
Archive of Numerical Software
vol. 6, no. 1, 2022, pages 1–27

DOI: 10.11588/ans.2022.1.75917

Dune-CurvedGrid – A Dune module for surface
parametrization

Simon Praetorius1 and Florian Stenger2

1Technische Universität Dresden, Institut für Wissenschaftliches Rechnen, D-01062
Dresden, Germany (simon.praetorius@tu-dresden.de).

2Technische Universität Dresden, Institut für Wissenschaftliches Rechnen, D-01062
Dresden, Germany (florian.stenger@tu-dresden.de).

Received: Oct. 7th 2020; final revision: Oct. 20th 2021; published: Feb. 9th 2022.

Abstract: In this paper we introduce and describe an implementation of curved (surface)
geometries within the Dune framework for grid-based discretizations. Therefore, we employ the
abstraction of geometries as element-functions bound to a grid element, and the abstraction of a
grid as connectivity of elements together with a grid-function that can be localized to the elements
to provide element local parametrizations of the curved surface.

1 Introduction

Numerical computations on curved surfaces are an important tool for studying physical phe-
nomena in thin structures, on curved boundaries of domains, and on interfaces between two
bulk regions. Those problem arise, e.g., in fluid dynamics when considering free-surface flows,
in interfacial transport problems on biological membranes or fluid droplets, in mathematical
geosciences, and in the physics of thin films with vanishing film thickness. All these applica-
tions require the discretization of partial differential equations (PDEs) on the embedded surface,
involving quantities like curvature, surface measures, normal vectors, and covariant derivatives
that need to be available by a numerical method. An overview about some of these applications
can be found in Bothe and Reusken (2017); Nestler et al. (2017); Grande et al. (2018); Jankuhn et al.
(2018); Freeden and Schreiner (2009).

In discretization methods based on finite elements or finite volumes one is often faced with the
problem of representing the curved geometry by numerical grids and discretizing a (geometric)
partial differential equation on this approximation of the actual smooth surface. One distin-
guishes between implicit surface representations using cut cells, level-sets or diffuse interfaces,
see Rätz and Voigt (2006); Lehrenfeld (2016); Olshanskii and Reusken (2017); Burman et al. (2018),
and explicit surface representations by triangulations and surface finite element or surface finite
volume schemes. For the latter, the representation with piecewise flat elements is a widely used
lowest order approximation that is easy to construct and to implement with standard software.
Unfortunately, it has some drawbacks. The local flat approximation leads to vanishing curvature
inside the elements and this can sometimes lead to non-converging numerical schemes, as shown

simon.praetorius@tu-dresden.de
florian.stenger@tu-dresden.de

2 S. Praetorius and F. Stenger

in Heine (2004) for the discrete mean-curvature vector and Weingarten map, in Fritz (2013) for
a finite-element approximation of the Ricci curvature, and in Hansbo et al. (2019); Hardering
and Praetorius (2021) for the discretization of a surface vector Laplacian1. The numerical error
involved in a discretization of PDEs on curved surfaces depends on two properties of the dis-
cretization, the representation of the objective function and the representation of the geometry.
Thus, a higher-order scheme is only possible with also a higher-order description of the surface
approximation.

Better approximations of the geometry than piecewise flat are necessary. Those can be found in
piecewise polynomial approximations or even exact representations of the surface if an analytical
description of the surface’s geometry is available. Some numerical libraries for the implementa-
tion of partial-differential equation solvers, like, e.g., Arndt et al. (2021); Anderson et al. (2021);
Geuzaine and Remacle (2009); Johnen et al. (2014); Schöberl (1997, 2014), allow for higher-order
geometry parametrization. Others do not always provide a usable interface for such non-linear
geometry transformation or representation of such curved grids and often do not provide the
utilities necessary to implement such simulations efficiently.

The present work tries to fill this gap for the numerical library Dune, Bastian et al. (2021), a
framework for the discretization of grid-based numerical problems. This modular library is
centered around the abstraction of a grid interface and the coupling to various different grid
implementations for structured or unstructured grids, with or without adaptivity, sequential
or parallel traversal, for volume and surface grids and additionally allowing to wrap any grid
implementation to extend or modify its functionality. This concept of wrapped grids, called
meta-grids in Dune, is the basis of our implementation. We provide a wrapper around any grid
implementation in Dune, transforming a (piecewise) flat reference grid into a curved grid using a
(non-linear) geometry transformation in the local elements while preserving the grid connectivity
and element numbering.

All implementations discussed in this paper can be found in individual Dunemodules in publicly
available source code repositories: Praetorius and Stenger (2020a); Praetorius (2020, 2019); Prae-
torius and Stenger (2020c). The code examples and results in this manuscript are summarized
and made available in the repository Praetorius and Stenger (2020b).

1.1 Initial Example

For a motivation of the introduced functionality in Dune-CurvedGrid, we consider the polyno-
mial approximation of a spherical surface by local polynomials of some given order.

C++ code
1 // 1. Construct a reference grid
2 std::unique_ptr refGrid =
3 Gmsh4Reader< FoamGrid<2,3> >::createGridFromFile("sphere.msh");
4
5 // 2. Define the geometry mapping
6 auto sphere = [](const auto& x) { return x / x.two_norm(); };
7 auto sphereGridFct = analyticDiscreteFunction(sphere, *refGrid, order);
8
9 // 3. Wrap the reference grid to build a curved grid

10 CurvedGrid grid{*refGrid, sphereGridFct};

The curved grid is build on top of a piecewise flat reference grid provided by a Gmsh2 file
and represented by a Dune-FoamGrid, Sander et al. (2017). Although this reference grid is
created using the Gmsh4Reader which will be discussed in subsection A.1, the grid could also
be created by any other method3. The polynomial representation is given by interpolating an

1In these three examples a stabilization technique or additional higher-order geometric knowledge allows to overcome
these flat element limitations

2The Gmsh format is described in Geuzaine and Remacle (2009)
3For example Dune-Grid provides it’s own GmshReaderwhich supports the older file format version 2.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 3

analytic coordinate projection, sphere, i.e., a simple normalization of global coordinates, locally
into a polynomial space of given polynomial order. This is achieved by the function wrapper
AnalyticDiscreteFunction, that provides evaluation of values and derivatives of the given
function in terms of its local discrete approximation, see section 5.

The library provides grid-functions that can be used to represent geometry mappings. Both,
analytical and discrete representations, are implemented and thus even evolving parametrizations
as solutions of PDEs or other external descriptions are possible.

Finally, the reference grid together with the coordinate mapping build the curved grid. The
CurvedGrid fulfills the Dune grid requirements and can be used instead of any other regular
Dune grid. It provides the geometric mappings for grid elements and for element intersections,
allowing for continuous and discontinuous discretization schemes build on top of this grid.

1.2 Structure of the Paper

In section 2 the mathematical foundation is laid, describing smooth surfaces and their (polyno-
mial) approximation, the grid and its geometry transforms as well as grid-functions. This section
introduces the notation and defines the objects and mappings that are implemented in the library.
The subsequent section 3 introduces the interface for the geometry classes representing the local
mapping of coordinates. This is followed by a section about the class interface for the CurvedGrid
in section 4 that implements the grid wrapper providing locally defined curved geometries. The
description of the actual surface or its approximation requires grid-functions, introduced in sec-
tion 5, and projection mappings that are shown by examples in section 6. This concludes the
implementation aspects of the library. In section 7 numerical validation of the implementation is
given by analyzing known error bounds for geometric quantities like distance between surfaces,
normal vectors, and mean curvature. This is followed by a selection of numerical examples of
finite-element problems on curved surfaces.

2 Parametric Discrete Surfaces

Let Γ ⊂ Rm+1 be an oriented, connected, and smooth m–dimensional manifold. Γ can be described
in multiple ways, e.g., by a parametrization over a reference domain, by an implicit representation
as level-set of a function, or by closest-point projection of coordinates on another manifold in
a close neighborhood of Γ. All these descriptions have advantages and disadvantages and are
summarized in Dziuk and Elliott (2013). While continuous descriptions allow to extract geometric
measures and characteristics of the surface, like its metric or curvature, they are complicated to
use in numerical computations. Hence, an approximation, or piecewise representation of the
surface for local evaluation of quantities and data is desirable.

2.1 Reference Geometry

Such a representation might be given by a piecewise flat surface Γh, topologically equivalent to the
smooth surface Γ. This reference surface is composed of finitely many regular and quasi-uniform
(flat) m–dimensional elements of diameter h. The collection of these patches, typically simplices
or hyper-cubes, is denoted by Gh and is called the grid representation of Γh, with

Γh =
⋃
e∈Gh

e (1)

where e denotes an element of the grid. We assume that the patches do not overlap, i.e., for
e1, e2 ∈ Gh we have that int(e1) ∩ int(e2) = ∅ and if e1 ∩ e2 = I , ∅ and dim(I) = m − 1, it is called an
intersection of e1 and e2 and is assumed to be a subset of an (m − 1)–dimensional facet of e1 and
e2, respectively.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

4 S. Praetorius and F. Stenger

Each element of the grid e ∈ Gh is parametrized over a reference element ê ⊂ Rm by an invertible
and differentiable mappingµe : ê→ e, called the geometry mapping of e. Additionally, we assume
that there exists a bijective mapping X : Γh → Γ, such that the smooth surface can be represented
by the union of (non-overlapping) mapped patches, i.e.,

Γ =
⋃
e∈Gh

X(e) =
⋃
e∈Gh

X(µe(ê)) C
⋃
e∈Gh

Xe(ê) . (2)

With this property, we call Γh the reference manifold or reference domain of Γ and the family
{Xe}e∈Gh its reference parametrization.

