
357

Objectives of this contribution

The aim of this paper is to stimulate discussion
about the content and objectives of research soft-
ware reviews as well as digital tools used for re-
search in archaeology and ancient studies. Our
reflections were inspired by a round-table discus-
sion led by Kai-Christian Bruhn, Sophie Charlotte
Schmidt and Frank Siegmund at the plenary ses-
sion of the 9th Workshop of the German Section of
the CAA 2019 in Wilhelmshaven. On the occasion
of the introduction of the new category “Archäoin-
formatik” as a space for such kind of reviews in the
Archäologische Informationen , we have now written
down our thoughts. The few relevant software re-
views available at the time of our discussion (espe-
cially in the journal Internet Archaeology) do not
seem to be consistent and comprehensive enough
to the authors.

In this recommendation, we present criteria
and principles that make up good research soft-
ware and may be relevant for its evaluation. We
also recommend a procedure for an actual soft-
ware review, and present a list of questions to
help with the critical evaluation of software.

The assessment of a publication is a tradition-
al part of academic discourse. Accordingly, there
is an unspoken understanding of what a review
should include. In addition, concrete measures
can be taken to ensure quality, such as instruc-
tions on how to write reviews or - as practised by
the editorial staff of Archäologischen Informationen
- the peer reviews are themselves assessed.

What constitutes a good review of software in-
tended for use in archaeological research? Should
only the algorithms executed by the software
which directly contribute to the solution of a sci-
entific problem be addressed? Or do aspects of

Recommendations for the review of archaeological research software

Timo Homburg, Anne Klammt, Hubert Mara, Clemens Schmid,
Sophie Charlotte Schmidt, Florian Thiery & Martina Trognitz

Received: 23 Okt 2020
accepted: 10 Nov 2020
published online: 19 Jan 2021

Abstract – Motivated by numerous discussions around the increasing use of research software in the field of archaeology, this article
outlines some aspects for its review. The evaluation of software is a complex topic, since its field of application and development context
has a considerable influence. In addition, there are many very different use cases, ranging from students wanting a quick solution for an
exercise to project developers, who have to integrate a software package into an existing infrastructure for continuous operation. Although
this discussion paper is based on equal contributions from archaeology and applied computer science, the focus is on evaluation criteria
for software in the field of archaeology. A major goal of this paper is to alert future reviewers to the complexity of software evaluation. A
software review should enable a professional archaeological audience to make a quick, critical and fair, to both the product and the de-
velopers assessment of the software. Priority recommendations include a description of the context in which the review was written and
the requirements for specific use cases. In addition, a short tabular overview should enable a quick assessment of the technical, financial
and legal aspects. The need for future adaptations of this guideline was identified at the outset since both software development and its
evaluation in the digital age are expected to remain very dynamic.

Key words – archaeology; manual; guideline; software review; research software; review

Titel – Diskussionsbeitrag: Handreichung zur Rezension von Forschungssoftware in der Archäologie und den Altertumswissenschaften

Zusammenfassung – Motiviert durch zahlreiche Diskussionen rund um den zunehmenden Einsatz von Forschungssoftware im Bereich
der Archäologie werden in diesem Beitrag Aspekte zu deren Rezension skizziert. Die Bewertung von Software ist ein komplexes The-
ma, da deren Einsatzgebiet und ihr Entwicklungskontext einen erheblichen Einfluss auf Forschungsergebnisse haben. Hinzu kommen
unterschiedlichste Anwendungsfälle von z. B. Studierenden, die rasch eine Übungsaufgabe lösen, bis hin zu Projektentwicklern, die ein
Softwarepaket für den Dauerbetrieb in eine bestehende Infrastruktur integrieren müssen. Obwohl an der Erstellung dieser ersten Version
eines Leitfadens paritätisch Beiträge aus der Archäologie und der angewandten Informatik eingeflossen sind, liegt der Fokus auf Beurtei-
lungskriterien von Software im Anwendungsbereich der Archäologien. Ein Ziel dieses Impulses für Softwarerezensionen ist es, künftige
Rezensentinnen und Rezensenten für die Komplexität der Beurteilung von Software zu sensibilisieren. Eine Softwarerezension soll dem
archäologischen Fachpublikum eine rasche, kritische und – auch den Entwicklerinnen und Entwicklern gegenüber – faire Beurteilung von
Software ermöglichen. Zu den vorrangigen Empfehlungen gehört die Beschreibung des Kontextes, in dem die Rezension verfasst wurde
bzw. die gestellten Anforderungen für bestimmte Anwendungsfälle. Zusätzlich soll eine kurze tabellarische Übersicht eine rasche Einschät-
zung der technischen, finanziellen und rechtlichen Aspekte ermöglichen. Der Bedarf nach künftigen Überarbeitungen dieses Impulses für
Softwarerezensionen wurde bereits bei dessen Erarbeitung festgestellt, da sowohl bei der Softwareentwicklung wie auch deren Bewertung
im digitalen Zeitalter weiterhin eine große Dynamik zu erwarten ist.

Schlagwörter – Archäologie; Archäoinformatik; Handreichung; Softwarebewertung; Forschungssoftware; Rezension

Archäologische Informationen 43, 2020, 357-370
CC BY 4.0

Weitere Aufsätze

Timo Homburg et al.

358

usability, sustainability and interoperability also
need to be considered? What role do technical
and legal aspects play in the discussion, for exam-
ple, source code documentation or licensing? And
finally: does the software itself perhaps represent
a scientific contribution? Which achievements of
the software developers should be considered in
a review? What standards, alluded to in the rec-
ommendations of the German Research Founda-
tion (Deutschen Forschungsgemeinschaft, DFG),
should good research software meet? And last
but not least: who should, or is able to, adequately
review a piece of software?

