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Abstract: The utility of Dune-ACFem is demonstrated to work well for solving a non-smooth
minimization problem over bounded variation functions by implementing a primal-dual algo-
rithm. The implementation is based on the simplification provided by Dune-ACFem. Moreover,
the convergence of the discrete minimizer to the continuous one is shown theoretically.

1 Introduction

The Dune-framework [7] and in particular the discretization module Dune-Fem [11] provides the
means to handle discrete functions, operators and solvers on different grids. Still, implementing
complicated partial differential equations (PDEs) and their solvers is cumbersome and tedious.
The Dune-module Dune-ACFem aims to simplify the usage of Dune-Fem by defining expression
templates for discrete functions and PDE models. This allows to linearly combine discrete
functions and PDE models. Additionally it supports parallel and adaptive finite-element schemes
on continuous discrete functions for the predefined and combined models [14]. The flexibility of
Dune (and Dune-Fem, Dune-ACFem) allows e.g. to exchange discrete spaces by a single line of
code or to change the gridtype and linear solvers.

We will demonstrate the ease of implementation with Dune-ACFem by minimizing a non-smooth
functional consisting of a combined L1/L2-data fidelity term and a total variation term. Such an
optimization problem has been shown to effectively remove Gaussian and salt-and-pepper noise,
see [16, 19]. In order to compute an approximate solution we use the primal-dual algorithm
proposed in [10], which requires a saddle point formulation of the problem. For the numerical
implementation we discretize using finite-element spaces defined over locally refined conforming
grids. Motivated by the works [3, 4, 5, 17], where the considered functional is composed solely of
an L2-data term and a total variation term, we refine the grid adaptively using an a priori criterion.
Similar as in [3] we show for the considered minimization problem, that a minimizer over a finite
element space converges to a minimizer in the space of functions of bounded variation as the
mesh-size goes to 0.

In contrast to previous works [3, 4, 5, 17], we consider an additional non-smooth L1-data term
in the objective, which has to be treated carefully. Moreover, due to the use of Dune-ALUGrid
[1] and the capabilities of Dune-ACFem the resulting algorithm is intrinsically parallelized by
domain decomposition.
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The rest of the paper is structured as follows. In Section 2 we formulate the continuous and the
discrete problem with the respective discrete spaces. In particular for a certain discretization we
prove that the discrete problem converges to the continuous one as the mesh-size goes to zero.
In Section 3 we give a short overview of Dune-ACFem and discuss how it is used to implement
the primal-dual algorithm. Numerical examples showing applicability of our proposed imple-
mentation and experiments testing different discretizations are presented in Section 4. Finally in
Section 5 we conclude with a short summary and possible future research.

2 Problem Formulation

We consider the following problem

min
v∈BV(Ω)∩L2(Ω)

Jα1,α2 (v) := α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) + |Dv|(Ω), (1)

where Ω ⊂ Rd, d ∈ N, is an open bounded set with Lipschitz boundary, g ∈ L2(Ω) is a given
datum, αi ≥ 0 for i = 1, 2 with α1 + α2 > 0 and BV(Ω) ⊂ L1(Ω) denotes the space of functions with
bounded variation. That is, v ∈ BV(Ω) if and only if

|Dv|(Ω) := sup
{∫

Ω

v div ~φdx, ~φ ∈ C∞0 (Ω,Rd), ‖ |~φ|2‖C0(Ω) ≤ 1
}

(2)

is finite, see [2, 13]. The space BV(Ω) endowed with the norm ‖v‖BV(Ω) = ‖v‖L1(Ω) + |Dv|(Ω) is a
Banach space [13]. For α2 > 0 the minimization problem (1) admits a unique solution owing to
the strict convexity of the quadratic term [19]. Note, that if α1 = 0 in (1), then we obtain the
functional used in [3, 4, 5, 17].

2.1 Discretization

Let (Th)h>0 be a sequence of shape-regular triangulations of Ω with diameter h = maxT∈Th diam(T)
and Sh be the set of its mesh entities of codimension 1 (i.e. edges for d = 2). We define the
following finite element spaces

L
0(Th) = {qh ∈ L1(Ω) : qh |T is constant for each T ∈ Th}

S
1(Th) = {vh ∈ C(Ω) : vh |T is affine for each T ∈ Th}.

For the vector-valued versions, we write L0(Th)d and S1(Th)d, respectively, and boundary condi-
tions are denoted via a subindex. In particular we use the subindex 0 for zero boundary values
and the subindex N for zero boundary values in normal direction, e.g., S1

0(Th) := {vh ∈ S
1(Th) :

vh = 0 on ∂Ω} and L0
N(Th)d = {qh ∈ L

0(Th)d : qh · ~n = 0 on ∂Ω}where ~n is the unit vector in normal
direction. The nodal interpolant Ihv ∈ S1(Th) of a function v ∈ W2,p, with d

2 < p ≤ ∞ or p = 1 if
d = 2, satisfies

‖v − Ihv‖Lp(Ω) + h‖∇(v − Ihv)‖Lp(Ω) ≤ cIh2
‖D2v‖Lp(Ω),

where cI > 0 is a constant independent of h; cf. [8].

