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Abstract: The purpose of this work is to introduce some ideas aimed at simplifying the imple-
mentation of schemes for the solution of multiphysics and multidomain problems and describe
their realization in the deal.II library. Namely, we introduce a general interface to describe prob-
lems and how different sub-problems might depend on each other. We illustrate the applicability
of these concepts on the discretization of the phenomenon known as electrowetting.

1 Introduction

Most interesting physical phenomena involve the interaction between disparate physical pro-
cesses which are, generally, governed by quite different laws. We will call them multiphysics
problems. Such problems can be posed as a system of differential equations which are, mathe-
matically, of different type. Variable density ([Lions, 1996]) and multiphase ([Liu and Shen, 2003])
flows can serve as examples of such type of problems. Multidomain problems are those where
the quantities of interest lie in different (possibly time-dependent) parts of a bigger domain. As
examples of these one can mention fluid-structure interactions [Lefrançois and Boufflet, 2010,
Causin et al., 2005, Badia et al., 2008a,b, Tezduyar et al., 2006, Bazilevs et al., 2008, Richter and
Wick, 2010] and contact problems, with [Krause and Wohlmuth, 2002] or without friction [Krause
and Wohlmuth, 2003, Kornhuber and Krause, 2001].

The term electrowetting refers to the local modification of the surface tension between two
immiscible fluids via electric actuation. This allows to change the shape and wetting behavior of
a two fluids system and, thus, it is possible to manipulate it. This phenomenon was originally
discovered by Lippmann [Lippmann, 1875] more than a century ago, and it has recently found
a wide spectrum of applications, such as: reprogrammable lab-on-chip systems [Lee et al., 2002,
Saeki et al., 2001], auto-focus cell phone lenses [Berge and Peseux, 2000], colored oil pixels and
video speed smart paper [Hayes and Feenstra, 2003, Roques-Carmes et al., 2004a,b].

∗This material is based on work supported by NSF grants CBET-0754983 and DMS-0807811 and an
AMS-Simons Grant.



2 A.J. Salgado

Figure 2.1: The basic configuration of an electrowetting on dielectric device [Cho et al., 2001,
2003]. The solid black region depicts the dielectric plates and the white region denotes a droplet
of one fluid (say water), which is surrounded by another (air). We will denote by Ω the fluid
domain and by Ω? the region occupied by the fluids and the plates. The boundary between the
fluid and the plates is denoted by Γ and ∂?Ω = ∂Ω?

\ Γ.

Given the wide range of applications this phenomenon has, it is important to develop reliable
computational tools for the simulation of these effects. As it is the case with any real world
problem, a complete description of all the involved processes might become too expensive or it
is simply impossible due to the fact that the phenomena at hand are not completely understood.
For this reason one must often deal with approximate models, which must be complete enough,
so that they can reproduce the most important physical effects, yet sufficiently simple that it is
possible to extract from them meaningful information in a reasonable amount of computing time.
This is the main motivation for our current research program. We have proposed and analyzed
a new model of electrowetting and obtained efficient discretization techniques for it ([Salgado,
2013, Nochetto et al., 2014]). In this work, we shall be concerned with the implementation of the
aforementioned numerical techniques.

This work is organized as follows. In Section 2 the model of electrowetting on dielectric is
described, as well as the discretization technique that we shall apply. Section 3 will describe the
main ideas and data structures behind the general framework for the solution of multiphysics and
multidomain problems and some details in their implementation. This is the core of this work
and the application of these ideas to the problem of electrowetting, was our main motivation
in developing these tools. Computational results are presented in Section 4. Section 5 provides
instructions for compilation and execution; as well as details on the run-time parameters. Finally,
some concluding remarks and possibilities for extensions are discussed in Section 6.

2 The problem and its discretization

The purpose of this Section is to introduce the problem we shall be concerned with and describe
the discretization technique we shall apply. For details the reader is referred to [Nochetto et al.,
2014].

2.1 Notation

Figure 2.1 shows the basic configuration for the electrowetting on dielectric problem. We will
use the symbol Ω to denote the domain occupied by the fluid and Ω? for the fluid and dielectric
plates. Thus, Ω ⊂ Ω?. With this notation, Ω and Ω? are bounded connected domains of Rd, for
d = 2 or 3. The boundary of Ω will be denoted by Γ and ∂?Ω? = ∂Ω?