The central question of a review, namely the
scien tific value of the subject to be reviewed, is only
touched upon with these questions. In this respect,
the requirements of a software review are the same
as those of a scholarly text review. Furthermore,
due to the variety and diversity of software, not all
of the criteria collected here will be relevant in each
and every review. It is up to the reviewer to select
relevant aspects and to set priorities.

This contribution is intended as a stimulus
to discussion. Contributions for discussion and
suggestions are explicitly welcome. For this pur-
pose, the authors can be contacted via the given
addresses or by posting comments directly on
GitHub (https://github.com/Research-Squir-
rel-Engineers/Impuls_SoftwareRezensionen_
DGUF/ [23.10.2020]).

Research software

The criteria for the assessment of software pre-
sented below are primarily aimed at review-
ing research software. By research software, we
mean software that has been developed with re-
search activities as a primary area of application,
i.e. generating, processing or analysing research
data (Hettrick et al., 2014). Examples include
programmes that serve to calibrate and convert
measured values, visualise geospatial data, an-
notate texts and objects or provide and link sub-
ject-relevant vocabularies.

Research software is always part of the re-
search process, and has to be comprehensible and
- as far as possible - reproducible in all its aspects.

Research software is different from software
that is required for the use of specific hardware
equipment, such as for surveying, photographic
documentation or the analysis of surfaces and sub-
stance components. The latter is often proprietary
and is distributed together with the hardware. Al-
though it is used in the research process, it does

not correspond to our understanding of research
software. Digital tools that play a significant role
in practical work but have no actual part in the
collection, processing and analysis of data are also
not research software as we understand it. These
include, for example, word processing or spread-
sheet programmes. However, the criteria present-
ed can be used to assess any type of software.

Research software is particularly prone to issues
of sustainable development and maintenance. One
major reason is the lack of long-term funding for
staff and infrastructure to produce sustainable soft-
ware (anzt et al., 2020, p. 2). An overview of needs,
challenges and possible solutions for sustainable
research software development was compiled in
2019 in a workshop at the deRSE conference in
Potsdam (https://de-rse.org/de/conf2019/index.
html [23.10.2020]) (BacH et al., 2019).

Research software as a scholarly achievement

In modern research, it is unthinkable to work
without digital tools. This also applies to histori-
cal, classical and ancient studies. With the rise of
the digital humanities, software is increasingly
becoming an important part of the research pro-
cess and substantially affects it, both implicitly
and explicitly (for archaeology, see e.g. (ScHmidt
and marwick, 2020). Only by disclosing the un-
derlying source code can the processes performed
by the software be properly evaluated.

Despite the vital role that research software
plays in many projects, the achievements of those
developing and programming it are often not suf-
ficiently recognised academically (Hettrick, 2016;
katerBow and Feulner, 2018; ScHeliga et al., 2017).
This does not do justice to the fact that scientific
expertise and, moreover, advanced technical com-
petence are required to develop research software.
Practice and knowledge are explicitly manifested
and developed by turning it into code. We argue
that these accomplishments need to be acknowl-
edged and made visible, especially as scientific
breakthroughs are often only made possible by
software (HelmHoltz open Science, 2019; kater-
Bow and Feulner, 2018; ScHeliga et al., 2017).

As an important first step towards making
such achievements visible, the job title of “Re-
search Software Engineer” (RSE, RSEng) was coined
in 2012 (Baxter et al., 2012; Hettrick, 2016). At the
same time, an active, interdisciplinary communi-
ty has formed to develop recommendations for
dealing with research software (anzt et al., 2020).
National RSE sections (https://sorse.github.io/

https://github.com/Research-Squirrel-Engineers/Impuls_SoftwareRezensionen_DGUF/
https://github.com/Research-Squirrel-Engineers/Impuls_SoftwareRezensionen_DGUF/
https://github.com/Research-Squirrel-Engineers/Impuls_SoftwareRezensionen_DGUF/
https://de-rse.org/de/conf2019/index.html
https://de-rse.org/de/conf2019/index.html
https://sorse.github.io/contact/chapters/

Recommendations for the review of archaeological research software

359

contact/chapters/ [23.10.2020]) – in Germany for
example “de-RSE e.V. “ – organise cross-discipli-
nary RSE conferences such as SORSE (https://
sorse.github.io [23.10.2020]). As part of the de-
velopment of a Nationale Forschungsdateninfra-
struktur (NFDI, Eng. National Research Data
Infrastructure), research software and RSEs play
a major role in the further development of the re-
search landscape and the portfolios of research in-
stitutions in Germany (goedicke and lucke, 2020;
löFFler, 2020).

One of the demands of the de-RSE e.V. is that
research software shall become explicitly visible by
means of suitable publication modalities. A publi-
cation increases discoverability and thus avoids re-
dundant redevelopments (anzt et al., 2020, p. 10).
At the same time, the clear authorship that goes
hand in hand with a publication is of great impor-
tance in linking the task of developing software
with the responsible people. This is a critical part
of establishing an academic career, but up to now
only classic text publications have been counted.
In future, data publications, software development
(druSkat et al., 2017) and annotations — as well as
their citations (https://citation-file-format.github.
io [17.12.2020]) — should be criteria for the assess-
ment of scientific performance (NFDI4 Culture,
https://www.rse4nfde.de/en [23.10.2020], RS-
E4NFDI, (https://www.rse4nfdi.de/de/index.
html [23.10.2020], NFDI4Objects, https://www.
nfdi4objects.net [23.10.2020]). Some technical chal-
lenges have to be overcome though, because in
contrast to most text publications software is never
finally completed, often builds upon existing mod-
ules and is sometimes maintained by changing
teams over decades (katz et al., 2016).