We recall, that the space BV(Ω) is continuously embedded in Lp(Ω) for 1 ≤ p ≤ d
d−1 , i.e., there is

a constant cBV > 0 such that ‖v‖Lp(Ω) ≤ cBV‖v‖BV = cBV

(
‖v‖L1(Ω) + |Dv|(Ω)

)
for any v ∈ BV(Ω). For

1 ≤ p < d
d−1 this embedding is compact; cf. [2]. Smooth functions are dense in BV(Ω) ∩ Lp(Ω),

1 ≤ p < ∞. In particular, for v ∈ BV(Ω) ∩ L2(Ω) and δ > 0 there exists ε := ε(δ) > 0 and functions
(vε)ε>0 ⊂ C∞ ∩ BV(Ω) ∩ L2(Ω) such that

‖∇vε‖L1(Ω) ≤ |Dv|(Ω) + c0δ, (3)
‖v − vε‖L2(Ω) ≤ c1δ, ‖v − vε‖L1(Ω) ≤ c2δ, (4)

‖D2vε‖L2(Ω) ≤ ε
−2
‖v‖L2(Ω), ‖D2vε‖L1(Ω) ≤ ε

−2
‖v‖L1(Ω), (5)
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cf. [3]. These inequalities follow from standard mollifier techniques, see e.g. [13]. Now we are
able to show the following convergence result, which follows similar ideas as the proof of [3,
Theorem 3.1].

Theorem 2.1 Let uh ∈ arg minv∈S1(Th) Jα1,α2 (v) and u ∈ BV(Ω) ∩ L2(Ω) be a minimizer of the function
Jα1,α2 . Then we have that Jα1,α2 (uh)→ Jα1,α2 (u) as h→ 0. If additionally α2 > 0, then uh → u in L2(Ω) as
h→ 0.

Proof By the optimality of u we have Jα1,α2 (uh) − Jα1,α2 (u) ≥ 0. For δ > 0 let uε ∈ C∞(Ω) ∩ L2(Ω) as
above and Ihuε its nodal interpolant, i.e., Ihuε ∈ S1(Th). Then we deduce

Jα1,α2 (uh) − Jα1,α2 (u) ≤ Jα1,α2 (Ihuε) − Jα1,α2 (u)

= ‖∇Ihuε‖L1(Ω) + α1‖Ihuε − g‖L1(Ω) + α2‖Ihuε − g‖2L2(Ω)

− |Du|(Ω) − α1‖u − g‖L1(Ω) − α2‖u − g‖2L2(Ω).

Using (3) and ‖Ihuε − g‖2L2(Ω) − ‖u − g‖2L2(Ω) =
∫

Ω
(Ihuε − u)(Ihuε + u − 2g) we obtain

Jα1,α2 (uh) − Jα1,α2 (u) ≤ ‖∇Ihuε‖L1(Ω) − ‖∇uε‖L1(Ω) + c0δ + α1‖Ihuε − g‖L1(Ω)

− α1‖u − g‖L1(Ω) + α2

∫
Ω

(Ihuε − u)(Ihuε + u − 2g).

By the triangle-inequality and the Cauchy-Schwarz inequality we get

Jα1,α2 (uh) − Jα1,α2 (u) ≤ ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − g − (u − g)‖L1(Ω)

+ α2‖Ihuε − u‖L2(Ω)(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω))
= ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − uε + uε − u‖L1(Ω)

+ α2‖Ihuε − uε + uε − u‖L2(Ω)(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω))
≤ ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − uε‖L1(Ω) + α1‖uε − u‖L1(Ω)

+ α2(‖Ihuε − uε‖L2(Ω) + ‖uε − u‖L2(Ω))(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω)).

The bound ‖Ihuε‖L2(Ω)+‖u‖L2(Ω)+2‖g‖L2(Ω) ≤ c̃, which holds provided that h ≤ ε, and the nodal interpolant
estimate yield

Jα1,α2 (uh) − Jα1,α2 (u) ≤ cIh‖D2uε‖L1(Ω) + c0δ + cIα1h2
‖D2uε‖L1(Ω) + α1‖uε − u‖L1(Ω)

+c̃α2(cIh2
‖D2uε‖L2(Ω) + ‖uε − u‖L2(Ω)).

Using (4), (5), and the bound ‖u‖L2(Ω) ≤ c̃ we get

Jα1,α2 (uh) − Jα1,α2 (u) ≤ C1
h
ε2 + C2δ + C3

h2

ε2 + C4δ + C5
h2

ε2 + C6δ.

Let h be sufficiently small, i.e., h ≤ min{δ, δε2
}. Then for δ → 0 we deduce that h → 0 and hence

Jα1,α2 (uh)→ Jα1,α2 (u).

If α2 > 0, then Jα1,α2 is strictly convex and it follows that

Jα1,α2 (uh) − Jα1,α2 (u) ≥ α2‖uh − u‖2L2(Ω),

cf. [19, Lemma 3.8]. Hence uh → u for h→ 0. �

By the definition of the total variation (2) an equivalent formulation of (1) reads

min
v∈BV(Ω)∩L2(Ω)

max
~p∈C∞0 (Ω,Rd),|~p|2≤1

α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) +

∫
Ω

v div ~p. (6)

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017
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An analog equivalence exists for finite element spaces [3]. In particular, for v ∈ S1(Th) we have
that

|Dv|(Ω) = sup
~p∈L0

N(Th)d,|~p|2≤1

∫
Ω

∇v · ~p dx (7)

leading to

inf
v∈S1(Th)

Jα1,α2 (v) = inf
v∈S1(Th)

sup
~p∈L0

N(Th)d

∫
Ω

∇v · ~p dx + α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) − IK (~p),

where

IK (~p) :=

0 if ~p ∈ K
∞ else

is the indicator function ofK := {~p ∈ L1(Ω)d : |~p|2 ≤ 1}. For v ∈ L0(Th) we obtain

|Dv|(Ω) = sup
(~βS)S∈Sh ,|

~βS |2≤1

∑
S∈Sh

|S|~βS[v]S, (8)

where [v]S ∈ R defines the jump across S ∈ Sh in normal direction. Hence in this case the discrete
problem reads as

inf
v∈L0(Th)

Jα1,α2 (v) = inf
v∈L0(Th)

sup
~p∈L0

N(Sh)

∑
S∈Sh

|S|~p|S[v]S + α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) − IK (~p).