\ Γ. We will denote by [0,T]
with 0 < T < ∞ the time interval of interest. For any vector valued function w : Ω → Rd that is
smooth enough so as to have a trace on Γ, we define

wτ|Γ := w|Γ − (w|Γ·n)n, (2.1)

where n is the outer normal to Γ.
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Let D ⊂ Rd. To denote the classical Lebesgue and Sobolev spaces, we use the standard notation
Lp(D) and Wk

p(D), respectively. In addition Hk(D) = Wk
2(D). Spaces of vector valued functions and

its elements will be denoted by boldface characters. For S ⊂ Rd, by 〈·, ·〉S we denote, indistinctly,
the L2(S)- or L2(S)-inner product. If no subscript is given, we assume that the domain is Ω. If
S ⊂ Rd−1, then the inner product is denoted by [·, ·]S and if no subscript is given, the manifold
must be understood to be Γ. We define the spaces

H1
?(Ω?) :=

{
v ∈ H1(Ω?) : v|∂?Ω? = 0

}
, (2.2)

and
V :=

{
v ∈ H1(Ω) : v·n|Γ = 0

}
. (2.3)

2.2 Description of the problem

In this work we shall be concerned with the following system of equations:
φt + u·∇φ = ∇·(M(φ)∇µ), in Ω,

µ = γ
(1
δ
W
′(φ) − δ∆φ

)
−

1
2
ε′(φ)|∇V|2 +

1
2
ρ′(φ)|u|2, in Ω,

α
(
φt + uτ∂τφ

)
+ γ

(
Θ′f s(φ) + δ∂nφ

)
= 0, M(φ)∂nµ = 0, on Γ,

(2.4)



D(ρ(φ)u)
Dt

− ∇·

(
η(φ)S(u)

)
+ ∇p = µ∇φ − q∇

(
V + λq

)
+

1
2
ρ′(φ)φtu on Ω,

∇·u = 0, in Ω,

u·n = 0, on Γ,

β(φ)uτ + η(φ)S(u)nτ = γ
(
Θ′f s(φ) + δ∂nφ

)
∂τφ, on Γ,

(2.5)

where D(ρ(φ)u)
Dt := σ(φ)(σ(φ)u)t + ρ(φ)u·∇u + 1

2∇·(ρ(φ)u)u, and σ :=
√
ρ, S(u) = ∇u + ∇ᵀu is the

symmetric gradient, qt + ∇·(qu) = ∇·
[
K(φ)∇

(
λq + V

)]
, in Ω,

K(φ)∇
(
λq + V

)
·n = 0, on Γ,

(2.6)


−∇·

(
Jε(φ)K∇V

)
= qχΩ, in Ω?,

V = V0, on ∂?Ω?,

∂nV = 0, on ∂Ω?
∩ Γ,

(2.7)

where

Jε(φ)K =

{
ε(φ), Ω,

ε?, Ω?
\Ω,

with ε? constant.

The unknowns in system (2.4)–(2.7) are: φ – the so-called phase field variable, µ – the chemical
potential, u – the velocity of the fluid, p – its pressure, q – the charge distribution and V – the
voltage (which is defined in Ω?). The material parameters M, ρ, η, K and ε are the mobility,
density, viscosity, conductivity and permittivity; respectively. They are assumed to be smooth
functions of the phase field, so that we allow them to depend on the phase. A possible definition
of the density, for instance, is

ρ(φ) =
ρ1 − ρ2

2
φ +

ρ1 + ρ2

2
,
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where ρi, i = 1, 2 is the density of each one of the phases. The interface thickness is denoted by
δ, the surface tension coefficient is γ. The constants α and λ are regularization parameters. The
function

W(ξ) =


(ξ + 1)2, ξ < −1,
1
4

(
1 − ξ2

)2
, |ξ| ≤ 1,

(ξ − 1)2, ξ > 1,

is known as the Ginzburg-Landau potential. γΘ f s is the interface energy density, where

Θ f s(φ) =
cosθs

2
sin

(
πφ

2

)
,

and θs is the static contact angle, i.e., the angle the interface between the two fluids makes at
equilibrium. This is regarded as a material property. The system is supplemented with initial
conditions (φ0,u0, q0) for the phase field, velocity and charge, respectively.

Remark 2.1 Without going into details, let us briefly describe the rationale behind this model. The
externally applied voltage V0 induces an electric field (described by its potential V) and a charge distribution
q which, in turn, act on the fluid (described by its velocity u and pressure p). The movement of the fluid
transports the charge distribution and changes the material parameters (say ε and ρ), thus inducing a
change in the voltage V.

Remark 2.2 We must remark that this is not the only nor most complete model for electrowetting. The
simplifying assumptions that led to system (2.4)–(2.7) as well as comparison with other models are detailed
in [Nochetto et al., 2014]. Let us contempt here with noticing that the introduction of the diffuse interface
is at the level of the continuous model and it is related with the fact that an accurate description of the
three phase contact line poses severe difficulties from the modeling, as well as the analysis, points of view.
Although at the computational level this might seem similar to interface capturing techniques like level set
methods, the two approaches are quite different as here the “diffuse interface” is given at the continuous
level, whereas in interface capturing methods it is introduced for computational convenience. Nevertheless,
the advantages and disadvantages inherent to interface capturing techniques are also present in our model.