2.2 (Higher-order) Approximations of the Manifold

The reference manifold Γh from the last section is not used directly for an approximate discretiza-
tion of functions on Γ, since it does not necessarily approximate the smooth manifold well enough.
It just provides a reference domain for the parametrization X. For numerical computations and
discretizations, we need another manifold in the proximate neighborhood of Γ. For a piecewise
polynomial surface approximation, we follow the general notation of Demlow (2009).

Therefore, let Xk B IkhX ∈ Pk(e) be a kth-order polynomial (Lagrange) interpolation of the mapping
X on the element e of the reference manifold, with Lagrange nodes sitting on the smooth surface
Γ. Pk(e) denotes the space of polynomials on e of degree at most k and I the (componentwise)
Lagrange interpolation operator. The interpolation can be expressed in terms of local basis
functions in the reference element ê, by

Xk(µe(x̂)) B Xk
e(x̂) =

nk∑
j=1

ξ j
· ϕ j(x̂), for x̂ ∈ ê , (3)

with ξ j B Xe(x̂ j) ∈ Γ for {x̂ j
} j=1...nk local Lagrange nodes, the corresponding local Lagrange basis

functions {ϕ j} j=1...nk , and nk the number of local basis functions of Pk(ê). The nodes and basis
functions fulfill the nodal interpolation property ϕi(x̂ j) = δi j. Thus, the mapped Lagrange nodes
ξ j sit on the smooth surface Γ, see Figure 1 for an illustration.

Then, the kth-order approximation Γk
h of the smooth surface Γ can be obtained by the union of

(non-overlapping) mapped elements, mapped by Xk:

Γk
h =
⋃
e∈Gh

Xk(e) =
⋃
e∈Gh

Xk(µe(ê)) =
⋃
e∈Gh

Xk
e(ê) . (4)

In case of k = 1 we speak of a piecewise flat or polyhedral surface grid Γ1
h. Since the mappings Xk

e
are locally smooth, we obtain a piecewise differentiable manifold.

2.3 The Grid, Entities, and Intersections

The reference manifold Γh is composed of elements e that build the grid Gh, or vice versa, the
grid defines the manifold. The (higher-order) mapped elements and the elements mapped to the
smooth manifold also form grids, namely

G
k
h B {X

k(e)}e∈Gh and G B {X(e)}e∈Gh . (5)

Since, we assume that all manifolds Γ, Γh, and Γk
h have the same dimension, also the grids are

composed of elements e of that same dimension m. We speak of a conforming grid if the surface
is continuous and the non-empty intersection of each two elements e1 and e2 is an l–dimensional
facet of both elements, called sub-entity s ⪯ e1 and s ⪯ e2. We say s has co-dimension c = m− l. In
conforming grids the sub-entities of co-dimension one are the intersections I of two elements.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 5

ê X2
e (ê)

x̂0 x̂1

x̂2

x̂3

x̂4

x̂5

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

Figure 1: Lagrange parametrization of order k = 2 with Lagrange nodes on vertices and edges.

Corresponding to the reference element ê there is a reference element ŝ ⊂ Rl of the sub-entity s
of e. The relation between the geometries of ŝ and ê is given by the invertible and differentiable
mapping ηs,e : ŝ → ê, called the local-geometry mapping between sub-entity and element. With
this, the parametrization of the real sub-entity s is given by the chain of η and µ, i.e., s =
µe(ηs,e(ŝ)), see Figure 2 for an illustration. If this parametrization is equivalent to the direct
mapping from the reference element ŝ to s, i.e., if it holds µe ◦ ηs,e = µs for all sub-entities s of
e, we call the grid twist-free, see Dedner and Nolte (2012). This property is assumed to hold
at least for intersections, in the following. Examples of twist-free grids are Dune::OneDGrid,
Dune::YaspGrid, and Dune::ALUGrid.

ŝ
ê

e X(e)

s X(s)

Γh Γ

µe
X

Xe

ηs,e

µs

Figure 2: Coordinate mappings µ and η between reference element, flat element, and curved
element. An additional mapping Xs,e can be defined by chaining of η, µ and X, i.e. Xs,e = X◦µe◦ηs,e.

2.4 Grid-functions and Element-functions

When discussing the mapping X or its polynomial variants Xk, we often define it by its local
representation Xe and Xk

e , respectively, with e the element it is defined on. Those functions,
defined via their local element variant, are called grid-functions in the following and are directly
connected to their local variant, called element-functions. The evaluation of the grid-function
in global coordinates x ∈ Rn might be an expensive operation, whereas the evaluation in the
corresponding local coordinate x̂ can be easily defined. An example is the evaluation of a discrete
function by linear combination of evaluations of local basis functions inside the grid elements.

In general, we denote by fe : ê → R, fe = f ◦ µe the element-function bound to the element e. It
is associated to the grid-function f : e → R with range R. If f is smooth or at least differentiable

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

6 S. Praetorius and F. Stenger

inside the element e, we denote by D f : e → L(e,R) its derivative as linear mapping, often
represented as a matrix Rdim(R)×n. The corresponding localized derivative (D f)e is then given by

(D f)e : ê→ L(e,R), (D f)e = D f ◦ µe , (6)

with the same linear mapping in the range as the global D f . This notation follows Engwer et al.
(2017). If instead just a local Jacobian D(fe) : ê → L(ê,R) is available or requested, we have the
relation D(fe) = (D f)e ·D(µe).

Note that the geometry mapping X is a grid-function with element-function Xe. Also, the
parametrized geometry mappings Xk and Xk

e are grid-function and element-function, respectively.
These mappings are differentiable, by differentiating their local basis functions ϕ j, i.e.,

D(Xk
e) =

nk∑
j

ξ j
⊗D(ϕ j) . (7)

In the next section we want to introduce the implementation of the element geometry mappings
Xe and Xk

e and then in the subsequent section a wrapper to transform the reference grid Gh into G
or Gk

h using the geometry mappings and its global variants X and Xk from above.

3 CURVEDGEOMETRY and the DUNE geometry interface

A Geometry is a mapping from local coordinates inRl to global coordinates inRn, where the local
coordinates are in the coordinate system of an entity e which this geometry belongs to. The entity
can be an element of the grid, or a sub-entity of any co-dimension. This flexibility requires the
geometry parametrization to be evaluable in different coordinate systems and also its derivatives
to be available for the corresponding coordinate transformations.

Depending on how the parametrization of the geometry is given, different implementations are
provided. The ParametrizedGeometry expects the mapping Xe and a local finite-element and
constructs the local interpolation Xk

e internally, whereas the LocalFunctionGeometry wraps a
given Xe or Xk

e directly.

3.1 Geometry with Local Interpolation

The first implementation, ParametrizedGeometry, expects only a callable function that maps
entity local coordinates to global coordinates. This mapping is internally interpolated into a
local finite-element space, e.g., local Lagrange functions, that allows to evaluate values and
Jacobians of the parametrization from linear combinations of evaluated local basis functions and
its derivatives.

C++ code
1 // <dune/curvedgeometry/parametrizedgeometry.hh>
2
3 template <class LocalFiniteElement , int coorddim, class Traits = (...)>
4 class ParametrizedGeometry;

The template parameters are defined by

LocalFiniteElement A class representing a local finite-element in the sense of Dune-LocalFunctions.

coorddim Dimension n ≥ l of the global coordinates this geometry maps into.

Traits (optional) Parameters for internal optimization of operations.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 7

This geometry mapping directly corresponds to the description of the discrete geometry Xk where
the input function represents the mapping X combined with the local-to-global mapping µe ◦ ηs,e.
Thus, the actual input is Xs,e. In the geometry, the local interpolation Xk

s,e is represented by the
interpolation coefficients {Xs,e(x̂ j)} j, i.e., Lagrange nodes on the surface Γ, and the set of local basis
functions {ϕ j} associated to these nodes, see (3). The Jacobian of the geometry mapping can thus
be provided by evaluating the gradients of the local basis functions and its linear combination
with the stored coefficients, see (7).

The LocalFiniteElement parameter here is the crucial input characterizing which type of local
basis functions and local interpolation to use for calculating and representing the (Lagrange)
nodes. Dune-LocalFunctions provides various implementations of local finite-elements, like
Lagrange functions on all supported geometry types. The corresponding local finite-element can
be obtained either by an explicit instantiation if the geometry type is known and identical for all
elements, or by using a local finite-element cache. The latter provides the local finite-element of
one kind for all geometry types by type-erasure or variadic visitors, see the example below.

3.2 Geometry with Differentiable Parametrization

The second implementation, LocalFunctionGeometry, expects a mapping for coordinates and
additionally the Jacobian of that mapping so that the geometry Jacobian can be represented di-
rectly by the function. We expect this mapping function to be compatible with a ElementFunction
interface, to be defined below. An element-function fe typically can be evaluated only in element
local coordinates of the element e, denoted by Rm, but not in codim > 0 entity-local coordinates,
denoted byRl. In order to allow the geometry to be defined also for these entities, or even element
intersections, this geometry implementation is parametrized additionally with a LocalGeometry
coordinate transform η. This coordinate transform maps the entity-local coordinates to the grid-
element local coordinates where the element-function can be evaluated in. Thus, the geometry
mapping is a chaining Rl

→ Rm
→ Rn with l ≤ m ≤ n, that is, X = fe ◦ η = f ◦ µe ◦ η, where f is

the global grid-function associated to the element-function fe that is bound to an element e.