Openly available software can be reviewed,
just as is the established practice in archaeology
and ancient studies research. It can then be pre-
sented to a wider audience in a review. Through
a dedicated review of software analogous to re-
views of scholarly publications, the scientific
achievements, responsibilities and participation
of the authors of research software are made visi-
ble and recognised by means of familiar formats.

Good research software

In order to be able to establish criteria for review-
ing and evaluating research software, the first
question is how to determine its quality and by
which standards it should be assessed. This in-
cludes a multitude of specialist and technical as-
pects, which will be examined below. However,

software, like any other tool, must first be evalu-
ated in terms of its general suitability for sustain-
able and ethical scientific work.

With its “Leitlinien zur Sicherung guter wissen-
schaftlicher Praxis” (Eng. Guidelines for Safeguard-
ing Good Scientific Practice) (dFg, 2019), the DFG
formulated a set of guidelines for good scientific
research practice. The guidelines correspond to
an international consensus and well established
principles. The requirements include, for exam-
ple, adherence to and definition of standards and
methods, comprehensible documentation of how
results were achieved, public accessibility of re-
sults and archiving of the necessary materials to
replicate the results.

Some of the criteria that are explicitly and im-
plicitly mentioned in the DFG guidelines are de-
scribed in more detail below, including the FAIR
Data Principles mentioned in the comment for
guideline 13, and the principles of Open Science
and the CARE principles in guidelines 2 and 10.
Further guidance on the implementation of the
DFG guidelines in relation to research software
can be found at (ForScHungSdaten.inFo, 2020).

FAIR Data Principles

The FAIR Data Principles (wilkinSon et al., 2016)
were published in 2016 and primarily target re-
search data and their metadata. The principles
require that data and metadata must be find-
able, accessible, interoperable and reusable.
There is a particular focus on machine readabili-
ty. The principles can also be applied to research
software and its metadata (goedicke and lucke,
2020; lamprecHt et al., 2019) and thus provide
criteria for assessing the quality of software
publication, code documentation and program-
ming standards.

Software becomes findable by storing it, to-
gether with its associated metadata, in dedicated
software repositories (e.g. GitHub). Integration
into scientific research infrastructures increases
the findability, as they explicitly work on the de-
velopment, maintenance and application of con-
trolled indices and metadata standards (anzt et
al., 2020; lamprecHt et al., 2019).

The citation of research software is enabled
through persistent identifiers (e.g. URIs) assigned
by repositories and crediting the authors. Since
software, unlike conventional publications, is
constantly being developed and evolves, it should
be saved in different versions that can be individ-
ually cited (ForScHungSdaten.inFo, 2020).

https://sorse.github.io/contact/chapters/
https://sorse.github.io
https://sorse.github.io
https://citation-file-format.github.io
https://citation-file-format.github.io
https://www.rse4nfde.de/en
https://www.rse4nfdi.de/de/index.html
https://www.rse4nfdi.de/de/index.html
https://www.nfdi4objects.net
https://www.nfdi4objects.net

Timo Homburg et al.

360

Public repositories and persistent identifi-
ers also ensure a minimum level of accessibility.
Ideally, data and metadata should also be ma-
chine-accessible via an open and standardised
communication protocol (lamprecHt et al., 2019).
Other aspects that facilitate accessibility are avail-
ability for different operating systems and tech-
nical requirements that can be met by current de-
vices in use. Furthermore, a comprehensible user
manual improves accessibility.

Interoperability of software can refer to the
compatibility of input and output formats with
other programmes in a work process (horizon-
tal dimension), but also to the cooperation of the
components used in the software itself (vertical
dimension) (lamprecHt et al., 2019, p. 46f). The
use of standards enables both, as it allows soft-
ware components to work together even across
different operating systems.

The reusability of software depends on several
components. Metadata and comprehensive docu-
mentation of the software should enable others to
reproduce results, process their own data and use
it for modified use cases. Additionally, a suitable
licence that also takes into account the software
dependencies provides information about which
rules apply to the use and further development of
the code (lamprecHt et al., 2019, pp. 48–49).

Open Science

Open Science refers to a scientific practice that
aims at a transparent, reproducible and collabo-
rative research process (Bezjak et al., 2018, ‘Open
Concepts and Principles’). Open Science consists
of several principles that concern different stag-
es in the research process. For example, Open
Science calls not only for the results to be open-
ly available (Open Access), but also for opening
the underlying data (Open Data), the methods
employed (Open Methodology) and the research
software used (Open Source). For research soft-
ware to be open, its source code must at least be
accessible and provided with a licence that allows
further development (Bezjak et al., 2018, ‘Open
Research Software and Open Source’).

The demand for the disclosure of source code
(Open Source) also complies with the idea of re-
usability. The ideal of Open Source is expanded
by the demand for making the code freely avail-
able for use (free source) (Stallman, 2001). This
is referred to as FOSS (Free/Libre Open Source
Software) and is advocated in Germany by, for
example, application-oriented scientists and de-

velopers from the field of geoinformatics (FOSS-
GIS e.V., https://www.fossgis.de [23.10.2020]) as
well as by research software engineers in the “de-
RSE e.V.” (https://de-rse.org/en/association.
html [23.10.2020]; anzt et al., 2020).

The DFG guidelines touch upon the opening of
software source code in the context of quality as-
surance (dFg, 2019, pp. 14–15) and the creation of
public access to research results (dFg, 2019, p. 19).

CARE Principles and ethos

In DFG guidelines 2 and 10, ethical aspects in the
research process are addressed. We believe that
these should also be taken into account in the area
of research software.