2.3 Discretization

Let us briefly describe the discretization technique. To discretize in time, we divide the time
interval [0,T] into subintervals of length ∆t > 0 (for simplicity assumed constant) and look for
sequences ψ∆t = {ψn

} which approximate ψn
≈ ψ(n∆t). For any sequence ψ∆t, we define the time

increment operator d as
dψn = ψn

− ψn−1,

and the time average operator

ψ?,n =
1
2

(
ψn + ψn−1

)
.

To discretize in space, we introduce a parameter h > 0 and letWh ⊂ H1
?(Ω?), Qh ⊂ H1(Ω), Xh ⊂ V

and Mh ⊂ L2∫
=0

(Ω) be finite element spaces. We require that the polynomial degree of Wh is
not bigger than that of Qh and, moreover, that the pair of spaces (Xh,Mh) satisfies the so-called
LBB condition (see [Girault and Raviart, 1986, Ern and Guermond, 2004]), that is, there exists a
constant c independent of h such that

c‖p̄h‖L2 ≤ sup
vh∈Xh

∫
Ω

p̄h∇·vh

‖vh‖H1
, ∀p̄h ∈Mh. (2.8)
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The spaceWh will be used to approximate the voltage; Qh the charge, phase field and chemical
potential; andXh, Mh the velocity and pressure, respectively. Finally, to account for the boundary
conditions on the voltage, we denote

Wh(V̄k+1
0 ) =Wh + V̄k+1

0 .

The starting point for our discretization scheme is problem (2.4)–(2.7) which, being nonlinear, we
linearize (in time) with lagging of the variables. Moreover, for the Cahn Hilliard Navier Stokes
part we employ the fractional time-stepping technique developed in [Salgado, 2013]. In other
words, at each time step we know

(Vn
h , q

n
h , φ

n
h , µ

n
h ,u

n
h , p

n
h , ξ

n
h) ∈Wh(V̄n

0 ) × (Qh)3
×Xh × (Mh)2,

with ξ0
h := 0 and, to advance in time, solve the following sequence of discrete and linear problems:

• Potential: Find Vn+1
h ∈Wh(V̄n+1

0 ) that solves:〈
Jε(φn

h)K∇Vn+1
h ,∇Wh

〉
Ω?

=
〈
qn

h ,Wh

〉
, ∀Wh ∈Wh, (2.9)

• Charge: Find qn+1
h ∈ Qh that solves:〈

dqn+1
h

∆t
, rh

〉
−

〈
qn

hun
h ,∇rh

〉
+

〈
K(φn

h)∇
(
λqn+1

h + Vn+1
h

)
,∇rh

〉
= 0, ∀rh ∈ Qh, (2.10)

• Phase Field and Potential: Find φn+1
h , µn+1

h ∈ Qh that solve:〈
dφn+1

h

∆t
, φ̄h

〉
+

〈
un

h ·∇φ
n
h , φ̄h

〉
+

〈
M(φn

h)∇µn+1
h ,∇φ̄h

〉
= 0, ∀φ̄h ∈ Qh, (2.11)

〈
µn+1

h , µ̄h

〉
=
γ

δ

〈
W
′(φn

h) +Adφn+1
h , µ̄h

〉
+ γδ

〈
∇φn+1

h ,∇µ̄h

〉
−

1
2

〈
(ε′(φn

h) + Cdφn+1
h )|∇Vn+1

h |
2, µ̄h

〉
+

1
2

〈
ρ′(φn

h)|un
h |

2, µ̄h

〉
+ α

dφn+1
h

∆t
+ un

hτ∂τφ
n
h , µ̄h

 + γ
[
Θ′f s(φ

n
h) +Bdφn+1

h , µ̄h

]
∀µ̄h ∈ Qh, (2.12)

• Velocity: Define p]h = pn
h + ξn

h , then find un+1
h ∈ Xh such that〈

ρ?,n+1(φh)un+1
h − ρ(φn)un

h

∆t
,wh

〉
+

〈
ρ(φn

h)un
h ·∇un+1

h ,wh

〉
+

1
2

〈
∇·(ρ(φn

h)un
h)un+1

h ,wh

〉
+

〈
η(φn

h)S(un+1
h ),S(wh)

〉
−

〈
p]h,∇·wh

〉
+

[
β(φn

h)un+1
hτ ,whτ

]
+ α

[
un+1

hτ ∂τφ
n
h ,whτ∂τφ

n
h

]
=

〈
µn+1

h ∇φ
n
h ,wh

〉
−

〈
qn

h∇(λqn+1
h + Vn+1

h ),wh

〉
+

1
2

〈
ρ′(φn

h)
dφn+1

h

∆t
un

h ,wh

〉
− α

dφn+1
h

∆t
,whτ∂τφ

n
h

 ∀wh ∈ Xh. (2.13)

• Penalization and Pressure: Finally, ξn+1
h and pn+1

h are computed via〈
∇ξn+1

h ,∇p̄h

〉
= −

%

∆t

〈
∇·un+1

h , p̄h

〉
, ∀p̄h ∈Mh, (2.14)

where % := min{ρ1, ρ2} and
pn+1

h = pn
h + ξn+1

h . (2.15)
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The study of the stability and convergence properties of this scheme is well beyond the scope of
this work. We refer the interested reader to [Nochetto et al., 2014, Salgado, 2013] for details. Let
us only mention that the constants A, B and C play the rôle of stabilization parameters. Their
admissible values can be found in the aforementioned references.