C++ code
1 // <dune/curvedgeometry/localfunctiongeometry.hh>
2
3 template <class ElementFunction , class LocalGeometry , class Traits = (...)>
4 class LocalFunctionGeometry;
5
6 template <class ElementFunction , class ctype, int dim>
7 using ElementLocalFunctionGeometry = LocalFunctionGeometry<ElementFunction ,
8 DefaultLocalGeometry<ctype,dim,dim>, LocalFunctionGeometryTraits<ctype> >;

This geometry is parametrized with the types ElementFunction, LocalGeometry, and Traits
that fulfill the following requirements:

LocalGeometry represents a geometric mapping from an entity of codim c to the element with
codim 0. The geometry is bound to the domain element whereas the ElementFunction can be
bound to the range element of this geometric mapping. Thus, it is a differentiable function
η : Rl

→ Rm with l = m − c that fulfills a reduced Dune::Geometry concept, i.e., there is a local-
to-global mapping from the coordinate system of the codim-c entity to the element geometry.
Let η be of type LocalGeometry and x̂ of type LocalCoordinate, then the expression η(x̂) ∈ Rm

results in a type that is the domain type of the Localfunction.

The derivative of this parametrization must be accessible by evaluating the geometry method
η.jacobianTransposed(x̂) that returns the transposed of the Jacobian of η, that is, D⊤η with
Dη : Rl

→ L(Rn,Rl) � Rn×l.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

8 S. Praetorius and F. Stenger

ElementFunction represents a differentiable mapping fe : Rm
→ Rn with given derivative (D f)e :

Rm
→ L(Rn,Rn) � Rn×n. It is required that fe is a model of the concept Callable, i.e., let x be

of type LocalGeometry::GlobalCoordinate, then the expression fe(x) must result in a valid
type denoted by the GlobalCoordinate of the LocalFunctionGeometry. fe must be differentiable,
i.e., there must exist a function derivative(f) whose return type is another model of the
ElementFunction concept. It returns the global derivative D(f)e of the grid-function f associated
to fe.

Traits (optional) is a class holding parameters for the implementation of the geometry, like
the tolerance and iteration limit for a Newton solver implementing the global-to-local func-
tion. Additionally it allows to specify element properties that cannot be deduced from the
ElementFunction or LocalGeometry directly, like the GeometryType of the element, if there is
only one.

The definition of the ElementFunction follows the definition of localized functions in Engwer
et al. (2017). Especially, the definition of the range of the derivative of the element-function as
derivative w.r.t. global coordinates is taken from there. The final jacobianTransposed of the
geometry mapping X is thus given by the chaining D⊤X = D⊤η ·(D⊤µe◦η) ·(D f ◦µe◦η)⊤. Note that
the mappings X, η, and µe are geometry mappings and thus provide only the transposed of their
Jacobians, whereas the localized function fe provides the non-transposed Jacobian derivative. In
order to provide the transposed of the final geometry Jacobian DX, it needs to be a linear map
that is transposible, i.e. it can be applied in a transposed fashion to a vector, by implementing
the method mtv(), a method representing the transposed matrix times vector multiplication
operation, or it must be representable as a matrix directly.

3.3 Examples for the Usage of Local Geometries

The two geometry implementations can now be used directly to parametrize a surface while
traversing a flat reference grid Gh. The following examples show the wrapping of a flat geometry
into a LocalFunctionGeometry and ParametrizedGeometry, respectively.

At first, we introduce a differentiable mapping torus : R2
→ R3 representing a torus parametriza-

tion.

C++ code
1 struct Torus {
2 double const r1 = 2.0, r2 = 1.0;
3
4 auto operator() (FieldVector<double,2> const& u) const {
5 return FieldVector<double,3>{
6 (r1 + r2*std::cos(u[0])) * std::cos(u[1]),
7 (r1 + r2*std::cos(u[0])) * std::sin(u[1]),
8 r2*std::sin(u[0])
9 };

10 }
11
12 friend auto derivative (Torus t) {
13 return [r1=t.r1,r2=t.r2](FieldVector<double,2> const& u) {
14 return FieldMatrix<double,3,2>{
15 {-r2*std::sin(u[0])*std::cos(u[1]),-(r1 + r2*std::cos(u[0]))*std::sin(u[1])},
16 {-r2*std::sin(u[0])*std::sin(u[1]), (r1 + r2*std::cos(u[0]))*std::cos(u[1])},
17 { r2*std::cos(u[0]), 0.0}
18 };
19 };
20 }
21 };

Second, we have to define a reference grid that provides the actual elements e, its topological
connectivity, and the mapping X for the curved geometry. The reference grid is a simple structured
grid YaspGrid.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 9

C++ code
1 // Construct a reference grid as a (periodic) 2d rectangular domain
2 auto refGrid = YaspGrid<2>{{2*M_PI,2*M_PI}, {8,16}, std::bitset<2>("11")};
3
4 // Define the geometry mapping
5 auto torus = Torus{};
6 auto torusGridFct = analyticGridFunction<YaspGrid<2>>(torus);

The mapping torus is transformed into a differentiable grid-function torusGridFct using the
wrapper AnalyticGridFunction, see section 5, that is provided by the library.

For the construction of a LocalFunctionGeometry, we have to provide an element-function of
that grid-function and a LocalGeometry. In case of wrapping the grid element geometry, i.e.,
codim is zero, this local-geometry mapping is the identity. An efficient implementation is given
by the class DefaultLocalGeometry.

C++ code
1 // Define an element-function from the grid-function
2 auto torusElemFct = localFunction(torusGridFct);
3 auto localGeometry = DefaultLocalGeometry<double,2,2>{};
4
5 // traverse the reference grid
6 for (const auto& e : elements(refGrid.leafGridView()))
7 {
8 // bind the element-function to the grid element
9 torusElemFct.bind(e);

10
11 // construct the LocalFunctionGeometry from ElementFunction and LocalGeometry
12 auto localFctGeometry
13 = LocalFunctionGeometry{e.type(), torusElemFct , localGeometry};
14
15 // (optionally) unbind from the element, i.e., free memory and unset variables
16 torusElemFct.unbind();
17 }

An element-function must be bound to an element (and optionally unbound at the end of
usage). The type supports class-template argument deduction and if the geometry is con-
structed on the grid element, the LocalGeometry argument can even be omitted, defaulting
to DefaultLocalGeometry in this case:

C++ code
1 auto localFctGeometry = LocalFunctionGeometry{referenceElement(e), torusElemFct};

Note, it is necessary to pass the element type as Dune::ReferenceElement, in order to allow the
deduction of the element dimension.

Similarly, we can construct a ParametrizedGeometry (parametrized by Lagrange local finite-
elements) by using the torus function from above. Therefore, we have to either use the element-
function wrapper or have to construct the local-to-global mapping from reference element coor-
dinates to element coordinates directly.

A local finite-element can be provided by using a local finite-element cache, or by explicit instan-
tiation. Both variants are shown in the example below.

C++ code
1 // <dune/localfunctions/lagrange/lagrangelfecache.hh>
2 // <dune/localfunctions/lagrange/lagrangecube.hh>
3 ...
4 LagrangeLocalFiniteElementCache<double, double, 2, order> lfeCache;
5
6 // traverse the reference grid
7 for (const auto& e : elements(refGrid.leafGridView()))

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

10 S. Praetorius and F. Stenger

8 {
9 // projection from local coordinates

10 auto X_e = [&torus,geo=e.geometry()](const auto& local) {
11 return torus(geo.global(local));
12 };
13
14 // construct the ParametrizedGeometry from lfe cache
15 auto curvedGeometry = ParametrizedGeometry{e.type(), lfeCache.get(e.type()), X_e};
16
17 // construct the ParametrizedGeometry from local finite-element
18 auto lfe = LagrangeCubeLocalFiniteElement<double, double, 2, order>{};
19 auto curvedGeometry2 = ParametrizedGeometry{e.type(), lfe, X_e};
20 }

4 CURVEDGRID and the DUNE grid interface

Instead of wrapping the geometries manually while traversing the flat reference grid, the whole
grid can be wrapped. This allows to return the wrapped geometry directly in a call toe.geometry()
instead of the flat element geometry while preserving the grid topology and element connectivity
given by the wrapped reference grid. The library provides such a grid wrapper with the class
CurvedGrid which is an implementation of Gk

h or G, depending on the element parametrization
provided.

The class signature is given by

C++ code
1 // <dune/curvedgrid/grid.hh>
2
3 template <class RefGrid, class GridFunction , bool useInterpolation = false>
4 class CurvedGrid;
5
6 // constructor using Lagrange geometry interpolation
7 template <class RefGrid, class GridFunction>
8 CurvedGrid<RefGrid,GridFunction ,true>
9 ::CurvedGrid(const RefGrid&, const GridFunction&, int order);

10
11 // constructor using LocalFunctionGeometry
12 template <class RefGrid, class GridFunction>
13 CurvedGrid<RefGrid,GridFunction ,false>
14 ::CurvedGrid(const RefGrid&, const GridFunction&);

with template parameters

RefGrid The reference grid the curved grid is based on

GridFunction the type of a grid-function associated with a reference grid

useInterpolation (optional) if true, uses Lagrange ParametrizedGeometry, otherwise construct
a geometry of type LocalFunctionGeometry

This class allows to locally construct both theLocalFunctionGeometryand theParametrizedGeometry,
depending on the properties of the grid-function passed to the grid wrapper and theuseInterpolation
parameter given to the grid. If the latter is true, it is assumed that a local interpolation should
be constructed of the passed grid-function and thus a ParametrizedGeometry with Lagrange
local finite-element is used as local geometry parametrization. Otherwise, if useInterpolation
is false and the grid-function is locally differentiable, a LocalFunctionGeometry is used.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 11

4.1 Examples for the Usage of the Grid Wrapper

In the following examples we construct both a wrapper using the ParametrizedGeometry and
the LocalFunctionGeometry.