While this formulation is equivalent to the primal formulation, in general we cannot expect
convergence to the continuous solution, unless all the jumps are correctly represented by a
descendant triangulation. For more details we refer the reader to [3, Section 4].

The primal-dual problem does not have a unique solution in general, even if the primal problem
is strictly convex (α2 > 0). This is due to the fact, that the dual problem of (1), even for α1 = 0 and
α2 > 0, is only convex but not strictly convex, see for example [15, 18].

2.2 Primal-Dual Algorithm

In the following we discretize using finite element spaces U (e.g. S1(Th) or L0(Th)) and P
(e.g. S1

0(Th)d or L0
N(Th)d) for the primal variable u and the dual variable ~p, respectively. We

denote by 〈·, ·〉 the L2-inner product or the application of an L2-functional. Following the ideas
of Chambolle and Pock [10, Algorithm 1] we formulate our primal-dual algorithm by identifying
F∗ : P → R ∪ {+∞}, G :U → R ∪ {+∞}, and K :U → P∗ with

F∗(~p) = IK (~p), G(v) = α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω), and 〈Kv, ~p〉 =

∫
Ω

v div ~p,

where we assume that each element in P has a weak derivative. If this is not the case, 〈Kv, ~p〉
is to be understood using the identifications suggested by the equations (7) and (8). That is
〈Kv, ~p〉 =

∫
Ω
∇v · ~p dx and

〈Kv, ~p〉 =

∫
Ω

v div ~p =
∑
T∈Th

∫
∂T

v~p · ~n =
∑
S∈Sh

[v]S~n ·
∫

S
~p =

∑
S∈Sh

|S|~p|S[v]S,

cf. [3, Lemma 4.1], respectively.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017
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In the case that ∇v < L2(Ω) for v ∈ U or div~q < L2(Ω) for ~q ∈ Pwe use the following identities

U = L0(Th),P = L0
N(Sh) : 〈∇v, ~q〉 := −

∑
S∈Sh

|S|~p|S[v]S =: −〈v,div~q〉,

U = L0(Th),P = S1
0(Th) : 〈∇v, ~q〉 := −〈v,div~q〉, (9)

U = S1(Th),P = L0
N(Th) : 〈∇v, ~q〉 =: −〈v,div~q〉.

We assume, that the datum g ∈ L2(Ω) and the cost parameters αi are given. Then in our algorithm
we initialize u0 = ū0 ∈ U, e.g., u0 ≡ 0 or u0 = Pg, where P : L2(Ω)→U denotes the L2-projection
onto the discrete space U, and ~p0 ∈ P to be the zero function. As parameters we need the step
sizes σ, τ > 0, the coefficient β = τα1

1+2τα2
, and the overrelaxation parameter θ ∈ [0, 1].

Then our primal-dual algorithm iterates starting with k = 0 as follows:

1. Set p̄ ∈ Pwith step size σ as

〈p̄, ~q〉 = 〈~pk + σ∇ūk, ~q〉 ∀~q ∈ P. (10)

If ∇ūk ∈ P, then we can use the strong formulation, otherwise we use the identities (9). As
the algorithm is derived from formulation (6), we need to guarantee that |~pk|2 ≤ 1 for all k.
This is done by the following update

~pk+1 = (I + σ∂F∗)−1(p̄) ⇔ ~pk+1(x) =
p̄(x)

max (|p̄(x)|2, 1)
, (11)

for almost any x ∈ Ω. Note, that due to the structure of the operator (I + σ∂F∗)−1 (see [10] for
more details) ~pk+1 ∈ P ∩K .

2. Update uk using

uk+1 = (I + τ∂G)−1(uk + τdiv ~pk+1) ⇔ uk+1(x) =


z(x) − β if z(x) − β ≥ Pg(x)
z(x) + β if z(x) + β ≤ Pg(x)
Pg(x) else ,

(12)

for almost any x ∈ Ω, where z ∈ U is defined via

〈z, v〉 =
1

1 + 2τα2

(
〈uk + 2τα2g, v〉 + τ〈div ~pk+1, v〉

)
∀v ∈ U. (13)

If the div ~pk+1 < L2(Ω), then we use again the identities of (9).

3. As proposed in [10] we overrelaxate to speed up the algorithm:

ūk+1 = uk+1 + θ(uk+1 − uk) (14)

4. If the stopping criterion

‖uk+1 − uk‖L2

τ
+
‖~pk+1 − ~pk‖L2

σ
< TOL (15)

holds, we terminate the algorithm, otherwise we set k→ k + 1 and repeat.