Privileges and inequalities in classical and an-
cient studies research are unconsciously perpetu-
ated in research software as well. Expensive, pro-
prietary software disadvantages researchers who
have to make do with less funding, as this denies
them access to contemporary analytical methods.
As a further consequence, access to highly rated
journals may be impeded and student training in
these methods may stagnate, further accentuat-
ing existing imbalances. Language barriers also
contribute to disparities: for example, if interna-
tional teams use a database that is not also avail-
able in the local language, Indigenous researchers
may be prevented from independently analysing
and evaluating the data, as well as from pursuing
further training.

In the field of archaeology, where research is
often conducted on foreign cultures and cultur-
al legacies, locals and Indigenous people should
be given the opportunity to have a say in or par-
ticipate in its investigation. To meet this ideal,
suitable orientation is provided by the CARE
Principles (https://www.gida-global.org/care
[23.10.2020]). They were jointly introduced by
the Global Indigenous Data Alliance (GIDA)
(https://www.gida-global.org [23.10.2020]) and
the Research Data Alliance (RDA) (https://
www.rd-alliance.org [23.10.2020]) in 2018 on
the basis of the UN Declaration on the Rights of
Indigenous Peoples (UNDRIP) (https://www.
un.org/development/desa/indigenouspeoples/
declaration-on-the-rights-of-indigenous-peoples.
html [23.10.2020]). Like the FAIR Data Principles,
the CARE Principles focus explicitly on research
data. However, in our opinion, the four pillars
of Collective Benefit, Authority to Control, Re-
sponsibility and Ethics are equally relevant to
research software.

https://www.fossgis.de
https://de-rse.org/en/association.html
https://de-rse.org/en/association.html
https://www.gida-global.org/care
https://www.gida-global.org
https://www.rd-alliance.org
https://www.rd-alliance.org
https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-indigenous-peoples.html
https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-indigenous-peoples.html
https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-indigenous-peoples.html
https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-indigenous-peoples.html

Recommendations for the review of archaeological research software

361

A possible approach to reviewing
archaeological research software

The review of archaeological research software
requires sifting through documentation and
publications as well as actually testing the soft-
ware itself. We suggest that a software review,
much like a conventional review of a scientific
publication, should first introduce the software
by presenting the key data. This should be fol-
lowed by outlining the context and critically as-
sessing the software.

The key data, which can be presented in tabu-
lar form, include information on the software ver-
sion under review, the developers and the licence.
This allows, for example, a quick assessment of
whether the reviewed software is compatible with
one’s own technical environment. A suggestion
for the contents of such a table can be found at the
end of this article.

For context, a classification in the archaeolog-
ical research field and information on the possi-
ble connection with research projects, working
groups or institutions should be provided. The
background of the reviewer is also necessary; it
should be described, because a realistic and trans-
parent assessment of one’s own competences and
interests regarding the use of the software pro-
vide valuable information for a heterogeneous
readership. Was the review written purely from
a user’s point of view or also from a developer’s
perspective? A description of the test environment
used, i.e. the computer used to test the software,
can also be important, such as information on the
operating system, RAM, processor, graphic card
or bandwidth.

A catalogue of questions for the critical assess-
ment of research software from different perspec-
tives, which is divided into three sections follows
hereafter. In our opinion, the questions from the
first section “Use in archaeology and scientific
purpose” should be addressed in every review.
We also consider it very important to answer ques-
tions on installation, tutorials, and the supporting
community, as well as on input and output for-
mats, programming interfaces, and the possibili-
ties for participation in the further development
of the software. These questions themselves entail
further relevant follow-up questions; for example
for the installation process one also has to con-
sider whether the software is a stand-alone or a
web application, whether the installation require-
ments are clearly documented and whether the
documentation is complete and up-to-date. The
questions in the catalogue we consider the most

relevant are prefixed with (very important) and
 (important).

The results of the review should be summa-
rised in a statement that evaluates the software in
terms of its usefulness, its usability, its quality of
craftsmanship and its position in relation to the
aforementioned ideals of good research software.

The catalogue of questions presented below is
extensive and does not need to be worked through
in every detail. Its complexity and depth is a
good indicator that the development of research
software can indeed be a full-fledged, scientific
activity. We advise critically reflecting on one’s
own competencies in regard to the review and, if
necessary, carrying out the evaluation in a team.
For, just as reviews of conventional publications
are ideally written by experts on the topic, this
should also apply to research software reviews.

Catalogue of questions for the assessment of
software

Below we present an annotated catalogue of ques-
tions with criteria for the assessment of archaeo-
logical research software. Three sections bundle
questions from different areas of competence. The
first two sections deal with the scientific field of
application, as well as the utilisation and usability
from the user’s point of view. The third section
focuses on questions that are particularly relevant
for developers and IT administrators. The cata-
logue concludes with a list of key data that sup-
plement the review in tabular form, but cannot
usually be critically assessed.

As with the review of a scientific publication,
the composition and weighting of the individual
features is to be determined during the review it-
self and to be set in relation to the context of the
application area. Accordingly, we intend the an-
notated catalogue to be a maximum version that
can serve as an aid for the review and the assess-
ment of one’s own competences.

Use in archaeology and scientific purpose
When assessing the scientific quality of research
software, two central questions must be an-
swered. The first one - and this is a priority for
research software - is whether the software con-
tributes to working on archaeological questions
in a meaningful way. Secondly, it has to be de-
termined whether the software properly imple-
ments the intended task. Both questions are not
always easy to answer.

Timo Homburg et al.