3 A general framework

The algorithm presented in §2.3, i.e., (2.9)–(2.15), involves only the solution of linear problems.
However, it presents several difficulties for implementation. First of all, the equations are posed
in different parts of a common domain. In addition, each of the equations depend on the solution
of the others at previous time steps, hence we must develop an efficient way to be able to use the
solution of one problem as a coefficient or forcing term in another.

To address the first difficulty we take advantage of the hp-framework as detailed in [Bangerth
et al., step-46]. The second issue, on the other hand, requires some more attention. It can certainly
be circumvented by keeping in a master class the hp::DoFHandler objects for each one of the
subproblems. Most, if not all, of the tutorial programs for the deal.II library proceed this way
(see [Bangerth et al.]). While this helps in keeping matters simple, it is our belief that this approach
is contrary to one of the key concepts in object oriented programming – encapsulation.

Let us explain this in more detail. To assemble, say, the local system matrices associated with
problem (2.9) one only needs to know, whether the cell belongs to Ω or Ω?

\ Ω and, if we are
in Ω, the values at the quadrature points of the expression Jε(φn

h)K. It is of no relevance to this
procedure that this actually comes from the solution of a finite element problem with, say, globally
continuous d-linear elements. Maybe, for reasons of implementation or solving, the variables φh
and µh are discretized as a vector valued problem. This is of no consequence to the assembly
procedure of problem (2.9) and, thus, all these, problem specific, nuisances must be kept hidden
from this procedure. The situation becomes much more complicated when we look at (2.13).
To be able to assemble the local matrices and right hand sides we would need: the phase field
at the current and previous time steps: φn+1

h , φn
h ; the velocity at the previous time step: un

h ; the

extrapolation of the pressure: p]h; the chemical potential µn+1
h ; the charge at the previous and

current time steps: qn
h qn+1

h ; and the voltage Vn+1
h . In addition, we need to be able to determine

when a face in a cell is at the interface between solid and fluid and, if it is, add the corresponding
boundary integrals which also depend on discrete functions from other problems. Again, it is of
no consequence to this assembly procedure where all these other discrete functions are coming
from, what finite element space is used for their representation or what solution scheme the
problem that defines them is using. The only relevant information is the values at the quadrature
points of the function or its derivatives.

The idea of encapsulation is implemented in the following class.

3.1 The AsFunction class template

Finite element functions are represented in the computer via their coefficient vectors, i.e., the
coefficients of their decomposition in the canonical finite element basis. This is done by using an
object of the type Vector (in any of its avatars). To be able to interpret it as a function one needs
a DoFHandler (in any of its flavors), which is the object that stores all the relevant information
concerning the meaning of the degrees of freedom and basis functions. To extract local (i.e.,
relevant to a cell or face) information, one needs an object of the type FEValues, which is the one
that does the actual computations of the values of the basis functions (or its derivatives) at the
quadrature points.

We propose to encapsulate these three objects into a class that can be used to interpret the
coefficient vector as a function, and create a wrapping interface around them that is going to
operate in the spirit of the FEValues object, i.e., it will provide all the relevant information via
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methods of the form AsFunction::get_function_values. The specification of this class should
be as follows:

C++ code

1 class AsFunction{
2 public:
3 AsFunction( DoFHandler _dh, Vector _x ); // The DoFHandler interprets

the vector
4 ~AsFunction(); // Clear data
5 void set_quadrature( Quadrature _quad ); // Change quadrature and

update flags
6 void set_update_flags( UpdateFlags _flags );
7 void reinit( DoFHandler::active_cell_iterator _cell ); // maps to

<FEValues::reinit>
8 // Map to FEValues::get_function_* using <x> as function
9 void get_function_values( std::vector<double> value );

10 void get_function_gradients( std::vector<Tensor> value );
11 protected:
12 DoFHandler dh; // References to the passed (during construction)

objects.
13 Vector x;
14 FEValues fe_val; // An <FEValues > object together with update flags and

quadrature
15 Quadrature quad;
16 UpdateFlags flags;
17 };

Remark 3.1 There is a similar class in the deal.II library, namely the FEFieldFunction class template.
However, we found that this class was not suitable for our purposes. The documentation for this class
clearly states that support for hp is a planned (but not yet implemented) feature. In addition, it does not
provide the flexibility of allowing one to specify the quadrature formula to be used.