Note that in equation (11) withP = S1
0(Th)d it is a priori not clear that ~pk+1 ∈ S

1
0(Th)d, as taking the

pointwise maximum of two piecewise linear functions results in a piecewise linear function on a
finer grid. So in this case we additionally apply the nodal interpolation operatorIh : C0(Ω)d

→ P,
which then guarantees ‖|~pk+1|2‖L∞ ≤ 1 and ~pk+1 ∈ P. A similar problem arises for U = S1(Th)

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017
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and equation (12), which we treat analogously. Furthermore note, that testing with the complete
test-spaceU orP (eqs. (10), (13)), respectively, is equivalent to an L2-projection onto the respective
space.

Theorem 1 of [10] guarantees convergence of this algorithm to a saddle point, if the according
discretization of problem (6) has a saddle point and additionally θ = 1 and

στB2 < 1, (16)

where B := ‖∇‖L2 is the operator norm of the gradient operator on the discrete spaceU. This norm
is bounded for discrete functions and of order O(1/hmin), where hmin := minT∈Th diam(T), which
implies that using finer meshes will always result in more steps of the primal-dual algorithm.
Even using an adaptive mesh is not beneficial to the stepsize, as B depends on the minimum
mesh-width.

3 Implementation Details

The algorithm is implemented in the Dune-project non−smooth−minization . This project is
compatible with the 2.4-release and available on the website http://www.ians.uni-stuttgart.
de/nmh/downloads. It requires the modules Dune-ACFem and all modules that are required by
it, available at gitlab.dune-project.org. The installation works the standard Dune-way. (see
Appendix A)

3.1 On DUNE-ACFEM

Dune-ACFem [14] is a simulation framework based on Dune-Fem [11], which is a discretization
framework based on Dune. Dune-Fem provides most generally speaking finite-element spaces on
generic grids and all the corresponding utilities to construct a finite-element scheme. Examples
are given in the Dune-Fem-Howto. For more information consult [11].

The add-on module Dune-ACFem provides expression templates (and also analytical functions,
that can be evaluated on the mesh) for the discrete functions of Dune-Fem and also for models sim-
ilar but more elaborate to those in the Dune-Fem-Howto. This aims at simplifying the algorithmic
formulation of elliptic and parabolic PDEs. The expression templates for discrete functions allow
for addition, multiplication with scalars, multiplication with scalar functions, scalarproducts of
the components of two functions, and unary expressions like componentwise sin, cos, sqrt, exp.

Dune-ACFem is designed to treat 2nd order elliptic PDEs of the form

−∇ · (A(x,u,∇u)∇u) + ∇ · (b(x,u,∇u) u) + c(x,u,∇u) u = f (x) in Ω,

u = gD on ΓD,

(A(x,u,∇u)∇u) · ν + α(x,u) u = gN on ΓR,

(A(x,u,∇u)∇u) · ν = gN on ΓN,

(17)

or, in weak formulation,∫
Ω

(A∇u) · ∇φ dx +

∫
Ω

(∇ · (b u) + c u)φ dx −
∫

Ω

f (x)φ dx

+

∫
ΓR

αuφ do −
∫

ΓN∪ΓR

gN φ do = 0,

〈Π,u〉 = 〈Π, gD〉.

(18)

Possible Dirichlet data is enforced by standard Lagrange test-functions Π. The multiplication
with the test-functions φ and the integral (quadrature) is provided by Dune-Fem. The other part

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017
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of the integral has to be provided by the model, which is the central concept of Dune-ACFem. A
model is basically a tuple of the form

M := (σE, µE, ρI, gN, gD, wD, f , χR, χN, χD,Ψ)

with the following constituents:

Flux σE : Rd
×Rm

×Rm×d
→ Rm×d,

Source µE : Rd
×Rm

×Rm×d
→ Rm,

Robin-flux ρI : Rd
× Rm

→ Rm,
Robin-indicator χR : ∂Ω→ {0, 1},
Neumann-data gN : Rd

→ Rm,
Neumann-indicator χN : ∂Ω→ {0, 1},
Dirichlet-data gD : Rd

→ Rm,
Dirichlet-indicator χD : ∂Ω→ {0, 1},
Bulk-forces f : Rd

→ Rm,
Force-functional Ψ ∈ V∗.

Using such a model results in the following weak formulation∑
E∈T

( ∫
E

(
σE(x,U,∇U) : ∇V + µE(x,U,∇U) · V − f · V

)
+

∫
I∈E∩∂Ω

((
χR(x)ρI(x,U) − χN(x) gN(x)

)
· V

))
− 〈Ψ,V〉 = 0,

〈Π, χD U〉 = 〈Π, χD gD〉.

(19)

This is directly reflected in code, as a model is derived from an interface class that requires exactly
the implementation of the above constituents (and the linearization of Flux, Source and Robin-flux
for non-linear models). Each model is derived from a default zero-model, where all the constituents
are set to zero, so only non-zero contributions need to be implemented. Dune-ACFem allows
forming algebraic expressions from existing models. The generated model-expressions fulfill the
model-interface just as "hand-coded" ones. This allows forming of complicated models from a
set of convenient pre-built skeleton-models. For a list of predefined models consult [14]. The
algebraic expressions include linear combinations of models and multiplying with L∞-functions.

Other important concepts are the FemScheme and the EllipticOperator. The EllipticOperator
applies or assembles the discretization of equation (18). The FemScheme then solves the
given problem and chooses the necessary linear or non-linear solvers, depending on structural
information given by the model. Dune-ACFemmostly uses preconditioned iterative solvers like
CG or GMRes.