At first, we construct the grid by wrapping a callable representing the geometry mapping X.

C++ code
1 // Construct a reference grid
2 auto refGrid = Gmsh4Reader< AlbertaGrid<2,3> >::createGridFromFile("sphere.msh");
3
4 // Define the geometry mapping
5 auto sphere = [](const auto& x) { return x / x.two_norm(); };
6
7 // Wrap the reference grid to build a curved grid
8 CurvedGrid grid{*refGrid, sphere, order};

In this example, a grid-function is automatically constructed from the callable sphere as an
instance of AnalyticGridFunction. If class template-argument deduction from C++17 cannot be
used, a generator function curvedSurfaceGrid(*refGrid, sphere) is provided.

In the second example we construct a grid-function first which either uses a local interpolation
internally, or is given as a differentiable function as above.

C++ code
1 // Define a discrete grid-function on the reference grid
2 auto gridFct = discreteGridViewFunction<3>(refGrid->leafGridView(), order);
3
4 // Interpolate the parametrization into the grid-function
5 Functions::interpolate(gridFct.basis(), gridFct.coefficients(), sphere);
6
7 // Wrap the reference grid to build a curved grid
8 CurvedGrid grid{*refGrid, gridFct};

Here, in the example we use a generic discrete function with range type FieldVector<double,3>,
that is represented by a Dune-Functions global basis.

C++ code
1 power<3>(lagrange(order), blockedInterleaved())

This represents a product basis (factory) composed of three times the same Lagrange basis with
an ordering of the global indices in groups of the components. The basis is stored together
with a coefficient vector inside the DiscreteGridViewFunction, see section 5. Note that this
grid-function is associated to a GridView and not the whole grid, since the global basis is bound
to a GridView. Each time the (reference) grid changes, e.g., by local refinement or parallel load
balancing, the grid-function must be updated as well, using

C++ code
1 gridFct.update(refGrid->leafGridView());

5 Grid-functions and Parametrizations

In order to construct the ParametrizedGeometry or LocalFunctionGeometry and thus the curved
grid, parametrizations in form of mappings Xe or element-functions must be provided. Various
grid-functions are implemented in Dune-CurvedGrid to simplify the construction and to act as
reference implementations:

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

12 S. Praetorius and F. Stenger

AnalyticGridFunction Implementation of a grid-function that can be bound to any entity in
the grid given by a Callable, mapping global coordinates of Γh to a range type. This range type
defines the global coordinates in the curved geometry. If the callable is differentiable so is the
grid-function. It can thus be used in the LocalFunctionGeometry.

The AnalyticGridFunction can be constructed by

C++ code
1 // <dune/curvedgrid/gridfunctions/analyticgridfunction.hh>
2
3 template <class Grid, class Functor>
4 class AnalyticGridFunction;
5
6 template <class Grid, class Functor>
7 auto analyticGridFunction (Functor&& functor)
8 -> AnalyticGridFunction<Grid, std::decay_t<Functor>>;

AnalyticDiscreteFunction Similarly toAnalyticGridFunction this grid-function is constructed
from a Callable, mapping global coordinates to global coordinates, but the mapping is locally
interpolated by means of a Lagrange basis. Thus, this grid-function does not represent an exact
geometry but an approximation. Moreover, it provides derivatives by differentiating the local
basis functions, see (7). It can be used to parametrize LocalFunctionGeometry.

The AnalyticDiscreteFunction can be constructed by

C++ code
1 // <dune/curvedgrid/gridfunctions/analyticdiscretefunction.hh>
2
3 template <class Grid, class Functor, int order = -1>
4 class AnalyticDiscreteFunction;
5
6 template <class Functor, class Grid>
7 auto analyticDiscreteFunction (Functor&& functor, const Grid&, int order)
8 -> AnalyticDiscreteFunction<Grid, std::decay_t<Functor>>;
9

10 template <int order, class Functor, class Grid>
11 auto analyticDiscreteFunction (Functor&& functor, const Grid&)
12 -> AnalyticDiscreteFunction<Grid, std::decay_t<Functor>, order>;

Note that this grid-function requires Dune-Functions as module dependency.

DiscreteGridViewFunction This grid-function is restricted to a specific GridView of the grid
and is build by a set of global basis functions and a coefficient vector, both stored inside this
grid-function. It can be used as LocalFunctionGeometry, since the basis functions provide a
derivative and thus the grid-function is differentiable. Additionally, the coefficient vector, i.e.,
the vector of Lagrange nodes on the smooth surface Γ, can be modified and thus evolving grids
can be parametrized easily.

The DiscreteGridViewFunction can be constructed by

C++ code
1 // <dune/curvedgrid/gridfunctions/discretegridviewfunction.hh>
2
3 template <class GridView ,
4 int components = GridView::dimensionworld ,
5 int ORDER = -1,
6 class T = double>
7 class DiscreteGridViewFunction;
8
9 template <int components , int ORDER = -1, class T = double, class GridView>

10 auto discreteGridViewFunction (const GridView& gridView , int order = ORDER)
11 -> DiscreteGridViewFunction<GridView, components , ORDER, T>;

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 13

Note, the template parameter ORDER == -1 means, the polynomial order must be given as
constructor argument or as final function argument in discreteGridViewFunction. Otherwise,
if ORDER >= 0, a static polynomial order is considered. In case the template parameter and the
function argument are both negative, an error is thrown.

This grid-function is not as general as the DiscreteGlobalBasisFunction of Dune-Functions,
i.e., the range type is fixed to FieldVector<T,components> and the global basis is explicitly
defined as power<components>(lagrange(order), blockedInterleaved()), see Engwer et al.
(2018). But it defines the necessary derivative and is implemented as a grid-function that
includes the coefficient vector. Note that this grid-function requires Dune-Functions as module
dependency.

6 Geometries

In order to test PDE discretizations or in benchmarks, geometry parametrizations for simple
shapes must be available. A common example is the sphere parametrization used in all the
examples above. But, additionally, shapes with less symmetry might be of interest for benchmarks
and numerical validation. We have implemented the geometries of the sphere, ellipsoid, and torus
as simple parametrizable shapes. Those three geometries can be obtained by

C++ code
1 // <dune/curvedgrid/geometries/sphere.hh>
2
3 template <int dim, class ctype = double>
4 class SphereProjection;
5
6 // sphere radius r
7 template <class Grid, class T>
8 auto sphereGridFunction (T r)
9 {

10 auto sphere = SphereProjection<Grid::dimensionworld ,T>{r};
11 return analyticGridFunction<Grid>(sphere);
12 }

for the sphere parametrization.

C++ code
1 // <dune/curvedgrid/geometries/ellipsoid.hh>
2
3 template <class ctype = double>
4 class EllipsoidProjection;
5
6 // major axis a, b, and c
7 template <class Grid, class T>
8 auto ellipsoidGridFunction (T a, T b, T c)
9 {

10 auto ellipsoid = EllipsoidProjection<T>{a,b,c};
11 return analyticGridFunction<Grid>(ellipsoid);
12 }

for the ellipsoid parametrization.

C++ code
1 // <dune/curvedgrid/geometries/torus.hh>
2
3 template <class ctype = double>
4 class TorusProjection;
5
6 // Outer radius R and inner radius r
7 template <class Grid, class T>
8 auto torusGridFunction (T R, T r)

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

14 S. Praetorius and F. Stenger

9 {
10 auto torus = TorusProjection<T>{R,r};
11 return analyticGridFunction<Grid>(torus);
12 }

for the torus parametrization.

For all three a projection and a corresponding grid-function that just wraps the callable into an
AnalyticGridFunction is provided.

Additionally, two geometry parametrizations are implemented for an explicit or implicit surface
representation. That is, a representation as high-resolution (piecewise) flat grid, or as zero-level
set of an implicit function. For both representations the corresponding coordinate projection is
implemented which is required to construct the grid-function for the curved geometries.

6.1 Projection to High-Resolution Surface Grid

The explicit surface representation is based on a flat grid that approximates the smooth surface
with higher-resolution than the target grid we want to construct from a reference grid. This
would allow to run simulations on a coarse grid, while the surface is only given by a very fine
grid. Additionally, it allows to construct higher-order geometries for a surface that is given only
with piecewise flat geometries.

C++ code
1 // <dune/curvedgrid/geometries/explicitsurface.hh>
2
3 template <class ctype = double>
4 class ExplicitSurfaceProjection;
5
6 // Constructor with grid and an option to activate caching
7 template <class ctype>
8 template <class Grid>
9 ExplicitSurfaceProjection<ctype>

10 ::ExplicitSurfaceProjection (const Grid& grid, bool cached = true);

The input to construct the ExplicitSurfaceProjection is a (surface) grid representing the high-
resolution (piecewise) flat surface. Internally, the vertices of the grid are stored in a fast search
tree, a KDTree implementation based on Blanco and Rai (2014) which supports nearest neighbor
search. Each time the projection is evaluated for a global coordinate x the closest vertex in the
high-resolution surface grid is searched. Afterwards the adjacent elements are considered. For
each of them the closest point to x is determined by orthogonal projection. The closest found
point is then returned.