362

 What task is the software trying to solve? This
question is linked to the descriptive character
of a review: what tasks are being addressed
by means of the software in the acquisition,
processing or analysis of data? How relevant
are the tasks in an archaeological context and
how often are they performed? This point il-
lustrates why it is of particular value when ar-
chaeologists write software reviews for them-
selves and their colleagues.

 How does the software solve a given (techni-
cal) task? A detailed answer to this question
is only possible from the developer’s perspec-
tive. However, core components can usually
be easily identified. How is the general soft-
ware mode of operation designed? What are
the basic technical components in the user
interface and in the data processing modules
behind it? For example, is it a web application
that acts as an interface to a database? Or is the
software a simple, monolithic command-line
programme?

 How does the scientific workflow implement-
ed in the software work? This is less about the
actual technical implementation than the gener-
al methodology employed. Which integral pro-
cess is applied to data to solve a certain task?
Which statistical tools are used? Is there com-
parative data? An example could be cleaning
up input data, subsequently classifying it with
an algorithm and finally visualising it.

 Is the claim to be able to answer a certain sci-
entific question with the chosen workflow
correct? Research software usually promises
– implicitly or explicitly – to enable or at least
simplify the answering of scientific questions.
A GIS application for analysing point patterns,
for example, may have been designed for the
purpose of demonstrating human settlement
behaviour. The question of whether the algo-
rithm used is even capable of doing this may
far exceed the scope of a review. Nevertheless,
the reviewer should try to make an assessment
of plausibility or at least reveal the problem of
assessability itself in order to raise awareness
for readers. For the assessment, it may help to
consider which conclusions could be theoreti-
cally deduced from the raw, unprocessed input
data in the first place.

 Have the algorithms been implemented cor-
rectly? The correctness of software results is
sometimes difficult to judge because it would
require an extensive black-box test. A lack of
comparable software with the same functional-
ity makes this even more difficult. Are the al-

gorithms mentioned in the documentation im-
plemented without errors in the source code?
Is the scientific result comparable to other soft-
ware solutions despite all technical differences?
Are the algorithms used sufficiently document-
ed and scientifically proven? This question,
too, may not be answered conclusively in the
context of a review. A prominent indication of a
faulty implementation is the lack of robustness,
which will be discussed later.

 Are there any projects/application exam-
ples relevant to archaeology in which the
reviewed software has already been used?
Software is often developed by and for specif-
ic research projects. To assess its quality and
relevance, it can therefore be helpful to take a
closer look at the research projects themselves.
How plausible are the results achieved that
are related to the software? How were they re-
ceived by the scientific community?

 In what form is the software published? Ide-
ally, research software should also be scientif-
ically published. This facilitates its citation. Is
there a benchmarking paper in which the tool
is explicitly presented and compared with alter-
native products? Are individual versions of the
software referenceable separately? For example,
does a Digital Object Identifier (DOI) and thus a
persistent link exist? Has the software been pub-
lished in a journal or in another medium? Did
it undergo a software peer review mechanism?

Usability and target group orientation
The usability of research software is of central
importance because it is a bottleneck that deter-
mines the interaction between the user and the
software. It includes, for example, the complexity
of the installation process, the user interface and
machine interfaces. Here it should be noted that,
for example, a graphical user interface offers ad-
vantages for occasional users, while operation via
a command line for processing large data sets is
more advantageous for experienced users. Help
features (forums, FAQs, tutorials), and the size
and activity level of the user and developer com-
munity are crucial for practical operability. The
amount of activity in the communities can be an
important indicator for the sustainability of soft-
ware and thus its suitability for use at an institu-
tional level in long-term projects.

The following questions concern technical fea-
tures that influence the user experience (UX). We
look at other technical features from the developer’s
perspective later.

Recommendations for the review of archaeological research software

363

inStallation

Installation is often the first step in using the soft-
ware. Already at this point, issues can become ap-
parent and/or be of importance for the readers of
a review.

 How does the installation work and where is
the software kept? The easier the installation
of the software, the larger its potential user
base. From a developer’s point of view, the di-
versity of computer systems often hinders en-
suring easy installation for all users. For the re-
view, it can be checked whether an installation
script, wizard or package is available. Maybe
the software is only available as source code,
which must first be compiled by the user; in-
stallation scripts or packages allow a much
wider user community, whereas compiling
allows skilled users to perform the installation
on different devices. Specific problems and
weaknesses in the installation process can be
identified and documented in the review if the
software is actually installed by the reviewer.

 Is it a stand-alone software or a web applica-
tion? Not all software needs to be installed lo-
cally to be used. Nowadays, web applications
that run either dynamically in the browser or
on a server are capable of arbitrarily complex
operations. Thus, it should be asked whether
the application is more suitable for its use in
archaeological practice as a local installation
or as a web application. Web applications, for
example, may not always perform adequately
as they require the transfer of large amounts
of data over the internet. They may not be exe-
cutable in the field and are therefore not useful
for all work settings.

 Are necessary requirements in terms of
hardware and operating system clearly doc-
umented? Especially during project planning,
it is important to be able to correctly identify
technical and financial requirements. A spec-
ification or instructions on the required hard-
ware and operating system are relevant, for
example, for integration with existing infra-
structures in larger projects or institutes.

interFace

The usability of software is determined by the pos-
sibilities for communication between humans and
machines, i.e. the user interface (UI). In some cases,
this is supported graphically (GUI), or the opera-
tion is carried out via input in the command line
interface (CLI). Mixed operation modes are also
useful to address different user groups. These are
often diverse and can never be clearly defined, for

example, excavation technicians or state archaeo-
logists, but for usability analysis they can be used
as models to evaluate shared requirements for the
software. The design of user interfaces and user
navigation in menu structures represents a field of
expertise on its own within software development.
Solutions that are well adapted to the user’s needs
are the result of precise knowledge of the target
group and their habits and needs. Good solutions,
for example, fit seamlessly into the archaeological
research process. A good interface supports er-
ror-free and efficient work; the comprehensibility
of menu items or commands, or the meaningful-
ness of error messages, are aspects that should be
considered in the review. Accessibility for people
with disabilities has so far been an insufficiently
covered criterion, but it also affects efficiency and
possible user groups.