3.2 Image Read-In and Noise Simulation

To read-in images we use the CImg Library - C++ Template Image Processing Toolkit [21]. The
single header file library CImg is an open source project to provide easy handling and processing
of images. It is capable of reading-in standard image formats (e.g. .png, . tif , . jpg ) and of
adding certain types of noise. Each pixel is accessible by its coordinates utilizing the data type
image, whose constructor gets the filename containing the image location. Moreover, image
provides a method to add noise to the data with a given noise level for different noise-types. In
particular, Gaussian noise with noise level (variance) γ and mean 0 and salt-and-pepper noise S
with noise level s ∈ [0, 1], which corrupts an original image ĝ by

Sĝ(x) =


min ĝ with probability s/2
max ĝ with probability s/2
ĝ(x) with probability 1 − s

,

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017
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are available.

We define two adapter classes within the header file src/datafunction.hh to convert either the
data type image or an algebraic expression into a Dune-Fem discrete function. They derive
from the GridFunctionAdapter that creates discrete functions from an evaluation method on
a mesh element. These functions are defined on the unit square [0, 1] × [0, 1], as we can scale
any rectangular image accordingly. The image resolution and aspect ratio relate to the level
of initial refinement and to the number of cells in each direction. So n uniform refinements
with l × k initial cells lead to an image resolution of size l2n

× k2n square pixels, where every
square is composed of two triangles and l/k corresponds to the aspect ratio. This is done in the
gridfile data/unitsquare2d.dgf which describes the unit square using the Dune DGF − Interval
[6] nomenclature.

The artificial addition of noise ( NSM_USE_NOISE=true ) is only needed for demonstration purposes
as in real-world application the image is already corrupted by noise due to certain physical
processes. We currently add two independent types of noise, where every noise implemented by
CImg can be applied. Noise type and noise level are controlled by a set of parameters defined in
the parameter file. For instance, setting nsm.noiseType1 to 0 leads to Gaussian noise and setting
it to 2 corresponds to salt-and-pepper noise. Setting any noise level parameter to 0 disables the
respective noise. For other noise types and more information consult the documentation of CImg
.

3.3 Implementation of the Primal-Dual Algorithm

The primal-dual algorithm from Section 2.2 is implemented in the file src/nsm.cc, where some of
its subroutines, which depend on the continuity of the discrete spacesU andP, are outsourced into
the file src/phc.hh. The template class ProjectionHelperClass uses partial template specialization
to correctly define the methods calculateZ() and entitywiseProjection().

The method phc.entitywiseProjection() realizes equations (10) and (11). Solving eq. (10) is
relatively easy, as all steps are provided by Dune-ACFem, e.g. for continuousU and P:

void ent i tywisePro ject ion ( const ForwardDiscreteFunctionType & uBar , AdjointDiscreteFunctionType
& p )

{
/ / the gradient model defines the weak gradient using continuous test-functions
/ / from the space of p
auto gradU = gradientModel ( uBar ) ;
auto Dbc0 = dir ichletZeroModel (p) ;
auto mass = massModel(p) ;
/ / we solve p = sigma * nabla u + p
/ / with dirichlet zero boundary
auto model = mass − sigma_ ∗ gradU − p + Dbc0 ;
/ / Testspace = AdjointDiscreteFunctionSpaceType = space of p
typedef EllipticFemScheme<AdjointDiscreteFunctionType , decltype (model)> SchemeType;
/ / p is the returned solution

SchemeType scheme(p, model) ;
scheme. solve ( ) ;

In the above case, for given ~p and ū the equation

0 = 〈p̄, φ〉 − σ〈ū,−divφ〉 − 〈~p, φ〉 ∀φ ∈ P

with dirichlet-zero boundary conditions is solved with respect to p̄. The solution is written into
the variable ~p.

Projecting ~p to be feasible (eq. (11)) is not in the features of Dune-ACFem. So we have to use the
features of Dune-Fem directly. We choose to do the projection entity-wise, i.e. we iterate over all
entities of the grid. On each entity we iterate over the degrees of freedom and if |~p|2 > 1 holds,
we restrict the corresponding value to length 1 in the same direction. If the polynomial order of
P is less or equal than 1, this implies the necessary condition ‖|~p|2‖L∞ ≤ 1. For the space S1(Th)
this implies the application of the nodal interpolant Ih.
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The calculation of z (eq. (13)) translates very nicely into code. We use the L2Projection of Dune-
ACFem and its ability to linearly combine discrete functions. If P is continuous, the weak form
of eq. (13) is

〈zk, ψ〉 =
1

1 + 2τα2

〈
uk + τdiv ~pk+1 + 2τα2g, ψ

〉
∀ψ ∈ U

and translates into code in the following way:
void calculateZ ( const AdjointDiscreteFunctionType &p, const ForwardDiscreteFunctionType & uOld ,

ForwardDiscreteFunctionType& z )
{

auto divP = divergence (p) ;
L2Project ion ( 1 . / ( 1 . + tau_∗lambda_2_) ∗ ( tau_ ∗ divP + uOld + tau_ ∗ lambda_2_ ∗ projG_ ) , z ) ;

}

For P = L0
N(Th)d we use the weak divergence to shift the derivative to the test-spaceU = S1(Th).