This approach only works well if the high-resolution surface grid is of sufficient quality, i.e., no
overly acute-angled elements occur. Otherwise the adjacent elements of the closest vertex don’t
need to contain the actual closest point to x. When choosing a method for creating the grid a
Delaunay-triangulation, for instance, is a good candidate. Grids not fulfilling the element-quality
condition can typically be adapted without loosing their important features by using the meshing
tool meshconv, Stenger (2020).

The decision to only consider the elements adjacent to the unique closest vertex is a compromise
made for performance-reasons. By extending the nearest neighbor search in the KDTree to several
closest vertices and considering adjacent elements to all of them one could allow for lower quality
surface grids at the cost of sacrificing performance.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 15

Γh
X
−→ Γfine

h

Figure 3: Coarse grid (left) used as reference domain Γh for parametrization with closest-point
projection to fine grid Γfine

h (right) of Stanford-bunny geometry. The Coarse grid is obtained by
feature-preserving coarsening of the fine-grid, see Stenger (2020); Valette and Chassery (2004).

6.2 Projection to Zero-Level set

If the surface is given implicitly as the zero-level set of a higher-order function, the closest-point
projection must be calculated iteratively using either a Newton-method or a fixed-point iteration.
The essential property that is used in these algorithms, is that the normal vector of the surface in
a proximate neighborhood is given by the normalized gradient of the implicit function.

Thus, the input to the ImplicitSurfaceProjection is a differentiable function ψ providing the
surface as Γ = {x ∈ Rn : ψ(x) = 0}with nΓ(x) = ∇ψ(x)/∥∇ψ(x)∥ at x ∈ Γ.

Given an initial guess for the projected point x0, the authors of Persson (2004); Nitschke (2014)
describe a scheme to iteratively compute better guesses of the projection of x0 to Γ by approximat-
ing the closest-point property X(x) = x − d(x)nΓ(X(x)) with a representation of the approximate
distance d(x) ≈ ψ(x)/∥∇ψ(x)∥ and the normal vector representation from above:

xi+1 = xi − ∇ψ(xi)
ψ(xi)
∥∇ψ(xi)∥2

, êrri =
|ψ(xi)|
∥∇ψ(xi)∥

. (8)

This scheme applies this relation iteratively, eventually converging to a point on Γ near the
closest-point X(x). It is implemented in the class

C++ code
1 // <dune/curvedgrid/geometries/implicitsurface.hh>
2
3 template <class Functor>
4 class SimpleImplicitSurfaceProjection;
5
6 template <class Functor>
7 SimpleImplicitSurfaceProjection<Functor>
8 ::SimpleImplicitSurfaceProjection (const Functor& psi, int maxIter = 10);

where the maximal number of iterations in the iterative scheme is given by maxIter.

An improved version of that scheme that takes the iterate from the simple scheme as initial
approximation of the closest-point projection and uses this point to get a better estimate for the
actual distance of x to Γ is proposed in Demlow and Dziuk (2007):

x̃i+1 = xi − ∇ψ(xi)
ψ(xi)
∥∇ψ(xi)∥2

, dist = sign(ψ(x0))∥x̃i+1 − x0∥

xi+1 = x0 − ∇ψ(x̃i+1)
dist

∥∇ψ(x̃i+1)∥
, erri = êrri +

∥∥∥∥∥ ∇ψ(xi)
∥∇ψ(xi)∥

±
(xi − x0)
∥xi − x0∥

∥∥∥∥∥ (9)

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

16 S. Praetorius and F. Stenger

The computational demand is higher than in the simple scheme, but it converges to the actual
closest point on Γ. This scheme is implemented in the class

C++ code
1 // <dune/curvedgrid/geometries/implicitsurface.hh>
2
3 template <class Functor>
4 class ImplicitSurfaceProjection;
5
6 template <class Functor>
7 ImplicitSurfaceProjection<Functor>
8 ::ImplicitSurfaceProjection (const Functor& psi, int maxIter = 10);

6.2.1 Example of an application of the iterative scheme We consider a surface with genus
two, given by the function

ψ(x, y, z) = 2y(y2
− 3x2)(1 − z2) + (x2 + y2)2

− (9z2
− 1)(1 − z2) .

A reference surface can be obtained by extracting the zero-level set contour, e.g., by using the
tool ParaView, see Ahrens et al. (2005), by a surface Delaunay triangulation combined with
a surface projection, see Persson and Strang (2004); Persson (2004), or by reconstructing the
implicitly defined surface using some fast marching algorithm, see Engwer and Nüßing (2017).
We followed the first approach, combined with a coarsening of the obtained surface grid using
Stenger (2020), see also Valette and Chassery (2004) for a similar approach.

Applying the implicit projection methods from above to such a coarse reference grid results in
very fast convergence of both schemes to a machine epsilon tolerance. If no closest-point property
is explicitly required, the simple iterative scheme (8) performs faster than the full closest-point
iterative projection scheme (9).

scheme iter.
(8) 4
(9) 42

(a) Iteration counts (b) Grid view (c) Levelset view

Figure 4: Surface extracted from the implicit description as zero-level set of ψ, using an implicit
projection method for the higher-order surface approximation. The colored plane illustrates a cut
through the function ψ. The table in (a) shows the maximal number of iterations i necessary to
reach a pointwise tolerance ei <

√
ϵ ≈ 1.5 · 10−8 with ϵ the machine epsilon of double floating-

point numbers of either the error ei = êrri that approximates the distance of xi to the surface for
all projected points x, or the error ei = erri in the closest-point property of the iterates.

7 Numerical examples

In order to verify the implementation and to test different geometric representations, we have first
analyzed the difference between the discrete surface and the continuous surface. This numerical
verification considers the difference between the smooth surface quantities, the closest-point
projection X, the surface normal n, and the mean curvature H, in the L∞(Γh) norm. In Demlow
(2009); Hansbo et al. (2019), upon many others, the following estimates are shown:

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 17

Proposition 1 For h small enough, we have the estimates

∥X − Xk
∥L∞(Γh) ≤ Chk+1, ∥n ◦ X − nk

h∥L∞(Γk
h) ≤ Chk, ∥H ◦ X −Hk

h∥L∞(e) ≤ Chk−1 (10)

for e ∈ Gk
h, with C a generic constant independent of the mesh parameter h.

We show for three smooth geometries, the unit sphere, an ellipsoid with major axis (1, 1.25, 0.75),
and torus with the two radii (2, 1), the convergence in the L2-norm on the discrete surface that
follows from the assertion in the L∞-norm. Therefore, we have first created a reference grid,
then interpolated the surface parametrization into the element geometries with order k and
finally, evaluated the three quantities by iterating over the reference surface. The error norms are
shown in Figure 5. Note, the L∞-norm is only approximated by computing the maximum in all
quadrature points of the elements that are also used for computing th L2-norms.

grid width h grid width h grid width h

sp
he

re
el

lip
so

id
to

ru
s

k = 1 k = 2 k = 3

h1

h2
h3

h4
∥X − Xk

∥L∞

∥X − Xk
∥L2

∥n ◦ X − nk
h∥L2

∥H ◦ X −Hk
h∥L2

Figure 5: Geometric error norms, normalized by error of largest grid-size, evaluated for three
different geometries, the unit sphere, an ellipsoid, and a torus, for k = 1, 2, and 3. In various
dashed lines, the ideal convergence lines hp are shown.

7.1 Surface Vector Helmholtz equation

We consider the vector Helmholtz equation for a test of the surface parametrization. The corre-
sponding intrinsic surface formulation reads: Find the tangential-vector field u ∈ H1

tan(Γ,TΓ) such
that (

∇Γu, ∇Γv
)
Γ
+
(
u, v
)
Γ
=
(

f , v
)
Γ
∀v ∈ H1

tan(Γ,TΓ) , (11)

with ∇Γ the covariant derivative of the vector fields, (·, ·)Γ the generic L2-inner product on Γ, and
f a given tangential vector field.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

18 S. Praetorius and F. Stenger

For the discretization of this equation we follow the ideas of Nestler et al. (2017, 2019); Hansbo
et al. (2019); Gross et al. (2018); Jankuhn and Reusken (2020) and represent the vector field in an
embedding space – in this case the Euclidean space TΓ � R3 – and transform the corresponding
covariant derivatives into the embedding space. By allowing the vector field to also have non-
tangential components, the equation can be written as a coupled system of scalar-valued equations
with a penalization term to enforce tangentiality: Find the vector field u ∈ [H1(Γ,R)]3 such that(

∇ΓPu, ∇ΓPv
)
Γ
+
(
Pu, Pv

)
Γ
+ ω
(
n · u, n · v

)
Γ
=
(

f , Pv
)
Γ
∀v ∈ [H1

tan(Γ,R)]3 , (12)

with ω ≫ 0 a penalization parameter, P = Id − n ⊗ n the tangential projection operator w.r.t. the
surface normal vector n. For extended vector fields u, the surface covariant derivative can be
expressed in terms of the Euclidean derivative ∇ in the ambient space, by ∇ΓPu = P∇(Pu)P =
P(u ⊗ ∇Γ) − (n ⊗ ∇Γ)(n · u). The expression u ⊗ ∇Γ means the componentwise surface gradient.

