Archive of Numerical Software
vol. 3, no. 100, pages 1-8
© 2015

The deal.II Library, Version 8.2

Wolfgang Bangerth!, Timo Heister?, Luca Heltai®, Guido Kanschat*, Martin
Kronbichler®, Matthias Maier®, Bruno Turcksin’, and Toby D. Young®

IDepartment of Mathematics, Texas A&M University, College Station, TX 77843, USA,
bangerth@math.tamu.edu
Mathematical Sciences, O-110 Martin Hall. Clemson University. Clemson, SC 29634, USA,
heister@clemson.edu
3SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy,
luca.heltai@sissa.it
YInterdisciplinary Center for Scientific Computing (IWR), Universit&it Heidelberg, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany, kanschat@uni-heidelberg.de
SInstitute for Computational Mechanics, Technische Universitt MUnchen, Boltzmannstr, 15, 85748
Garching b. Minchen, Germany, kronbichler@lnm.mw. tum.de
¢Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 293/294, 69120
Heidelberg, Germany, matthias.maier@iwr.uni-heidelberg.de
"Department of Mathematics, Texas A&M University, College Station, TX 77843, USA,
turcksin@math. tamu. edu
8Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul.
Pawinskiego 5b, Warsaw 02-106, Poland, tyoung@ippt.pan.pl

Received: January 1st, 2015; final revision: January 16th, 2015; published: January 16th, 2015.

Abstract: This paper provides an overview of the new features of the finite element library
deal.II version 8.2.

1 Overview

deal.II version 8.2 was released January 1, 2015. This paper provides an overview of the new
features of this release and serves as a citable reference for the deal.II software library version
8.2. deal.IIisan object-oriented finite elementlibrary used around the world in the development
of finite element solvers. It is available for free under the GNU Lesser General Public License
(LGPL) from the deal.II homepage athttp://www.dealii.org/.

Version 8.2 contains, along with the usual set of new functions, bug fixes and documentation
updates, the following noteworthy changes:

— Comprehensive support for geometries described by arbitrary manifolds and meshes that
respect this description not only on the boundary but also internally

— Support for geometries imported from CAD using the OpenCASCADE library

http://www.dealii.org/

— Three new tutorial programs on complex geometries, CAD geometries, and time stepping
methods

— Support for users wanting to use C++11 features
— Improvements to multithreading support

— Vectorization of many vector operations using OpenMP SIMD directives

Some of these will be detailed in the following section. Information on how to cite deal.II is
provided in Section

2 Significant changes to the library

This release of deal.ll contains a number of large and significant changes that will be discussed
in the following sections. It of course also contains a vast number of smaller changes and added
functionality; the details of these can be found in the file that lists all changes for this release and
that is linked to from the web site of each release as well as the release announcement.

2.1 Supporting complex geometries through manifolds

Complex geometries can be described using the concept of a manifold, a topological space that
resembles Euclidean space near each point. In mathematics, particularly topology, one describes
a manifold using an atlas. An atlas consists of individual charts that, roughly speaking, describe
individual regions of the manifold, by means of providing a local coordinate system near each
point. (Such coordinate systems may not exist globally, as in the case of the surface of a sphere,
but it must be possible to cover the entire manifold with charts that are valid in some local
neighborhood of every point.) In deal.II these concepts have been formalized in the abstract
base class Manifold that defines an interface by which the Triangulation and Mapping classes
can query geometric information about the domain.

Whenever a new point is required (for example upon mesh refinement, or when integrating over
curved manifolds using higher order mappings), new points are typically obtained by providing
a local coordinate system on the manifold, identifying existing points in the local coordinate
system (pulling them back using the local chart to obtain their local coordinates), finding the new
point in the local coordinate system by weighted sums of the existing points, and transforming
the point back to the real space (pushing it forward using the local chart).

