [Tyree
and Zimmermann, 2002]. We follow the cohesion–tension theory [Tyree, 1997], where the water
flow through the root system is governed by the pressure gradient caused by the transpiration
rate of the plant above the soil. We assume only vertical flow and no gravity. This leads to a
Darcy’s law analogy [Doussan et al., 1998]

qx = −Kx
dpx

dz
,

where qx is the water flux in the xylem tubes, px is the xylem water pressure, and Kx is the axial
conductance of one root segment.

Water can enter the roots at any point on the xylem tube surfaces, which leads to a volume source
term for the one-dimensional network model. For simplicity, we model a single membrane only
for the entire pathway of water from soil into the roots. With this assumption, and neglecting
osmotic processes, radial water flow qr into one root segment is defined as

qr = KrAr(pS − px),

where Kr is the radial conductivity, i.e., the conductivity of series of tissues from root surface
to the xylem. The number Ar B 2πrl is the soil–root interface area. The water pressure pS at
the soil–root interface must be provided. One option is to couple the root system to a Richards
equation based soil water flow simulation [Javaux et al., 2008], but for simplicity we simply take
pS as a known value.

The continuity equation leads to
− div(qx(px)) = S(px) (8)

with a solution-dependent source

S(px) = KrAr(pS − px),

where qx is the only unknown variable. This modeling approach neglects the influence of solutes
on water flow, as well as the capacitive effect of the roots, because the amount of water stored in
roots is generally small compared to transpiration requirements.

Equation (8) is discretized in space with standard cell-centered finite volumes, piecewise linear
one-dimensional grid elements and implemented using the external Dune discretization module
DuMux [Flemisch et al., 2011], and the FoamGrid grid manager. Flux calculations over edges and
branching points of the root network are implemented just as in our previous example.

So far, we have assumed a root network that does not alter its geometry over time. Several
algorithms were developed to describe root growth (e.g., [Pagès et al., 2004, Somma et al., 1998,
Leitner et al., 2010]). These models define root growth either by a fractal description, or more
generically depending on plant specific parameters (root elongation, growth direction, branching
density) and surrounding soil properties (soil moisture, soil strength, temperature, nutrients).
For simplicity, we model root growth here as an (almost) completely random process. New root
branches occur at random time steps and with a small gravity effect only, which makes the roots
tend to point downwards. Existing branches grow at the branch tip at random times and without
changing directions.
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Our example simulation starts with a simple root grid which consist of one vertical root branch
discretized with eight elements (root segments) and no lateral branches (Figure 10). We choose
radial and axial conductivity values from [Doussan et al., 1998]. The surrounding relative soil
pressure is set to pS = −2.9429 · 10−2 Pa, and the Dirichlet boundary value at the root collar is set
to −1.2 · 106 Pa. Parameters and boundary conditions do not change with time.

In every time step, new root elements are created and either added to an existing lateral branch
or to the main branch. An element-based indicator based on simulation time and random factors
decides whether a new branch is added at one of the element’s vertices. The Indicator class also
computes the coordinates of the newly inserted point that is the second vertex of the new element.
The coordinates depend again on simulation time, random factors, and the branch orientation in
R3. Our growth step calculation in DuMux using FoamGrid looks as follows.

C++ code
1 template<class Indicator>
2 void growGrid(Indicator& indicator , Variables& vars)
3 {
4 // (1) calculate indicator for each element
5 indicator.calculateIndicator();
6
7 // (2) insert elements according to the computed indicator
8 insertElements(indicator);
9

10 // (3) Put variables in a persistent map
11 storeVariables(vars);
12
13 // (4) Grow grid
14 grid->grow();
15
16 // (5) Resize and (re-)construction of variables
17 vars.resize(foamGridLeafView.size(0));
18 reconstructsVariables(vars);
19
20 // (6) delete isNew markers in grid
21 grid->postGrow();
22 }

The vars container contains all primary variables and spatial parameters defined on the root
segments. The Indicator class is a template parameter that can be easily exchanged, to allow
different root growth algorithms. In Step (2), the new elements are inserted. New root segments
must be connected to the old grid. The implementation of the insertElements method could
looks as follows:

C++ code
1 template<class Indicator>
2 void insertElements(const Indicator& indicator)
3 {
4 // iterate over all grid elements (root segments)
5 for (const auto& element : elements(foamGridLeafView))
6 {
7 // find elements that will get a new neighbor
8 if (indicator.willGrow(element))
9 {

10 // get the new elements vertices from the indicator
11 std::size_t vIdx0 =

grid->insertVertex(indicator.getNewVertexCoordinates(element));
12 // get index of the existing element vertex the new element will be connected to
13 std::size_t vIdx1 = indicator.getConnectedVertex(element);
14 // insert new element with the two vertex indices
15 grid->insertElement(element.type(), {vIdx0, vIdx1});
16 }
17 }
18 }
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Figure 10: Growth of a root system, shown in a lateral (top) and an axial (bottom) view. The color
represents the pressure inside the roots.

The primary variables and spatial parameters of our physical problem are stored in Step (3),
before the actual growth step (4). We update the sizes of the variables and parameter vectors
since the total number of degrees of freedom has changed due to the growth step (5). In addition,
values for the new elements have to be computed. In our case, new root segments inherit the
primary variables and the spatial parameters from its preceding neighbor element. Root tips,
in particular new root tips, are always assigned Neumann no-flow boundary conditions. At the
end, the postGrowmethod is called, which deletes the isNewmarkers (Step (6)).

Figure 10 shows the root network and the pressure distribution inside the roots for several time
steps. The total root water uptake (transpiration demand) of the plant, defined by the Dirichlet
boundary condition, does not change during the growing period. Thus, the pressure inside the
plant changes since the water uptake of the plant is distributed to more and more roots segments.
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