In order to discretize this equation, we approximate Γ by Γk
h and H1(Γ,R) by Vr

h,k, the Lagrange
finite-element space of order r, given by

Vr
h,k B

{
v ∈ C0(Γk

h) : v ◦ Xk
e ∈ Pr ∀e ∈ Gh

}
Following the analysis of Hansbo et al. (2019) and Jankuhn and Reusken (2020); Gross et al. (2018)
the normal vector involved in the covariant derivative and mass-matrix term can have the same
approximation order as the geometry, but the normals involved in the penalty term should be
at least one order better. We denote this “better” normal by ñ. Additionally, the scaling for the
penalization factor should be of order h−2, thus we take ω = βh−2 with β = 10 in the numerical
experiments below. Note, in Hardering and Praetorius (2021) it is shown that when interested in
the tangential part of the solution only, a better choice for the approximation is ñ ≡ nh the normal
vector of the discrete surface with ω ≃ h−1.

The resulting discrete variational formulation reads: Find the vector field uh ∈ [Vr
h,k]3 such that(

∇Γk
h
Phuh, ∇Γk

h
Phvh

)
Γk

h

+
(
Phuh, Phvh

)
Γk

h

+ ω
(
ñh · uh, ñh · vh

)
Γk

h

=
(

f ◦ Xk, Phvh

)
Γk

h

∀v ∈ [Vr
h,k]3 . (13)

where the inner product and derivatives have to be understood elementwise and locally, i.e.,
(A,B)Γk

h
=
∑

e∈Gk
h

∫
e A : B dΓ. The challenge hereby is to integrate over the parametrized geometries

and to provide normal vectors of differing approximation order. Since we have (10), the higher-
order normals can be obtained by constructing a local geometry of parametrization order k + 1.

C++ code
1 template <int order>
2 using LFE_t = LagrangeSimplexLocalFiniteElement<double,double,2,order>;
3
4 // traverse the reference grid
5 for (const auto& e : elements(refGrid->leafGridView()))
6 {
7 // projection from local coordinates
8 auto X_e = [&sphere,geo=e.geometry()](const auto& local) {
9 return sphere(geo.global(local));

10 };
11
12 // construct the CurvedGeometries from local parametrization
13 ParametrizedGeometry geometry(e.type(), LFE_t<k>{}, X_e);
14 ParametrizedGeometry higherOrderGeometry(e.type(), LFE_t<k+1>{}, X_e);
15
16 const auto& quadRule = QuadratureRules<double,2>::rule(e.type(), quad_order);
17 for (const auto& qp : quadRule) {
18 // integration element
19 double dS = geometry.integrationElement(qp.position()) * qp.weight();
20 // surface normal n_h
21 auto nh = geometry.normal(qp.position());

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 19

22 // higher-order surface normal n~_h
23 auto nh2 = higherOrderGeometry.normal(qp.position());
24
25 // ...
26 }
27 }

Thus, instead of traversing the CurvedGrid, one could iterate over the reference grid Gh instead
and locally construct the curved geometries of order k and k+ 1 to obtain the surface element and
the surface normal vectors.

7.1.1 Vector Fields on Spherical Geometry Following the example in Nestler et al. (2019)
we define an exact solution u∗ B rotn(xyz) of (11) and construct4 the corresponding load-vector
function f B −divΓ ∇Γu∗ + u∗. A coarse grid of the sphere is explicitly provided using a Gmsh
mesh with nearly equal sized elements.

In the following numerical test the geometry parametrization and function parametrization take
the same polynomial order, i.e., r = k.

level grid width h error (k = 1) eoc error (k = 2) eoc error (k = 3) eoc
0 7.8462 · 10−1 3.0270 · 10−1 — 2.3687 · 10−2 — 1.7959 · 10−2 —
1 3.9937 · 10−1 9.2247 · 10−2 1.809 3.7851 · 10−3 2.713 1.1312 · 10−3 4.094
2 2.0496 · 10−1 2.4538 · 10−2 2.000 4.7189 · 10−4 3.121 7.3444 · 10−5 4.099
3 1.0322 · 10−1 6.2489 · 10−3 1.998 5.6328 · 10−5 3.099 4.6436 · 10−6 4.025
4 5.1721 · 10−2 1.5703 · 10−3 2.000 6.7794 · 10−6 3.064 2.9136 · 10−7 4.007
5 2.5878 · 10−2 3.9311 · 10−4 2.000 8.2829 · 10−7 3.036 1.8234 · 10−8 4.002

Table 1: L2-error of linear (k = 1), quadratic (k = 2), and cubic (k = 3) iso-parametric finite elements
for the vector Helmholtz equation with experimental order of convergence (eoc) in the grid width
h that tends towards 2, 3, and 4, respectively.

(a) Sphere (b) Ellipsoid

Figure 6: Solution of the vector Helmholtz equation on the sphere and on the ellipsoid.

7.2 Moving Grids

Let Γh ⊂ R
3 be a smooth closed and stationary reference surface. A map X : Γh × [0,T]→ R3 then

defines a parametrization of a family of surfaces Γ(t) ⊂ R3 over this reference manifold:

Γ(t) = {X(x, t) : x ∈ Γh} . (14)

4The corresponding symbolic computations are done using sympy.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

20 S. Praetorius and F. Stenger

The evolution of this family of surfaces is characterized by its velocity v(X, t) ∈ R3 at each point
X = X(x, t) ∈ Γ(t),

∂tX(x, t) = v(X(x, t), t) . (15)

We consider the surface evolution driven by its mean curvature, the geometric mean curvature
flow flow, see Deckelnick et al. (2005); Kovács et al. (2019); Dziuk (1990). Therefore, we introduce
H B tr(κ) the mean curvature of the surface with extended Weingarten map κ = −n⊗∇Γ, and the
surface evolution v = −Hn.

Utilizing the geometric identity ∆ΓX = −Hn, see, e.g., Dziuk (1990); Dziuk and Elliott (2013), a
weak formulation of the evolution law can be written: For all t ∈ [0,T], find X(·, t) ∈ [H1(Γh)]3

such that ∫
Γ(t)
∂tx(t) · y dΓ(t) = −

∫
Γ(t)

∑
i

▽Γ(t)xi(t) · ▽Γ(t)yi dΓ(t) ∀y ∈ [H1(Γ(t))]3 , (16)

with the surface identity x(t) = X(·, t). Note that on the right-hand side of that equation, we find
the componentwise surface gradient of the parametrization.

In order to discretize this equation, we introduce a splitting of the time-interval [0,T] into discrete
time steps 0 < t0 < t1 < . . . < tN = T with generic time step width τ = ts − ts−1 and denote
by Xs � X(·, ts) the parametrization at time step ts. Correspondingly, we denote by Γs = Xs(Γh)
the surface at that time step. Since the grid-function Xs is parametrized over the reference
surface Γh we replace the integration over Γs by an integration over the reference surface using a
transformation of the surface elements dΓh → dΓs.

For the discretization in space, we introduce the finite-element space Vr
h of Lagrange finite-

elements on Γh,
Vr

h B
{
v ∈ C0(Γh) : v ◦ Xe ∈ Pr ∀e ∈ Gh

}
.

Then we get the discrete variational formulation by simple Euler discretization in time: Let X0 be
a given initial parametrization. For all s = 1, . . . ,N, find Xs ∈ [Vr

h]3 such that∫
Γh

(Xs − Xs−1) · Y dΓs−1 = −

∫
Γh

τ
∑

i

▽Γs−1 Xi
t · ▽Γs−1 Yi dΓs−1 ∀Y ∈ [Vr

h]3 . (17)

So, while traversing the reference grid, we need the geometry of the curved grid from the last
time step Γs−1 = Xs−1(Γh). This is given by the grid-function Xs−1:

Initially we construct a DiscreteGridViewFunction:

C++ code
1 auto X = discreteGridViewFunction(refGrid->leafGridView(), order);
2 auto X_e = localFunction(X);
3
4 // interpolate the initial surface parametrization
5 auto perturbedSphere = [](auto const& x) { return ...; };
6 Functions::interpolate(X.basis(), X.coefficients(), perturbedSphere);

This grid-function additionally provides a global basis that can be localized to an element:

C++ code
1 auto localView = X.basis().localView();
2
3 // traverse the reference grid
4 for (const auto& e : elements(X.basis().gridView()))
5 {
6 // bind the local function to the element
7 X_e.bind(e);
8

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 21

9 // bind the localized basis to the element
10 localView.bind(e);
11
12 // the localized basis provides a local finite-element
13 auto const& localFE = localView.tree().child(0).finiteElement();
14 auto const& localBasis = localFE.localBasis();
15
16 // ...
17 }

On each element of the reference grid, we can construct a curved geometry. This can be used to
obtain the integration element and the transform of the local gradients of the local basis-functions
to the actual domain of the curved element.

C++ code
1 LocalFunctionGeometry geometry(referenceElement(e), X_e);
2
3 const auto& quadRule = QuadratureRules<double,2>::rule(e.type(), quad_order);
4 for (const auto& qp : quadRule) {
5 // integration element dG_{s-1}
6 double dS = geometry.integrationElement(qp.position()) * qp.weight();
7
8 // the inverse of the transposed geometry Jacobian
9 auto Jtinv = geometry.jacobianInverseTransposed(qp.position());

10
11 // evaluate the local basis Jacobians in the quadrature point
12 std::vector<FieldMatrix<double,1,2>> shapeGradients;
13 localBasis.evaluateJacobian(qp.position(), shapeGradients);
14
15 // transform the local basis Jacobians to the real element
16 std::vector<FieldVector<double,3>> gradients(shapeGradients.size());
17 for (std::size_t i = 0; i < gradients.size(); ++i)
18 Jtinv.mv(shapeGradients[i][0], gradients[i]);
19 }

The evolution of a perturbed initial sphere can be found in Figure 7. It starts the evolution
by smoothing high curvature regions while continuously shrinking the surface. Eventually the
surface gets sphere-like with a radius that tends to zero.