3.2 A class for the description of a problem

Once discretized in time, all the problems appearing in (2.9)–(2.15) are basically matrix-vector
problems and many of the steps needed to assemble the system, solve it and transfer the solution
(or any other auxiliary quantity) between meshes after coarsening or refinement are independent
of the specifics of the problem at hand. In an effort to promote code reuse, we propose a class that
captures these common features.

All problems, independently of their physical significance must keep:

• A reference to the triangulation of the domain where the problem is posed or, for that matter,
of a larger domain.

• A sparse matrix, a vector of solutions and a right hand side.

• A constraint matrix that deals with hanging node constraints and, possibly, implements
essential boundary conditions or any other type of constraints.

• An object of type hp::DoFHandler and a specification of the finite element space that we are
using, i.e., a child of the class FiniteElement.

In addition, all problems must implement a method that:

• Sets the degrees of freedom and builds the constraint matrices.

c© by the authors, 2013 Archive of Numerical Software 1(2), 2013



8 A.J. Salgado

• Allocates the matrices and vectors of the correct size.

• Performs the loop over all cells to compute the local system matrix and right hand side and
assemble the global ones.

• Detects that the triangulation is about to be coarsened or refined and stores the vectors that
need to be transferred in a SolutionTransfer object.

• Once the triangulation has been coarsened or refined use the SolutionTransfer object,
transfer the needed vectors to the new mesh. Note that this last two items are easily
implemented using the signalsmechanism that the Triangulation class has.

• Reinitializes (if needed) the preconditioner and calls the iterative solver.

It must be noted that it might be possible that a problem needs to do something specific before or
after the system is solved, or add constraints to the ConstraintMatrix object due to some of its
specifics, etc. We will account for this possibilities using a series of prefixes/suffixes for each one
of the common methods.

Putting together these ideas, the prototype for this class looks as follows:

C++ code

1 class Problem{
2 public:
3 Problem( Triangulation tria ); // Store a reference to triangulation

and init objects
4 ~Problem(); // Clear data
5 void init(); // Distribute DoFs and set Vector sizes
6 virtual void solve( vector< AsFunction> data ); // Assemble and solve
7 protected:
8 Triangulation tri; // reference to the triangulation
9 DoFHandler dh; // The DoF handler object

10 ConstraintMatrix constraints; // The hanging node (and other)
constraints

11 FiniteElement fe; // The finite element
12 Vector sol, rhs; // Solution and the RHS
13 SparseMatrix K; // System matrix
14 void SetupDoFs(); // Setup Degrees of Freedom
15 virtual void SetupDoFsSuffix(); // Called after the degrees of freedom

have been setup
16 void InitLAData(); // Initialize Linear Algebra data
17 virtual void InitLADataSuffix(); // Initialize problem specific LA data
18 struct PerTaskData; // Assembly data structure
19 virtual void AssembleSystem( vector< AsFunction > data ) = 0; //

Assemble the system
20 void CopyToGlob( const PerTaskData &data ); // Copy local to global
21 void SolveSystem(); // Solve the system
22 virtual void SolveSystemPreffix(); // Called before solving the system
23 virtual void ReinitPrec() = 0; // Reinitialize the preconditioner
24 virtual void DoSolve( SolverControl &control ) = 0; // Call the actual

solver
25 virtual void SolveSystemSuffix(); // Called after the system is solved
26 virtual void SetInitialData() = 0; // Set the initial data
27 vector<Vector> x_sol; // The vectors that are going to be transferred
28 SolutionTransfer transfer; // The transferring mechanism
29 void PreRefinement(); // Called before refinement
30 virtual void PreRefinementPreffix() = 0; // Fills <x_sol>
31 void PostRefinement(); // Called after refinement

Archive of Numerical Software 1(2), 2013 c© by the authors, 2013



Electrowetting 9

32 virtual void PostRefinementSuffix( vector<Vector> &sol_tmp ) = 0; //
Transfer x_sol

33 };

Notice that:

• The public method solve takes as an argument a list of AsFunction objects which, depend-
ing on the child class, will be interpreted as terms in the right hand side or coefficients in
the equation.

• The PerTaskData structure defined in line 18 will contain the local matrix, local vector and
the indices of the local degrees of freedom.

• There is no way that one can in advance know how a particular problem will interpret,
during the assembly, the AsFunction objects, or how many scratch vectors will be needed.
For this reason we declare, in line 19, the AssembleSystem method to be pure virtual, and
defer to the child classes its implementation and declaration of the structures that define
the scratch data.

• The same reasoning applies to the preconditioner and iterative solver. See lines 23 and 24.