As above we use the basic Models of Dune-ACFem, in particular the massModel and the
weakDivergenceModel to implement eq. (13) as follows:

void calculateZ ( const AdjointDiscreteFunctionType &p, const ForwardDiscreteFunctionType & uOld ,
ForwardDiscreteFunctionType& z )

{
/ / get the mass model of the Forward space
auto U_Phi = massModel( projG_ . space ( ) ) ;
/ / calculate z
auto weakDiv_P = weakDivergenceModel(p) ;
auto projModel = U_Phi −1./(1.+ tau_∗lambda_2_) ∗ ( tau_ ∗ weakDiv_P + uOld + tau_ ∗ lambda_2_

∗ projG_ ) ;
typedef EllipticFemScheme<ForwardDiscreteFunctionType , decltype ( projModel )> SchemeType;
SchemeType scheme( z , projModel ) ;
scheme. solve ( ) ;

}

Note that in contrast to the implementation of the method entitywiseProjection() we construct
the massModel from a discrete space instead of a discrete function. This is explicitly allowed by
Dune-ACFem as the object simply has to provide the data type for the test-function space.

For the case of P = L0
N(Sh)d and U = L0(Th) the summand weakDiv_p is turned into a

functional. This functional is called EdgeWeakDivergenceFunctional and is contained in the
file edgeweakdivergencefunctional.hh . The main implementation is done in the coefficients()
method, that implements the application of the functional to the basis functions in Dune-Fem
notation.
In the resulting code for the method calculateZ(), (see code example above) the main difference is
that weakDivergenceModel(p) is replaced by edgeWeakDivergenceFunctional(p). Additionally
weakDiv_p in the definition of projModel has been moved outside the brackets, as functions are
not allowed to be added to functionals outside a model (see below).

auto weakDiv_P = edgeWeakDivergenceFunctional (p) ;
auto projModel = U_Phi −1./(1.+ tau_∗lambda_2_) ∗ ( uOld + tau_ ∗ lambda_2_ ∗ projG_ ) −

tau_ /(1 .+ tau_∗lambda_2_) ∗ weakDiv_p ;

3.4 Adaptive Refinement

Adaptive refinement is initiated by a positive parameter nsm.localRefine. This parameter denotes
the number of additional local refinements to be done in the initialization phase in addition to the
uniform refinements. If it is set to ≤ 0, no local refinement will be performed. The grid is locally
refined at discontinuities of the piecewise constant datum g ∈ L0(Th) in the following way: Given
an entity E and its neighbour N, if

|g|N − g|E| > ADAPTTOL (20)
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holds, then E is marked for refinement, where the value of ADAPTTOL is given by the parameter
nsm.adaptTolerance. We do not refine during the iterations of the primal-dual algorithm, but
keep the mesh static. So the refinement increases the resolution of discontinuities and hence
drastically improves the projection Pg. This is implemented in the method adaptGrid() in the
file nsm.cc. We use the grid manager Dune-ALUGrid [1], which is capable of handling the
needed conforming, parallel, adaptive, triangular grids.

4 Numerical Experiments

To reproduce the data of the experiments of this section, consult Appendix A and follow the
described steps.

4.1 Comparison of Discrete Spaces

We investigate for different discrete spacesU and P the behaviour of our algorithm with respect
to the non-smooth minimization problem (1) considering the following setups

U = S1(Th),P = S1
0(Th)d, U = L0(Th),P = S1

0(Th)d,

U = S1(Th),P = L0
N(Th)d, U = L0(Th),P = L0

N(Sh)d.

The setups usingP = L0
N(. . .)d are motivated by the equivalence of the mixed formulation and the

primal formulation for these discrete settings. For the caseU = S1(Th),P = L0
N(Th)d we even have

guaranteed convergence to the continuous formulation, see Theorem 2.1. The settingP = S1
0(Th)d

is motivated by [5], where it is shown that for U = S1(Th), P = S1
0(Th)d the discrete pre-dual of

the functional J0,α2 Γ-converges to the continuous one. However, setting U = S1(Th) does not
seem necessary for the proof there, but can be for example replaced by choosing U = L0(Th).
Therefore we also investigate the caseU = L0(Th).

For this set of experiments we choose a similar example as in [5], i.e., the observed data is 1 on
a disk of radius 0.3 and 0 elsewhere. Hence, we choose the discrete datum g to be given as a
piecewise constant approximation of the function

f (x) =

1, if |x − (0.5, 0.5)| ≤ 0.3
0, else.

Note that this datum changes under grid refinement. The cost parameters are set to α1 = 10
and α2 = 20, the stopping tolerance to 10−2, and the adaptation tolerance to 0.1. For the L0/L0

case we choose the tolerance 10−4 as we use an extension of P into Ω to calculate the part of
~p in the stopping criterion ‖uk+1−uk‖L2

τ +
‖~pk+1−~pk‖L2

σ < TOL. We do a = 3 uniform refinements and
b = 5 additional local refinements. As convergence is guaranteed, if condition (16) holds, and
since we know that in general ‖∇u‖L2 < Ch‖u‖L2 for u ∈ U, the step sizes are automatically set to
τ = σ = L ∗ 2−(a+b) with a constant L. For the L0/L0 case, numerics indicate, that it is possible to
even set τ = σ = L ∗ 2−(a+b)/2. Note that the choice of L does not only depend on the operator norm
of the gradient on the domain, but also on the number of elements in the initial grid. Here we
choose L = 0.19. The overrelaxation parameter θ is chosen to be 1.