A new identifier (the manifold_id) has been introduced to describe geometrical features of
complex domains: every entity of a mesh (i.e., cells, faces, and edges) now have a manifold_id
associated with them. This extends the existing behavior: Previous releases of the library allowed
only boundaries to be curved, and used the boundary_id of the faces of a triangulation to identify
how to add new points upon mesh refinement. In contrast, the new manifold_id also exists for
cells and interior faces. Upon refinement, the Triangulation class queries each object (hex, quad
or line) where new points should be placed. Attaching a custom Manifold to any such object
ensures that new points are created consistently with the underlying geometry.

We provide a series of classes that implement this mechanism for commonly used geometries:

— FlatManifold: in the simplest case, the objects that make up the Triangulation are straight
line segments, a bi-linear surface or a tri-linear volume. New vertices are then simply put
into the middle of the old ones (where “middle” means a suitable average of the locations
of the pre-existing vertices). This is the default manifold associated to each object of the
Triangulation;

Archive of Numerical Software 3(100), 2015 © by the authors, 2015

— SphericalManifold: you can use this manifold object to describe any sphere, circle, hy-
persphere or hyperdisc in two or three dimensions, both as a co-dimension one manifold
descriptor or as co-dimension zero manifold descriptor;

- CylindricalManifold: in three dimensions, points are transformed using a cylindrical
coordinate system along an arbitrarily oriented cylinder.

More general specialisations can be obtained by using the ChartManifold partial specialisation:
this class is intended to directly implement the topological concept of a chart, by explicitly
providing pull back and push forward expressions. Classes derived from ChartManifold only have
to overload the pull_back and push_forward functions, while all other functions are then defined
in terms of these two functions. ChartManifold assumes that the manifold can be represented by
a single, globally valid chart. The class FunctionManifold further implements this using explicit
deal.II Function classes, and the new tutorial step-53 provides a concrete example on how to
use these classes to work with complex geometries.

2.2 Interfacing with CAD geometries

If you have OpenCASCADE (http://www.opencascade.org/) installed[26], you can now use
existing IGES or STEP CAD files to describe the boundary of your geometry to deal.II.

The deal.II library allows the user to specify the geometry of the analysis in one of two possible
ways: i) by creating a coarse grid internally (for simple geometries, such as boxes, cylinders,
shells, etc.) or ii) by reading a mesh input file in one of the supported formats via the GridIn
class.

Along with the default boundary descriptor StraightBoundary which implements the standard
behavior of deal.II, some elementary boundary descriptors are also included in the library
to describe circles or spheres (HyperBallBoundary), cylinders (CylinderBoundary), half circles
or half spheres (HalfHyperBallBoundary), and so on. In general, deal.II provides a curved
boundary descriptor for each one of the elementary mesh that can be created from within the
library itself.

Real world geometries, however, can rarely be described by straight lines, balls or cylinders,
and much more complex structures are required if one wants to tackle industrial problems. The
industry standard for the design of any geometry is based on Computer Aided Design (CAD)
tools, which rely on Non Uniform Rational B-Splines (NURBS) descriptions of curves and surfaces.
Virtually any object that surrounds us has been modeled using some NURBS patch in a CAD tool.

The namespace dealii::OpenCASCADE contains all utilities and wrappers that are needed to
manipulate CAD files. Most of the functions in the dealii: :0penCASCADE namespace deal with
TopoDS_Shape objects: the default topological object of the OpenCASCADE library, and provide
interfaces to deal.Il objects, like Triangulation, Manifold and Boundary.

The new step-54 tutorial program of the deal.II library shows an example application of the
functions and classes in the deal.II::0penCASCADE namespace. In step-54, a CAD shape and a
coarse surface triangulation are imported from external files, and the resulting triangulation is
then refined on the CAD surface using different projection strategies. A detailed description of
these techniques is available in [15].

© by the authors, 2015 Archive of Numerical Software 3(100), 2015

http://www.opencascade.org/

NN U= WD =

= W N -

2.3 A new tutorial: Support for time stepping methods (step-52)

The goal of this tutorial is to show how to use the different Runge-Kutta methods of the new
TimeStepping class. The Runge-Kutta methods used in this tutorial include explicit methods,
implicit methods, and embedded methods. In step-52, the time dependent neutron diffusion
equation is solved on a uniform mesh. To compare the different time stepping methods, the
solution of the problem is chosen such that its spatial component can be exactly represented
on the uniform mesh by quadratic continuous finite elements. Moreover, at the end of the last
time step the exact solution is zero. Therefore, the different time discretization methods can be
compared by simply looking at the discretized solutions.