3.3 An application. The Pressure class template

To illustrate the application of the ideas mentioned above, while keeping matters simple, let us
detail the implementation of the penalization and pressure steps: (2.14)–(2.15). The description
of the class is as follows:

C++ code

1 class Pressure: public Problem{
2 public:
3 Pressure( Triangulation tria, Material_Parameters params, unsigned deg,

double ee, double thres, unsigned sweeps );
4 virtual ~Pressure();
5 protected:
6 const double rho_min;
7 Preconditioner prec;
8 PreconditionerData prec_data;
9 Vector p, pres_extr;

10 virtual void SetupDoFsSuffix();
11 virtual void InitLADataSuffix();
12 struct ScratchData{
13 Quadrature quad;
14 UpdateFlags flags;
15 FEValues fe_val;
16 AsFunction velocity;
17 /* scratch vectors and constructors */
18 };
19 virtual void AssembleSystem( vector< AsFunction > data, double time,
20 bool m_threaded = true );
21 void AssembleCell( Iterator Its, ScratchData scratch, PerTaskData data

);
22 virtual void ReinitPrec();
23 virtual void DoSolve( SolverControl &control );
24 virtual void SolveSystemSuffix();
25 virtual void SetInitialData();
26 virtual void PreRefinementPreffix();
27 virtual void PostRefinementSuffix( vector< Vector > sol_tmp );

c© by the authors, 2013 Archive of Numerical Software 1(2), 2013
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28 public:
29 AsFunction get_pressure , get_extrapolated_pressure;
30 };

Let us go over the members and methods with more detail:

• In the constructor, we pass the needed data to the parent class and store, fromMaterial_Parameters
the value %, which is represented by rho_min. In addition we obtain data related to the
polynomial degree of the finite element space and preconditioner (number of sweeps and
threshold).

• The destructor clears the data. Notice that these are the only two public methods in this
class, the other ones being inherited from Problem.

• The Problem class has already a vector destined to represent the solution of a problem, in
this case this is ξn+1

h . In this class there are two vectors which will represent each one of the

views of the problem, the pressure pn+1
h and the extrapolated pressure p]h.

• The preconditioner is given by precwhich is an algebraic multigrid method and is initialized
with the ReinitPrecmethod.

• The SetupDoFsSuffix adds a constraint to remove the singularity associated with homoge-
neous Neumann conditions.

• The InitLADataSuffix just sets pn+1
h and p]h to the correct size.

• The assembly procedure, given by AssembleSystem needs to know the velocity, which is the
first entry in the parameter data. In addition it needs some scratch data, which is defined
in line 13. The actual assembly, i.e., the computation of〈

∇Φh,`1 ,∇Φh,`2

〉
T ,

〈
∇·uk+1

h ,Φh,`2

〉
T
,

where T is a cell and Φh,` are the local basis functions, is performed in AssembleCell.

• The solution (using CG) is done in DoSolve. After that SolveSystemSuffix updates pn+1
h

and the extrapolated pressure p]h.

• Finally, there are two public AsFunction classes, which is how this class will communicate
to the world the values of pn+1

h and p]h. These are attached to each one of the extra vectors
that this class has declared.

4 Results

We now show the capabilities of the developed program in a series of testcases. These were
presented originally in [Nochetto et al., 2014]. Unless stated otherwise, the density ratio between
the two fluids is ρ1/ρ2 = 100, the viscosity ratio η1/η2 = 10 and the surface tension coefficient is
γ = 50. The conductivity ratio is K1/K2 = 10 and the permittivity ratio ε1/ε2 = 5 and ε?/ε2 = 100.
We have set the mobility parameter to be constant M = 10−2, and α = 10−3. The slip coefficient is
taken constant β = 10, and the equilibrium contact angle between the two fluids is θs = 120◦. The
interface thickness is δ = 5 · 10−2 and the regularization parameter λ = 0.5. The applied voltage
is V00 = 20.

The time-step is set constant and ∆t = 10−3 and every 10 time-steps the mesh is coarsened and
refined using as refinement indicator the magnitude of |∇φ|. The discrete spaces are such that
degWh = 1, i.e., the polynomial degree is one in each coordinate direction; degQh = 2; degXh = 2
and degMh = 1.
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4.1 Movement of a droplet

The first and simplest example shows that we can use electric actuation used to manipulate a
droplets. The fluid occupies the domain Ω = (−5, 5) × (0, 1) and above and below there are
dielectric plates of thickness 1/2, so that Ω? = (−5, 5) × (−1/2, 3/2). A droplet of a heavier fluid
with an initial shape of half a circle of radius 1/2 is centered at the origin and initially at rest. To
the right half of the lower plate we apply a voltage, so that

V0 = V00χD, D =
{
(x, y) ∈ R2 : x ≥ 0, y = −

1
2

}
.

The initial mesh consists of 5364 cells with two different levels of refinement. Away from the
two-fluid interface the local mesh size is about 0.125 and, near the interface, the local mesh size
is about 0.03125. Figure 4.1 shows the evolution of the interface. An animation of these results is
available at media/merge.avi.