By imposing all equations weakly the primal-dual algorithm de facto uses the L2-projection
Pg ∈ U instead of the datum g ∈ L0(Th). Figure 1 shows that in the case of U = S1(Th) by
projecting a discontinuous function onto a continuous space we introduce an additional error in
contrast to the case U = L0(Th). The over- and undershoots of the continuous projected data
do not pose a problem, because they are regularized over the course of the algorithm, as we
can see in Figure 2b. Comparing Figure 2a with 2b and Figure 2c with 2d we see that choosing
P = S1(Th)d smears out jumps, i.e., the discontinuities are less accurately approximated. This is
due to the fact, that P is continuous and its basis functions have a larger support than if it were
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(a) g = Pg, asU = L0(Th)

(b) Pg forU = S1(Th)

Figure 1: The Projection of the piecewise constant datum g onto the spaceU.

(a)U = S1(Th),
P = S1

0(Th)d
(b)U = S1(Th),
P = L0

N(Th)d
(c)U = L0(Th),
P = S1

0(Th)d
(d)U = L0(Th),
P = L0

N(Sh)d

Figure 2: The discrete minima u∗ of the functional J10,20

discontinuous. Additionally P = S1(Th)d is not the space for which the primal and the mixed
formulation are equivalent leading to a worse approximation of |Dv|(Ω). This explains why the
value of the functional in Figures 3 and 4 for these variants is higher than choosing P = L0

N(. . .)d.
In particular this worsens the quality of the solutions obtained withU = L0(Th),P = S1

0(Th)d, as
now multiple elements at the jump are hanging mid-air (Figure 2c), which drastically increases
the total variation.

Figure 3 depicts the evolution of the energy Jα1,α2 during the iterations for the considered space
pairings. We observe that Jα1,α2 is not monotonically decreasing but stagnates at a minimal value
after a certain number of iterations (note that the scale of the number of iterations in Figure 3 is
logarithmic). This demonstrates, that in all these settings the algorithm converges to a stationary
point of the respective discrete problem. Due to the different combinations of spaces it is clear
that the stationary points in general do not coincide and hence the minimal energy is different.
The combinationU = S1(Th), P = L0

N(Th)d yields the best result, as its final energy is the smallest
among the considered cases.

We observe that choosing U = S1(Th) results in a decreasing energy for h → 0, while for
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Figure 3: The value of the functional Jα1,α2 over the course of the algorithm.
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Figure 4: Final energy for h = 2−5, . . . , 2−11

U = L0(Th) this is not the case (cf. Figure 4). More precisely for the caseL0(Th),S1
0(Th)d the energy

seems to oscillate in a certain sense and forL0(Th),L0
N(Sh)d the energy stays almost constant. This

is due to the fact that, while the approximation of the circle gets better, the total variation does
not diminish for L0. In general approximating functions of bounded variation is not possible
with piecewise constant functions on a triangulation, since the length of discontinuities may not
diminish over refinement [3]. This is different for the caseU = S1(Th), where discontinuities of
functions, that are not representable on the triangulation, can be better approximated.

4.2 Image Denoising

Here we demonstrate the denoising capability of the algorithm. Motivated by the above experi-
ments we choose the spaces to beU = S1(Th), P = L0

N(Th)d. The considered image with values
in [0, 1] is first corrupted by Gaussian white noise with variance 0.1 and then salt-and-pepper
noise with s = 0.1 is added. The obtained image is shown in Figure 5a. In order to reconstruct
the image we choose α1 = 250, α2 = 150 in (1), and perform our primal-dual algorithm with the
tolerance set to 10−2, θ = 1 and σ = τ = 2−8. To resolve the 256 × 256 pixel-sized picture we apply
8 uniform refinements and no additional local refinement. In Figure 5b we depict the output of
our algorithm. The result is reasonably smoothed due to the total variation regularization, while
discontinuities are still preserved.
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(a) Noisy image (b) Result of the algorithm

Figure 5: A corrupted image before and after applying the algorithm

(a) Real image (b) Part of the mesh (c) Result of the algorithm

Figure 6: A real image before and after applying the algorithm

As a second example we run the algorithm on a much finer image, that has a resolution of
2576 × 1920 pixels (Figure 6a). The spaces are chosen as above, the cost parameters are α1 = α2 =
500, we run the image on an initial grid of 161 × 120 squares, each subdivided in two triangles
and initiate 2 initial global refinements and 2 local Refinements. So locations with full refinement
a triangle is half the size of a pixel. A part of the mesh is depicted in Figure 6b, where one may
observe that the discontinuities are captured by the refinement, as intended. The resulting image
(Figure 6c) behaves as expected, the noisy structure of the stone is reduced to a minimum, but we
also lose some details inside the stars, that we may have wanted to keep. This may be attributed
to the choice of the parameters α1 and α2. We note that in this example as well as in the previous
one, these parameters are chosen at will, but not optimal. For an optimal choice of parameters,
we refer the reader to [19]. Moreover it may be of interest to choose local cost parameters, as in
[9, 12, 20].

4.3 Strong Scaling

We do a strong scaling experiment on the same datum as in Section 4.1 using the spacesU = S1(Th)
andP = L0(Th)d. The computation is executed on a 32 core shared memory system. The grid man-
ager Dune-ALUGrid balances the computational load on the initial grid by partitioning it onto the
different processors. So we cannot expect the algorithm to scale if the initial mesh is to coarse. E.g.
if there are only two initial elements, only two processors can get partitions that are non-empty.
Consequently we discretize the unit square by 8× 8 elements, see data/finecube_2d.dgf. As the
grid is already fine, we do not need as many uniform refinements to reach a good resolution, so
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we do a = 3 uniform and another b = 3 local refinements. This results in a different operator norm
of the gradient on the initial grid, so we have to set the corresponding parameter nsm.constantL
to 0.02 for the stepsizes τ = σ = L ∗ 2−(a+b) to be computed correctly. The tolerance is set to 10−2

and α1 = α2 = 150 to reach a short runtime.
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Figure 7: Strong scaling of the algorithm.