Figure 7: Mean-curvature flow of a perturbed spherical surface with parametrization of polyno-
mial order 2 at four different time-steps in the evolution.

8 Conclusion and Outlook

We have implemented parametrized and curved geometries for the Dune framework by wrapping
grid-functions or differentiable functions into the Geometry interface defined by the Dune-Grid
module. Additionally, we have implemented a wrapper for flat grids providing a curved geom-
etry on traversal, while preserving the grid topology and element connectivity.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

22 S. Praetorius and F. Stenger

It is shown in several examples how these wrappers provide high flexibility while preserving
simple usage patterns. In a numerical study we have verified the implementation by showing
classical geometry error bounds to be achieved.

The Dune modules Dune-CurvedGeometry and Dune-CurvedGrid provide not only the geom-
etry and grid wrappers but also utility functions to simplify the work with curved geometries.
These utilities include some reference geometries and surface projections, as well as grid-functions
for various requirements. A long-term goal is to integrate these Dunemodules into the core func-
tionality of Dune.

The implementation of the Dunemodules is neither restricted to only surface parametrizations nor
to grids without boundaries. The transformation of 1d, 2d, or 3d geometries is implemented and
handling of boundary parametrized intersections is included. A future work is the development
and application of more grid-functions for the geometry parametrization, e.g., based on a b-
spline basis or p-adaptive Lobatto functions. The latter may allow for boundary adapted high-
order parametrizations with inner elements described as affine mappings. Another topic for
further studies is the differentiability of the element-functions used in the grid parametrization.
Automatic or numeric differentiation of the projections X or Xe, as well as implicit differentiation
of the levelset function ψ, could be a way to allow for exact geometry parametrizations of more
surfaces.

Acknowledgments

This work was supported by German Research Foundation (DFG), Research Unit Vector- and
Tensor-Valued Surface PDEs (FOR 3013)

A Appendix

A.1 Input and output of curved geometries

In all the examples above, a reference grid Gh is provided by reading a surface mesh from file.
Dune provides a multitude of grid file readers, but lacks support for a reader that can read curved
geometries directly. This would allow to not only start from a reference grid with an analytical
projection, but to provide a discrete representation of the curved surface from the beginning.
Many meshing tools allow to directly construct such curved meshes and provide a file format
that is able to represent the additional nodes for a parametrization. We have implemented two
readers, the VtkReader for the VTK file format and a Gmsh4Reader for the Gmsh file format. Both
associated meshing and visualization tools, ParaView, Ahrens et al. (2005), and Gmsh, Geuzaine
and Remacle (2009), allow to design curved geometries and to export these in the mentioned file
formats.

In addition to file readers, the result of a numerical computation must be exported to allow
visualization and postprocessing. Our tool of choice is ParaView, supporting the VTK file format
also for curved geometries. We have implemented a grid and data writer for this file format.

The module dune-vtk provides grid readers and writers with flexible input and output policies
in the VTK file format, while the module dune-gmsh4 provides grid readers for the Gmsh4 file
format. In the following code snippets we show the VTK reader and writer, a corresponding
Gmsh reader works analogously.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 23

A.1.1 File Readers for Curved Grids When reading a higher-order grid from file, we need to
construct both the reference grid and the parametrization. The reference grid could be obtained
by evaluating the higher-order grid representation in the element’s corner vertices, whereas the
parametrization must be extracted from the additional Lagrange nodes stored in the file.

In order to read these nodes and to construct an element connectivity, an input policy called
grid-creator must be provided. It creates local vertex coordinates and element indices from the
fields read from file and passes those to a GridFactory to create the actual grid. The grid-creator
for VTK and Gmsh4 files with parametrized grid elements is called LagrangeGridCreator.

The grid itself does not contain the additional Lagrange nodes, but a parametrization or coordinate
mapping describing the higher-order geometries. Thus, one needs to associate these nodes to a
local Lagrange basis. We provide a grid-function representation of the higher-order geometries
parametrized over the extracted reference grid. This grid-function is represented by the grid-
creator itself.

C++ code
1 // <dune/vtk/vtkreader.hh>
2 // <dune/vtk/gridcreators/lagrangegridcreator.hh>
3
4 using Grid = FoamGrid<2,3>;
5 using Creator = Vtk::LagrangeGridCreator<Grid>;
6 auto grid = VtkReader<Grid, Creator>::createGridFromFile("filename.vtu");

To extract the parametrization in addition to the reference grid, we need to obtain the grid-creator
directly, that acts as a grid-function after reading from the file:

C++ code
1 using Grid = FoamGrid<2,3>;
2 GridFactory<Grid> factory;
3 Vtk::LagrangeGridCreator creator{factory};
4 VtkReader reader{creator};
5 reader.read("filename.vtu");
6
7 // construct the reference grid
8 auto grid = factory.createGrid();

Thus, the grid-function can be used to fill any other storage to represent the geometry, e.g., by
interpolating into a DiscreteGridViewFunction, or can be used directly for the parametrization
of the CurvedGrid:

C++ code
1 CurvedGrid curvedGrid{*grid, creator, creator.order()};

A.1.2 VTK Writer VTK supports higher order cell types including Lagrange parametrizations
of cells since version 9. This allows to directly write the curved geometries to files. A correspond-
ing output policy, called data-collector, is added to support these cell types. This data-collector is
responsible for transforming a grid-view into a list of point coordinates and a connectivity table.
Additionally, it collects values associated to the point coordinates, if data should be written to the
VTK file.

For writing higher-order Lagrange parametrized grids, in addition to the corner vertices of grid
elements internal Lagrange nodes are written to the file. The connectivity table collects these nodes
in a specific order so that they can be associated to Lagrange basis functions. The corresponding
data-collector is called LagrangeDataCollector:

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

24 S. Praetorius and F. Stenger

C++ code
1 // <dune/vtk/datacollectors/lagrangedatacollector.hh>
2
3 namespace Vtk {
4 template <class GridView , int ORDER = -1>
5 class LagrangeDataCollector;
6 }

The template parameter GridView represents the type of the grid-view that shall be written
and the second (optional) parameter ORDER represents the Lagrange polynomial order of the
cell parametrization. This second parameter is optional since also runtime polynomial order is
supported, by passing the polynomial order parameter to the constructor instead.

C++ code
1 LagrangeDataCollector (const GridView& gridView , int order = ORDER)

In case no constructor parameter for the order is given, the template ORDER parameter is used
as default value. Note that either in the template parameter or in the constructor argument a
positive value for order must be given.

The corresponding writer object can be instantiated by either passing a data-collector object or by
letting the writer construct it with the given grid-view object.

C++ code
1 using DataCollector = Vtk::LagrangeDataCollector<GridView,4>;
2 using Writer = VtkUnstructuredGridWriter<GridView , DataCollector>;
3
4 // a) default construct the data-collector with the passed gridView
5 Writer vtkWriter1{gridView};
6
7 // b) construct the data-collector before and pass it to the writer
8 DataCollector dataCollector{gridView};
9 Writer vtkWriter2(dataCollector);

Note, we are using an unstructured-grid writer to generate a .vtu file that represents the grid.

Figure 8: Three different approximations of the sphere visualized using the VTK writer with
ParaView. Shown are the element edges and the Lagrange nodes. Left: reference grid, Center:
Lagrange parametrization with polynomial order k = 4, Right: Lagrange parametrization with
polynomial order k = 1 and two grid refinements.

References
J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for Large Data Visualization. Visual-

ization Handbook. Elsevier, 2005. ISBN 978-0123875822.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

Dune-CurvedGrid 25

R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit,
A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and
S. Zampini. MFEM: A modular finite element methods library. Computers & Mathematics with
Applications, 81:42–74, jan 2021. doi: 10.1016/j.camwa.2020.06.009.

D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret,
B. Turcksin, and D. Wells. The deal.II finite element library: Design, features, and insights.
Journal of Numerical Mathematics, 81:407–422, jan 2021. doi: 10.1016/j.camwa.2020.02.022. URL
https://dealii.org.

P. Bastian, M. Blatt, A. Dedner, N.-A. Dreier, C. Engwer, R. Fritze, C. Gräser, D. Kempf, R. Klöfkorn,
M. Ohlberger, and O. Sander. The dune framework: Basic concepts and recent developments.
Computers & Mathematics with Applications, 81:75–112, 2021. ISSN 0898-1221. doi: 10.1016/j.
camwa.2020.06.007.

J. L. Blanco and P. K. Rai. nanoflann: a C++ header-only fork of FLANN, a library for nearest
neighbor (NN) with kd-trees, 2014. URL https://github.com/jlblancoc/nanoflann.

D. Bothe and A. Reusken, editors. Transport Processes at Fluidic Interfaces. Springer International
Publishing, 2017. doi: 10.1007/978-3-319-56602-3.