 Is the user interface suitable for the user
group? Every user group, including the one to
which the reviewer belongs, will have certain
expectations of the application handling. For
some, a command line application is very easy
to use, while others will have problems with
it. Many software solutions have various user
interfaces; for example, many web applications
can be accessed both via a search box and fil-
ter functions in the graphical interface of a web
page as well as code-based via a REST service.

 Is use in archaeology intended? The question
about the user group should also be asked
specifically for archaeology: does the archaeo-
logical use correspond to the use scenarios
that the developers of the software had in
mind? This often has a great influence on the
user interface; CAD software frequently used
by archaeologists, for example, was designed
for architectural or mechanical engineering
applications and confronts archaeologists and
excavation technicians with an overwhelming
plethora of functions.

 — Does the menu navigation follow certain
de-facto standards? If menu navigation or
shortcuts are based on well-known and wide-
spread software in the community, familiarisa-
tion with the software is eased and accelerated;
some tools deliberately use input masks mod-
elled on widely used spreadsheet programmes.

 — Is the programme multilingual, and in which
languages is it offered? Depending on the user
group, the programme should perhaps be mul-
tilingual. Usually, at least an English version is
expected. In the case of multilingual software,
a usable and readable layout must be created
for each language; button labels, for example,

Timo Homburg et al.

364

can vary greatly in text length and may result
in a truncated display in some languages.

 — Are error messages easily understandable by
reviewers? An error message can enable users
to correct the error’s cause. Useful and helpful
error messages are phrased in an understand-
able way and visibly placed in the application.
Where appropriate, an error message can also
provide feedback to the application develop-
ers. It must communicate the error message to
the user and also send a useful report to the
developers to fix the error. Stack traces (refer-
ences to the position in the programme code
where a specific error occurred) or error mes-
sages taken from the runtime environment are
incomprehensible to most users.

perFormanz and roBuStneSS

Performance and robustness influence how the
programme is used. Performance especially plays
a role in the processing of large data sets, while
robustness influences the user’s saving and back
up behaviour.

 — Is the implementation performant? The im-
portance of the performance of an application
depends on the application type. Here, a re-
viewer should assess whether the software
performs its task in reasonable time. If neces-
sary, the execution time of other related soft-
ware implementations can be compared with
the one under test. The reasons for poor soft-
ware performance are often not easy to identi-
fy. For web applications and plugins, a check
for responsiveness and good performance
across browsers should be executed.

 Is the software robust? The robustness of soft-
ware essentially requires that the intermediate
states of tasks are regularly saved in order to be
able to pick up again from the last state in the
event of an unforeseen termination. Without
this function, an event such as a power failure
can cause the loss of settings, data and/or the
entire reinitialisation of a calculation. An exam-
ple of such robustness is the regular automated
buffering in a text processing programme. The
text document is thus recoverable in the event
of a software crash. Depending on the use case,
it may also be advantageous for the software
to keep a history of user changes and allow
users to restore them. These could be language
configuration or the settings of units of mea-
sure ment, specifications for the storage loca-
tion and the like.

Help FeatureS, tutorialS and community

In addition to help functions and tutorials, it is
of great importance whether the software is sup-
ported by a community. The number of active
users and developers of a software tool is de-
cisive for whether one can find help in forums
when problems arise or, in the case of a small
group of users, can only get help through per-
sonal exchange. However, small user networks
can offer the great advantage that issues are
quickly taken up by the developers.

 Are there enough tutorials for learning the
software? Tutorials are essential to address
both users and software developers. Users
usually expect an easy-to-understand exam-
ple, focused on the essentials, to get an idea of
the typical usage. For developers, it is crucial
that a tutorial explains existing programming
interfaces (APIs). Good tutorials explain the
required knowledge prerequisites and give ref-
erences to sources for acquiring it. Help in an
FAQ or a troubleshooting section also increases
the quality of a tutorial. The languages in which
the tutorials are available are also of relevance.

 Do test data sets exist for the software? This
question is closely related to the question of tu-
torials, since the latter often work with exercise
data. These exercise data or test data sets should
be oriented towards scientific practice, but
should be understandable without specific pri-
or knowledge. They should be freely avail able
and, if possible, usable without registration.

 — Is further information on the software easy
to find? Do the software information pages or
its tutorials refer to further materials? Do they
refer to publications by the developers them-
selves, as well as reviews of them?

 Is the software supported by a community,
and what proportion are classical and an-
cient studies scholars? Examples of software
development that was initially run by a clas-
sical and ancient studies community and has
since expanded to include other disciplines
are Pelagios Commons (https://pelagios.org/
[23.10.2020]) and the web application Recogito
(https://recogito.pelagios.org/ [23.10.2020]).
Dedicated user groups with a focus on ar-
chaeological issues have also developed, for
example, within the communities for software
packages like QGIS or R.