Figure 7 indicates that the strong scaling at least up to 8 cores is quite good and afterwards it
stagnates, which is probably due to the small grid and not enough workload. We would have
to increase the number of initial cells to improve the scaling further. The important part about
this result is, that the parallelism is done inside Dune-ACFem and we spent almost no effort to
parallelize the code. The only line of code needed initializes MPI.

5 Summary and Outlook

We have shown for a certain discretization that the associated minimizer converges to the con-
tinuous one. The primal-dual algorithm used here is implemented very conveniently within
Dune-ACFem. The flexibility of Dune-Fem allows us to easily exchange discrete spaces and easily
set parameters. Also the algorithm is now intrinsically parallel by domain decomposition with a
decent strong scaling. Future research includes implementing a semi-smooth Newton method in
Dune-ACFem to increase convergence speed even for highly adaptive grids.
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Appendix A - Installation Instructions

The program is designed to work in a Linux-environment. It may as well work on a unix
machine. To install the program, first download the Dune modules, Dune-common, Dune-
geometry, Dune-grid, Dune-istl, Dune-localfunctions, Dune-Fem, Dune-ALUGrid and Dune-
ACFem from gitlab.dune-project.org and non−smooth−minization from http://www.ians.
uni-stuttgart.de/nmh/downloads. For the Dune- modules checkout the branch releases/2.4.
Put all the projects in a directory as direct subfolders. Use your config file config.opts to run the
command
./dune=common/bin/dunecontrol −−opts=config.opts −−module=non−smooth−minization all
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An example config file example.opts is provided in the main directory of the Dune project
non−smooth−minization .
Now Dune is installed and the executable nsm from the subdirectory src should have been
built within the cmake build directory. The scripts example1.sh to example5.sh produce
the results presented in this paper. They require a python interpreter and example3.sh and
example5.sh require MPI. The cmake build directory is assumed to be named build−cmake.
This can be adjusted by modifying the BUILDDIR variable inside the scripts. The scripts are
simple, so changes should be easy. They basically consist of changing directories, compiling the
executable nsm, executing it with the right set of parameters and parsing the output into suitable
directories. There are two types of output. Console output from std :: out is parsed into a file
output.graph in a subdirectory of src, which describes the value of the functional and the value
of all its parts with respect to both g and Pg and a file output.parameters, where the applied
parameters and other output can be looked up. Console output from std :: err is displayed on the
console. The other type of output is in the cmake build directory located within the directory
output in suitable subdirectories. These contain a set of .vtu/.vtk files (readable with Paraview ),
that contain the datum g (called "image"), the projection Pg (called "projection of g"), the solution
(called "u0") and the adjoint variable (componentwise "p0", "p1"). It may take some time to run
the scripts. To get faster results, simply edit the LOCREF or INITREF variable of the bash scripts
or lower the tolerance parameter nsm.tolerance.

Appendix B - Parameters

There are two types of parameters: run time parameters and compile time parameters.

• Run time parameters can be overloaded on the command line by
./nsm nsm.parameter:value ... .
The default values are set inside the parameter file located at data/parameter. This file
is copied into the cmake build directory at compile time. So parameters changed in the
build directory will be overwritten when recompiling. Parameters with prefix fem, or istl
belong to Dune-Fem and Dune-ISTL respectively, and are explained in their documentation.
The specific parameters of this algorithm are prefixed nsm. The extensive list of run time
parameters reads:

nsm.theta Overrelaxation parameter θ
nsm.maxIt Maximum number of iterations of the algorithm
nsm.tolerance The algorithm breaks if the tolerance is reached
nsm.outputStep Output every nth step
nsm.constantL If ! NSM_SET_STEPSIZE, τ = σ = L ∗ 2−(a+b)

nsm.tau Stepsize τ
nsm.sigma Stepsize σ
nsm.lambda_1 L1-data term cost coefficient α1
nsm.lambda_2 L2-data term cost coefficient α2
nsm.image Filename of the image to be read in
nsm.initialRefinements Number of initial uniform refinements a
nsm.localRefine Number of initial adaptive refinements b
nsm.adaptTolerance Adaptive tolerance
nsm.noiseType1 The CImg type of noise to be applied first
nsm.noiseLevel1 The CImg noise level of the first noise
nsm.noiseType2 The CImg type of noise to be applied second
nsm.noiseLevel2 The CImg noise level of the second noise

• Compile time parameters have to be declared when compiling. The location is in the file
CMakelists.txt. As they are cmake -cache variables, they can be redefined in the usual way
(see e.g. example1.sh ). They determine what kind of problem to treat and which discrete
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spaces are to be used.
NSM_SET_STEPSIZE If true, τ and σ are set manually
NSM_USE_IMAGE If true, image is used instead of geometric expression
NSM_USE_NOISE If true, noised imaged is used, requires NSM_USE_IMAGE
NSM_U_DISCONT If true,U = L0(Th), elseU = S1(Th).
NSM_P_DISCONT If false, P = S1

0(Th)d,
else P = L0

N(Th)d or L0
N(Sh)d (depending onU) .
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