2.4 Support for some C++11 features

The C++11 standard [27] provides many convenient features that can help make writing finite
element codes simpler. deal.II does not use any of these features itself to ensure that it can be
used with compilers that do not implement C++11 yet.

However, this does not prevent users from using C++11 features in their own codes. Among
these, range-based for loops are particularly useful given that deal.II programs often contain
many loops over all cells and that writing these loops is frequently quite verbose:

C++ code

Triangulation<dim> triangulation;

typename Triangulation<dim>::active_cell_iterator
cell = triangulation.begin_active(),
endc = triangulation.end();

for (; cell!=endc; ++cell)
cell->set_refine_flag(Q);

Code such as this can be significantly simplified by combining C++11’s range-based for loops
and auto-typed variables. To support this, deal.II’s container classes (i.e., the triangulations
and DoF handler classes) provide member functions that return objects that denote the entire set
of cells, active cells, or cells on a particular level. This allows to write the same loop as above in
the following, much shorter way:

C++ code

Triangulation<dim> triangulation;

for (auto cell : triangulation.active_cell_iterators())
cell->set_refine_flag(Q);

The function Triangulation::active_cell_iterators(), and equivalents in the DoFHandler
and hp: :DoFHandler classes, were added in deal.II 8.2 to support this idiom. Other variants
of these functions provide iterator ranges for all cells (not just the active ones) and for cells on
individual levels. A new documentation module elaborates on support for C++11 in deal.II.

3 Howto cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of a particular version of
the library, reference the present document. For up to date information and bibtex snippets for
this document see:

Archive of Numerical Software 3(100), 2015 © by the authors, 2015

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [7]. If you rely on specific
features of the library, please consider citing any of the following:

— For geometric multigrid: [20, [19];

— For distributed parallel computing: [6];

— For hp adaptivity: [11];

— For matrix-free and fast assembly techniques: [22];

— For computations on lower-dimensional manifolds: [14];

— For integration with CAD files and tools: [15].

deal.IT can interface with many other libraries:

— ARPACK [23]

— BLAS, LAPACK

— HDF5 [30]

— METIS [21]

— MUMPS [3] 1] 2] 24]
— muparser [25]

— NetCDF [29]

— OpenCASCADE [26]
— péest [12]

— PETSc [4,5]

— SLEPc [16]

— Threading Building Blocks [28]
— Trilinos [17, 18]

— UMFPACK [13]

Please consider citing the appropriate references if you use interfaces to these libraries.

Older releases of deal.II can be cited as [8}9].

© by the authors, 2015 Archive of Numerical Software 3(100), 2015

https://www.dealii.org/publications.html

4 Acknowledgements

deal.II is a world-wide project with dozens of contributors around the globe. Other than the
authors of this paper, the following people contributed code to this release: Alexander Grayver,
Andrea Mola, Andrew Baker, Angela Klewinghaus, Arezou Ghesmati, Ben Thompson, Christoph
Heiniger, Damien Lebrun-Grandie, Daniel Arndt, David Wells, Denis Davydov, Fahad Alrashed,
Giorgos Kourakos, Jean-Paul Pelteret, Kainan Wang, Kevin Drzycimski, Krysztof Bzowski, Lukas
Korous, Manuel Quezada de Luna, Markus Biirg, Martin Steigemann, Mayank Sabharwal, Michal
Wichrowski, Mihai Alexe, Minh Do-Quang, Shiva Rudraraju, Uwe Kocher, Valentin Zingan, Their
contributions are much appreciated!

deal.II and its developers are financially supported through a variety of funding sources.
W. Bangerth and B. Turcksin were partially supported by the National Science Foundation un-
der award OCI-1148116 as part of the Software Infrastructure for Sustained Innovation (SI2)
program; by the Computational Infrastructure in Geodynamics initiative (CIG), through the Na-
tional Science Foundation under Award No. EAR-0949446 and The University of California —
Davis; and through Award No. KUS-C1-016-04, made by King Abdullah University of Science
and Technology (KAUST).