 Are there archaeological best practices or pub-
lications that refer to the reviewed software?
While forums, blogs and related media offer
direct and often also rapid exchange with users
and possibly developers, the inclusion and rec-

https://pelagios.org/
https://recogito.pelagios.org/

Recommendations for the review of archaeological research software

365

ommendation of programmes in best practices
and publications is a further indication of their
dissemination, scope and reliability.

data ingeSt, interoperaBility and programming
interFaceS

Input and output data formats affect compatibil-
ity with other applications and should be men-
tioned in a review. In many cases, the support-
ed file formats can be found via a corresponding
menu entry (e.g. Save As). The various ways of
reading in the data and programming interfaces
are also relevant.

 Which data formats are read in and how?
Are all relevant data formats supported by the
software for the envisaged task and the antici-
pated typical use case? Are open data formats
supported? Can data formats also be read in
from common repositories (e.g. web services,
Git, cloud services)?

 Which output data formats are supported?
The programme should offer output data for-
mats that allow further processing in other
(also open source) software packages. Thus,
at least one openly specified format should be
supported. If data exports are only possible in
a proprietary format, maybe even custom to
that software, this must be well justified by
the developers.

 How can data be read in? Does the software
allow batch processing? For many applica-
tion scenarios, the execution of a once-defined
workflow on a batch of files or a series of data
is important; such as applying the same trans-
formation steps for all images in a directory.

 Is there an application programming inter-
face (API)? In addition to operability by a hu-
man, machine control of the software is also
important. This is the only way, for example,
to completely automate complex processes
with several software components. An API
enables this. It should be as open as possible
and, if necessary, documented by means of a
standard such as OpenAPI (https://www.
openapis.org [23.10.2020]). An example of
APIs are the endpoints offered by Wikidata,
which allow for automated data queries.

conFormity witH regulationS on data protection
and data minimiSation

The question of data protection often determines
whether the software may be used at all in univer-
sity research and teaching. However, an assess-
ment of the regulations, unless they clearly refer

to the European framework directives, is some-
times very difficult and requires legal advice. The
review can already provide an important service
for readers by just highlighting the topic. This
also applies to data minimisation, necessity of
registration processes, cookies and the like.

 — Does the software comply with the laws (e.g.
on data protection, map displays, etc.) of the
country of assignment? It must be expected
that the software will be used in different re-
gions and countries, each of which has specif-
ic laws that affect the execution/installation
of the software. An example are cloud appli-
cations developed for a North American user
base that are not compatible with the EU-wide
General Data Protection Regulation.

 — What data does the application store, for
what purpose and for how long? Are data
transferred to third parties? In many software
applications, usage and user data is collected
anonymously to improve the user experience.
However, some software providers collect
much more data and, for example, also transfer
it to third parties. What data is collected and for
how long it is stored should become clear from
the software documentation. This also applies
to the first visit to a web application by a user,
at which point the user’s consent should be re-
quested. Furthermore, a review could question
whether the declared purpose of the data col-
lection is justified and really serves to improve
the software.

Developer perspective
Developers are also users of software, but generally
have a different perspective on it. This user group
has specific technical interests and can often envis-
age a broader set of application scenarios. A good
summary of the developer perspective on software
quality is provided by (jung et al., 2004). There,
the specifications of the ISO/IEC 9126 standard
(https://en.wikipedia.org/wiki/ISO/IEC_9126
[23.10.2020]) are elaborated with examples.

The following questions focus on the source
code and the software architecture. These can only
be assessed if the source code is openly accessible
(open source), which is usually not at all, or only to
a limited extent, the case for proprietary software.

documentation and teStS

Extensive documentation provides a comprehen-
sive understanding of the software’s purpose,
matureness and current state of development. It is
also essential for extending the software. Finally,

https://www.openapis.org
https://www.openapis.org
https://en.wikipedia.org/wiki/ISO/IEC_9126

Timo Homburg et al.

366

solid documentation will also appeal to a larger
community of potential developers.

There are several components of documenta-
tion, namely documentation of:

the source code, i.e. of classes or individual
methods,
the build process, i.e. how the software is com-
piled (built) from the source code,
the software testing process, i.e. which test cases
were considered by the software.
Finally, there is a developer documentation

with usage examples.
Software repositories such as GitHub (https://

github.com [23.10.2020]) or GitLab (https://gitlab.
com [23.10.2020]) often offer templates or best prac-
tices to implement these documentation require-
ments in different programming languages.

An important concept in the context of docu-
mentation and testing is that of Continuous Integra-
tion (CI). It refers to the continuous assembly of in-
dividual application components. For this purpose,
routines are prepared to execute various tasks. This
allows for automatic triggering of, for example, the
creation of source code documentation, the execu-
tion of a software test or the generation of an exe-
cutable file from the source code (release file, EXE
file). Usually, the routines are executed again after
each change to the source code. By doing so, all pro-
gramme components are kept up to date.

 — Does a source code documentation exist and,
if applicable, is an HTML variant of it avail-
able? Best practices here are, for example,
source code documentation with Doxygen
(https://www.doxygen.nl [23.10.2020]), Java-
Doc (http://www.oracle.com/technetwork/
java/javase/documentation/javadoc-137458.
html [23.10.2020]), JsDoc (https://jsdoc.app
[23.10.2020]) or the popular ReadTheDocs
(https://readthedocs.org [23.10.2020]) for Py-
thon. All of the tools above generate an HTML
representation of the documentation, which
should then ideally be made available online, for
example as a GitHub page.

 — Is the build process documented and, if appli-
cable, automated by means of build scripts?
In addition to a basic understanding of the pro-
gramme architecture, knowledge of the build in-
structions of the software, i.e. the build process,
is important. The documentation should include
information about a functioning build process of
the software. In the past, instructions in READ-
ME files or similar natural language descriptions
were used. Nowadays, it has become an estab-
lished standard to provide machine-readable

build instructions (build scripts). These describe,
in an unambiguous, machine-readable way, how
the software was built and often allow the build
process to be started with a single command.
Build scripts also document the dependencies
of the software and the libraries used. Examples
of such scripts can be found in Apache Maven
(https://maven.apache.org [23.10.2020]) or
Gradle (https://gradle.org [23.10.2020]).