E. Burman, P. Hansbo, M. G. Larson, and A. Massing. Cut finite element methods for partial
differential equations on embedded manifolds of arbitrary codimensions. ESAIM: Mathematical
Modelling and Numerical Analysis, 52(6):2247–2282, 2018. doi: 10.1051/m2an/2018038.

K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential equations
and mean curvature flow. Acta Numerica, 14:139–232, 2005. doi: 10.1017/S0962492904000224.

A. Dedner and M. Nolte. Construction of local finite element spaces using the generic reference
elements. In A. Dedner, B. Flemisch, and R. Klöfkorn, editors, Advances in DUNE, pages 3–16,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-28589-9. doi: 10.1007/
978-3-642-28589-9_1.

A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic
problems on surfaces. SIAM Journal on Numerical Analysis, 47(2):805–827, 2009. doi: 10.1137/
070708135.

A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace–Beltrami operator
on implicitly defined surfaces. SIAM Journal on Numerical Analysis, 45(1):421–442, 2007. doi:
10.1137/050642873.

G. Dziuk. An algorithm for evolutionary surfaces. Numerische Mathematik, 58:603–611, 1990. doi:
10.1007/BF01385643.

G. Dziuk and C. M. Elliott. Finite element methods for surface pdes. Acta Numerica, 22:289–396,
2013. doi: 10.1017/S0962492913000056.

C. Engwer and A. Nüßing. Geometric reconstruction of implicitly defined surfaces and domains
with topological guarantees. ACM Transactions on Mathematical Software, 44(2), 2017. doi:
10.1145/3104989.

C. Engwer, C. Gräser, S. Müthing, and O. Sander. The interface for functions in the dune-functions
module. Archive of Numerical Software, 5(1):95–110, 2017. doi: 10.11588/ans.2017.1.27683.

C. Engwer, C. Gräser, S. Müthing, and O. Sander. Function space bases in the dune-functions
module. arXiv, 2018, 1806.09545.

W. Freeden and M. Schreiner. Spherical Functions of Mathematical Geosciences. Springer Berlin
Heidelberg, 2009. doi: 10.1007/978-3-540-85112-7.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

https://dealii.org
https://github.com/jlblancoc/nanoflann

26 S. Praetorius and F. Stenger

H. Fritz. Isoparametric finite element approximation of Ricci curvature. IMA Journal of Numerical
Analysis, 33(4):1265–1290, 2013. doi: 10.1093/imanum/drs037.

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-
and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):
1309–1331, 2009. doi: 10.1002/nme.2579. URL https://gmsh.info.

J. Grande, C. Lehrenfeld, and A. Reusken. Analysis of a high-order trace finite element method
for PDEs on level set surfaces. SIAM Journal on Numerical Analysis, 56(1):228–255, 2018. doi:
10.1137/16M1102203.

S. Gross, T. Jankuhn, M. A. Olshanskii, and A. Reusken. A trace finite element method for
vector-Laplacians on surfaces. SIAM Journal on Numerical Analysis, 56(4):2406–2429, 2018. doi:
10.1137/17M1146038.

P. Hansbo, M. G. Larson, and K. Larsson. Analysis of finite element methods for vector Laplacians
on surfaces. IMA Journal of Numerical Analysis, 04 2019. doi: 10.1093/imanum/drz018.

H. Hardering and S. Praetorius. Tangential errors of tensor surface finite elements. arXiv, Jun
2021, 2106.01000. arxiv:2106.01000.

C. J. Heine. Isoparametric finite element approximation of curvature on hypersurfaces. Technical
report, Abteilung für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Straße
10, 79104 Freiburg i.Br., Germany, 2004.

T. Jankuhn and A. Reusken. Trace finite element methods for surface vector-Laplace equations.
41(1):48–83, may 2020. doi: 10.1093/imanum/drz062.

T. Jankuhn, M. Olshanskii, and A. Reusken. Incompressible fluid problems on embedded surfaces:
modeling and variational formulations. Interfaces and Free Boundaries, 20(3):353–377, 2018. doi:
10.4171/IFB/405.

A. Johnen, J.-F. Remacle, and C. Geuzaine. Geometrical validity of high-order triangular finite
elements. Engineering with Computers, 30(3):375–382, 2014. doi: 10.1007/s00366-012-0305-7.

B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for mean
curvature flow of closed surfaces. Numerische Mathematik, 143:797–853, 2019. doi: 10.1007/
s00211-019-01074-2.

C. Lehrenfeld. High order unfitted finite element methods on level set domains using isopara-
metric mappings. Computer Methods in Applied Mechanics and Engineering, 300:716–733, 2016.
doi: 10.1016/j.cma.2015.12.005.

M. Nestler, I. Nitschke, S. Praetorius, and A. Voigt. Orientational order on surfaces: The coupling
of topology, geometry, and dynamics. Journal of Nonlinear Science, 28(1):147–191, 2017. doi:
10.1007/s00332-017-9405-2.

M. Nestler, I. Nitschke, and A. Voigt. A finite element approach for vector- and tensor-valued
surface pdes. Journal of Computational Physics, 389:48–61, 2019. doi: 10.1016/j.jcp.2019.03.006.

I. Nitschke. Diskretes Äußeres Kalkül (DEC) auf Oberflächen ohne Rand. Master’s thesis, Tech-
nische Universität Dresden, Dresden, 2014.

M. A. Olshanskii and A. Reusken. Trace finite element methods for PDEs on surfaces. In Lecture
Notes in Computational Science and Engineering, pages 211–258. Springer International Publishing,
2017. doi: 10.1007/978-3-319-71431-8_7.

P.-O. Persson. Mesh Generation for Implicit Geometries. PhD thesis, Department of Mathematics,
MIT, Dec 2004.

Archive of Numerical Software 6(1), 2022 © by the authors, 2022

https://gmsh.info

Dune-CurvedGrid 27

P.-O. Persson and G. Strang. A simple mesh generator in MATLAB. SIAM Review, 46(2):329–345,
2004. doi: 10.1137/S0036144503429121.

S. Praetorius. Dune-Vtk – grid reader and writer for the vtk file format, 2019. URL https:
//gitlab.dune-project.org/extensions/dune-vtk.

S. Praetorius. Dune-CurvedGeometry – parametrizations of curved geometries, 2020. URL
https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgeometry.

S. Praetorius and F. Stenger. Dune-CurvedGrid – meta grid for wrapping element geometries into a
curved geometries, 2020a. URL https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgrid.

S. Praetorius and F. Stenger. Example codes of this manuscript collected in a dune module, 2020b.
URL https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgrid-examples.

S. Praetorius and F. Stenger. Dune-Gmsh4 – grid reader and writer for the gmsh-4 file format,
2020c. URL https://gitlab.mn.tu-dresden.de/iwr/dune-gmsh4.

A. Rätz and A. Voigt. PDE’s on surfaces — a diffuse interface approach. Communications in
Mathematical Sciences, 4(3):575–590, 09 2006. URL https://projecteuclid.org:443/euclid.
cms/1175797557.

O. Sander, T. Koch, N. Schröder, and B. Flemisch. The Dune-FoamGrid implementation for
surface and network grids. Archive of Numerical Software, 5(1):217–244, 2017. doi: 10.11588/ans.
2017.1.28490.

J. Schöberl. NETGEN an advancing front 2d/3d-mesh generator based on abstract rules. Computing
and Visualization in Science, 1(1):41–52, Jul 1997. doi: 10.1007/s007910050004.

J. Schöberl. C++11 implementation of finite elements in NGSolve. Technical report, Institute
for analysis and scientific computing, Vienna University of Technology, 2014. URL https:
//ngsolve.org.

F. Stenger. meshconv: a tool for various mesh-conversions and mesh-transformations., 2020. URL
https://gitlab.mn.tu-dresden.de/iwr/meshconv. v3.20.

S. Valette and J.-M. Chassery. Approximated centroidal Voronoi diagrams for uniform polygonal
mesh coarsening. Computer Graphics Forum, 23(3):381–389, 2004. doi: 10.1111/j.1467-8659.2004.
00769.x.

© by the authors, 2022 Archive of Numerical Software 6(1), 2022

https://gitlab.dune-project.org/extensions/dune-vtk
https://gitlab.dune-project.org/extensions/dune-vtk
https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgeometry
https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgrid
https://gitlab.mn.tu-dresden.de/iwr/dune-curvedgrid-examples
https://gitlab.mn.tu-dresden.de/iwr/dune-gmsh4
https://projecteuclid.org:443/euclid.cms/1175797557
https://projecteuclid.org:443/euclid.cms/1175797557
https://ngsolve.org
https://ngsolve.org
https://gitlab.mn.tu-dresden.de/iwr/meshconv

	Introduction
	Initial Example
	Structure of the Paper

	Parametric Discrete Surfaces
	Reference Geometry
	(Higher-order) Approximations of the Manifold
	The Grid, Entities, and Intersections
	Grid-functions and Element-functions

	CurvedGeometry and the Dune geometry interface
	Geometry with Local Interpolation
	Geometry with Differentiable Parametrization
	Examples for the Usage of Local Geometries

	CurvedGrid and the Dune grid interface
	Examples for the Usage of the Grid Wrapper

	Grid-functions and Parametrizations
	Geometries
	Projection to High-Resolution Surface Grid
	Projection to Zero-Level set
	Example of an application of the iterative scheme

	Numerical examples
	Surface Vector Helmholtz equation
	Vector Fields on Spherical Geometry

	Moving Grids

	Conclusion and Outlook
	Appendix
	Input and output of curved geometries
	File Readers for Curved Grids
	VTK Writer