4.2 Splitting of a droplet

According to the literature, one of the main advantages in using diffuse interface models is that
topological changes can be handled without any special care. Let us illustrate this by showing
how, using electrowetting, one can split a droplet. Initially a drop of heavier material occupies

χρ2 =

{
(x, y) ∈ R2 :

x2

2.52 +
y2

0.52 ≤ 1
}
.

To be able to split the droplet, the externally applied voltage is

D =
{
(x, y) ∈ R2 : |x| ≥

3
2
, y = −

1
2

}
.

Figure 4.2 shows the evolution of the system. An animation of these results is available at
media/split.avi.

4.3 Merging of two droplets

To finalize let us show the inverse process to §4.2, i.e., the merging of two droplets of the same ma-
terial via electric actuation. The geometry is the same as before but, in this case, there are initially
two droplets of heavier material, each one of radius 0.5 and centered at (±0.7, 0), respectively. The
material parameters are the same in the previous cases, except the interfacial thickness, which is
set to δ = 10−2. We apply an external voltage so that

D =
{
(x, y) ∈ R2 : |x| ≤

1
2
, y = −

1
2

}
.

To be able to capture the fine interfacial dynamics that merging possesses, we set the initial level
of refinement to 4, with 3 extra refinements near the interface, so that the number of cells is 48, 696
with a local mesh size away of the interface of about 0.02875 and near the interface of about 6 ·10−3.
This amounts to a total of 147, 249 degrees of freedom. The time-step, again, is set to ∆t = 10−3.

Figure 4.3 shows the evolution of the two droplets under the action of the voltage. Again, other
than properly resolving the interfacial layer, we did not need to do anything special to handle the
topological change. An animation of these results is available at media/merge.avi.
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Figure 4.1: Movement of a droplet under the action of an external voltage. The material parameters
are ρ1/ρ2 = 100, η1/η2 = 10, γ = 50, K1/K2 = 10, ε1/ε2 = 5, ε?/ε2 = 100, M = 10−2, α = 10−3, β = 10,
θs = 120◦, δ = 5 · 10−2, λ = 0.5 and V00 = 20. The interface is shown at times 0, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2 and 1.4. Colored lines are used to represent the iso-values of the voltage. The black dotted
line is the position of the interface at the beginning of the computations.
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Figure 4.2: Splitting of a droplet under the action of an external voltage. The material parameters
are ρ1/ρ2 = 100, η1/η2 = 10, γ = 50, K1/K2 = 10, ε1/ε2 = 5, ε?/ε2 = 100, M = 10−2, α = 10−3, β = 10,
θs = 120◦, δ = 5 · 10−2, λ = 0.5 and V00 = 20. The interface is shown at times 0, 0.25, 0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.02, 3.05, 3.10, 3.25 and 3.5. Colored lines are used to
represent the iso-values of the voltage. The black dotted line is the position of the interface at the
beginning of the computations.
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Figure 4.3: Merging of two droplets under the action of an externally applied voltage. The
material parameters are ρ1/ρ2 = 100, η1/η2 = 10, γ = 50, K1/K2 = 10, ε1/ε2 = 5, ε?/ε2 = 100,
M = 10−2, α = 10−3, β = 10, θs = 120◦, δ = 10−2, λ = 0.5 and V00 = 20. The interface is shown at
times 0, 1, 2, 3, 3.3, 3.4, 3.5, 4, 5 and 5.5. Colored lines are used to represent the iso-values of the
voltage. The black dotted line is the position of the interface at the beginning of the computations.
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5 The program

5.1 Instructions for compilation and execution

The code must be compiled with the deal.II library, version 7.2 configured with Trilinos.
Together with the code we have bundled a Makefile which is, basically, a copy of the large
project file that the deal.II library provides and, thus, it can take the usual arguments (clean,
run, etc.) We have added the option doc, which creates an online documentation for the program.
The documentation can be accessed at doc/doxygen/index.html. The Makefile assumes that
deal.II is located at ../../deal.II. This location can be changed by modifying the variable D
on line 33.

Three parameter files are included, one for each of the test cases presented here. Their names are
parameter-#.prm, where # stands for move/split/merge. These are the parameters used in each
of the experiments of Section 4. Their content is described below.