L. Heltai was partially supported by the project OpenViewSHIP, “Sviluppo di un ecosistema
computazionale per la progettazione idrodinamica del sistema elica-carena”, financed by Regione
FVG - PAR FSC 2007-2013, Fondo per lo Sviluppo e la Coesione.

T. Heister was partially supported by the Computational Infrastructure in Geodynamics initiative
(CIG), through the National Science Foundation under Award No. EAR-0949446 and The Uni-
versity of California — Davis and through Award No. KUS- C1-016-04, made by King Abdullah
University of Science and Technology (KAUST).

The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has pro-
vided hosting services for the deal.Il web page and the SVN archive.

References

[1] P. R. Amestoy, L. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15-41, 2001.

[2] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136-156, 2006.

[3] PR. Amestoy, I.S. Duff, and J.-Y. L'Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501-520, 2000.

[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, and H. Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Labora-
tory, 2014.

[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, and H. Zhang.
PETSc Web page. http://www.mcs.anl.gov/petsc, 2014.

[6] W.Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38:14/1-28,
2011.

[7] W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il — a general purpose object oriented
finite element library. ACM Trans. Math. Softw., 33(4), 2007.

Archive of Numerical Software 3(100), 2015 © by the authors, 2015

http://www.mcs.anl.gov/petsc

[8] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.0. arXiv preprint http://arxiv.org/abs/1312.
2266v3,2013.

[9] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.1. arXiv preprint http://arxiv.org/abs/1312.
2266v4, 2013.

[10] W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software — the
deal.II library. Preprint 1999-43, SFB 359, Heidelberg, 1999.

[11] W. Bangerth and O. Kayser-Herold. Data structures and requirements for /p finite element
software. ACM Trans. Math. Softw., 36(1):4/1-4/31, 2009.

[12] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM . Sci. Comput., 33(3):1103-1133, 2011.

[13] T. A.Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30:196-199, 2004.

[14] A.DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved
manifolds with deal.Il. Technical Report 42/2009/M, SISSA, 2009.

[15] L. Heltaiand A. Mola. Towards the Integration of CAD and FEM using open source libraries:
a Collection of deal.Il Manifold Wrappers for the OpenCASCADE Library. Technical report,
SISSA, 2015. Submitted.

[16] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351-362, 2005.

[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31:397-423, 2005.

[18] M. A. Heroux et al. Trilinos web page, 2014. http://trilinos.sandia.gov.

[19] B.Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H'- and
He"-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095-2114,
2011.

[20] G.Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. & Struct., 82(28):2437-2445, 2004.

[21] G.Karypisand V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359-392, 1998.

[22] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Comput. Fluids, 63:135-147, 2012.

[23] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users” guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

[24] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.ens-1lyon.
fr/MUMPS/.

[25] muparser: Fast Math Parser Library. http://muparser.beltoforion.de/.
[26] OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http:

//www.opencascade.org/.

© by the authors, 2015 Archive of Numerical Software 3(100), 2015

http://arxiv.org/abs/1312.2266v3
http://arxiv.org/abs/1312.2266v3
http://arxiv.org/abs/1312.2266v4
http://arxiv.org/abs/1312.2266v4
http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://muparser.beltoforion.de/
http://www.opencascade.org/
http://www.opencascade.org/

[27] International Standards Organization. ISO/IEC 14882:2011: The C++11 programming

language standard. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=50372, 2011.

[28] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[29] R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer Graphics and
Applications, IEEE, 10(4):76-82, 1990.

[30] The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN.
http://www.hdfgroup.org/HDF5/.

Archive of Numerical Software 3(100), 2015 © by the authors, 2015

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

	Overview
	Significant changes to the library
	Supporting complex geometries through manifolds
	Interfacing with CAD geometries
	A new tutorial: Support for time stepping methods (step-52)
	Support for some C++11 features

	How to cite deal.II
	Acknowledgements