5.2 Handling the run-time parameters

To be able to specify the many physical and discretization parameters our problem has, as well
as to be able to select a test case, we use a ParameterHandler class, as discussed in many of the
tutorials of [Bangerth et al.]. The default parameter file as well as the meaning of each of the
parameters is as follows:

Code
1 # Listing of Parameters
2 # ---------------------
3 # The test case: move merge split
4 set test_case = move
5 # How many time steps we print the solution.
6 set output = 10
7 # The verbosity of the solution process.
8 set verbose = true
9 subsection Data solve charge

10 # The stopping criterion.
11 set eps = 1e-6
12 # The number of sweeps the AMG smoother does.
13 set sweeps = 3
14 # The aggregation threshold for AMG.
15 set threshold = 1e-4
16 # How often we update the preconditioner.
17 set update_prec = 10
18 end
19 subsection Data solve penalty
20 # The stopping criterion.
21 set eps = 1e-6
22 # The number of sweeps the AMG smoother does.
23 set sweeps = 3
24 # The aggregation threshold for AMG.
25 set threshold = 1e-4
26 end
27 subsection Data solve phase
28 # The size of the Krylov subspace to be used.
29 set Krylov_size = 30
30 # The stopping criterion.
31 set eps = 1e-6
32 # The number of extra fills.
33 set ilut_fill = 50
34 # The drop parameter.
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35 set drop = 1e-4
36 # How often we update the preconditioner.
37 set update_prec = 10
38 end
39 subsection Data solve velocity
40 # The size of the Krylov subspace to be used.
41 set Krylov_size = 60
42 # The stopping criterion.
43 set eps = 1e-6
44 # The number of sweeps the AMG smoother does.
45 set sweeps = 6
46 # The aggregation threshold for AMG.
47 set threshold = 1e-3
48 # How often we update the preconditioner.
49 set update_prec = 10
50 end
51 subsection Data solve voltage
52 # The stopping criterion.
53 set eps = 1e-6
54 # The number of sweeps the AMG smoother does.
55 set sweeps = 3
56 # The aggregation threshold for AMG.
57 set threshold = 1e-4
58 # How often we update the preconditioner.
59 set update_prec = 10
60 end
61 subsection Geometry Data
62 # The lower corner of the box. x-coordinate
63 set xl = -5
64 # The upper corner of the box. x-coordinate
65 set xm = 5
66 # The lower corner of the box. y-coordinate
67 set yl = 0
68 # The upper corner of the box. y-coordinate
69 set ym = 1
70 # The lower corner of the box. z-coordinate
71 set zl = 0
72 # The upper corner of the box. z-coordinate
73 set zm = 0
74 # The plate width
75 set width = 0.5
76 end
77 subsection Physical Data
78 # The conductivity of fluid 1.
79 set K_1 = 10
80 # The conductivity of fluid 2.
81 set K_2 = 1
82 # The mobility of fluid 1.
83 set M_1 = 0.01
84 # The mobility of fluid 2.
85 set M_2 = 0.01
86 # The parameter for CH.
87 set alpha = 1e-3
88 # The slip coefficient of fluid 1.
89 set beta_1 = 10
90 # The slip coefficient of fluid 2.
91 set beta_2 = 10
92 # The interface thickness.
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93 set delta = 0.05
94 # The permitivity of fluid 1.
95 set epsilon_1 = 5
96 # The permitivity of fluid 2.
97 set epsilon_2 = 1
98 # The permitivity of the plates
99 set epsilon_plate = 100

100 # The final time of computation.
101 set final_time = 3.5
102 # The surface tension coeffcient.
103 set gamma = 50
104 # The initial time of computation.
105 set initial_time = 0.
106 # The regularization coefficient for the charge.
107 set lambda = 0.5
108 # The density of fluid 1.
109 set rho_1 = 100.
110 # The density of fluid 2.
111 set rho_2 = 1.
112 # The static contact angle (in degrees).
113 set theta_s = 120
114 # The viscosity of fluid 1.
115 set viscosity_1 = 10
116 # The viscosity of fluid 2.
117 set viscosity_2 = 1
118 end
119 subsection Space discretization
120 # Number of extra refines.
121 set n_of_extra_refines = 2
122 # Number of global refines.
123 set n_of_initial_refines = 3
124 # The degree for the phase field space.
125 set ph_deg = 2
126 # The polynomial degree for the pressure space.
127 set pres_deg = 1
128 # The degree for the voltage space.
129 set volt_deg = 1
130 end
131 subsection Time step data
132 # Time step size.
133 set dt = 1e-3
134 end

6 Conclusions

In this work we have proposed a way to encapsulate the specifics of a problem in a class, as well
as provided a way to handle the communication between problems. We applied these ideas to the
implementation of a discretization scheme for the problem of electrowetting, as well as illustrated
the performance of the developed code in a series of examples. We are confident that the simple
ideas presented here are powerful enough to allow for rapid development of code. For instance,
once this framework had been developed, a solver for a class of non-Newtonian fluids (which
will be reported elsewhere) takes not more than a few hundred lines of code in which, basically,
one needs to define the assembly of the local matrices.

Of course, much can be done to improve the ideas and the implementation itself. For instance,
an implementation of these concepts in a distributed environment will be of interest to a wider
audience. Their implementation using the MeshWorker concept provided by the library might
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simplify the code. Concerning the ideas themselves, it would be interesting to extend this
framework to problems posed in domains of different dimension, for instance a surface immersed
in a bulk object, etc. We will leave this for future study.
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