 Is the documentation up to date and does it
address all functions of the programme? The
latest edit date for documentation can usually
be found in a timestamp if the documentation
was created with one of the documentation
tools mentioned above. This date should be the
same as, or more recent than, the release date of
the current software version. If, in the best case,
the principles of Continuous Integration are
applied, the generation and provision of docu-
mentation is directly integrated into the devel-
opment of the application, such as the GitHub
repository of the SPARQLing-Unicorn- QGIS
plugin (https://github.com/sparqlunicorn/
sparqlunicornGoesGIS [23.10.2020]). Here, an
automated process recreates the documenta-
tion every time the source code changes and
publishes it to the GitHub page of the reposi-
tory (https://sparqlunicorn.github.io/sparql-
unicornGoesGIS/ [23.10.2020]).

 — Is there developer documentation that pro-
motes further software development? The
developer documentation represents the entry
point for developers to engage with further en-
hancement of software beyond just using it. A
meaningful README file that briefly demon-
strates the use of the programme with the de-
fault settings is a minimum requirement. An
example of this is Bibtex_JS (https://github.
com/pcooksey/bibtex-js [23.10.2020]). Ideally,
sample data is included for a better understand-
ing of the programme flow and, if necessary,
other frequently used use cases of the software
are presented in examples. This applies to the
example just mentioned: Bibtex_JS-Examples
(https://github.com/pcooksey/bibtex-js/
tree/master/test [23.10.2020]). Depending on
the complexity of the software, it may be useful
to provide a wiki, possibly also maintained by
a user community, to explain advanced options
(see Bibtex_JS-Wiki; https://github.com/
pcooksey/bibtex-js/wiki [23.10.2020]).

 — Does the source code contain software tests
for testing core functions and demonstrating
them to other developers? Any software can
be checked for its expected behaviour with

https://github.com
https://github.com
https://gitlab.com
https://gitlab.com
https://www.doxygen.nl
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
https://jsdoc.app
https://readthedocs.org
https://maven.apache.org
https://gradle.org
https://github.com/sparqlunicorn/sparqlunicornGoesGIS
https://github.com/sparqlunicorn/sparqlunicornGoesGIS
https://sparqlunicorn.github.io/sparqlunicornGoesGIS/
https://sparqlunicorn.github.io/sparqlunicornGoesGIS/
https://github.com/pcooksey/bibtex-js
https://github.com/pcooksey/bibtex-js
https://github.com/pcooksey/bibtex-js/tree/master/test
https://github.com/pcooksey/bibtex-js/tree/master/test
https://github.com/pcooksey/bibtex-js/wiki
https://github.com/pcooksey/bibtex-js/wiki

Recommendations for the review of archaeological research software

367

software tests. Accordingly, software tests
provide information about the envisaged use
cases and, as a test result, which functions are
stable, error-prone or in need of improvement.
As part of a Continuous Integration process,
software tests can be executed automatically
after each change to the source code.

 — Is it made easy for the developer to test the
software (e.g. virtual machine, Docker con-
tainer, installer)? Developers are usually
able to build and run software, but this can
be a more or less complex task. In fact, soft-
ware that is easy to install and, more impor-
tantly, easy to test will be more popular with
developers who want to get a quick look at
the functionality, as well as with other users.
Obviously, available testing methods depend
on the type of application. A web application,
for example, may be hosted on the Internet
and provide the user with a test account (e.g.
CWRCWriter; https://cwrc.ca [23.10.2020]),
whereas a desktop application may already
include an installable application or installer
package. Server applications can be available
for easy testing as virtual machine images or,
more commonly lately, as Docker images in
portals such as Dockerhub (https://hub.dock-
er.com [23.10.2020]).

 — Are the developers readily accessible? When
using software, it often turns out that func-
tionalities are missing or bugs are present in
the programme. This can hinder the use of the
software for certain use cases or significantly
worsen the results. In such cases, the avail-
ability of the developers and their feedback
on support requests is a decisive criterion. It
should be clearly communicated how and
where bug reports can be submitted and what
information is required for rapid and accurate
handling. Whether the developers cultivate
an active support can be seen, for example, in
the issue area of the software repository (e.g.
GitHub or GitLab). Have the developers there
answered enquiries promptly and satisfactori-
ly? What is the ratio of open issues to already
closed ones? How long did it take for a change
to be incorporated?

 Is the software being actively worked on?
An indication for this are regular software
updates. In a roadmap developers can pro-
actively communicate which changes are
planned for the programme in the near future
and which issues are to be worked on for the
next release.

 Is it possible to support software development?
To enable external software developers to con-
tribute to the software, a Contribution Guideline
is helpful. It contains information on the circum-
stances under which, and how, changes to the
software are accepted and integrated by third
parties (e.g. https://projectacrn.github.io/lat-
est/developer-guides/contribute_guidelines.
html [23.10.2020]).

Quality oF implementation

The quality of the implementation influences
whether and to what extent the programme is
suitable for adaptation and further development,
and thus also how long it is likely to persist.

 — Does the implementation reflect the state of
the art? This question usually has to be an-
swered in relation to the field of application
and requires a technical understanding of the
processes within the software. Some aspects
can be assessed without technical knowledge:
is the application usable on many different
devices (e.g. mobile phone, different operat-
ing systems, etc.)? Are outdated technologies
avoided, such as Adobe Flash or Java applets
in web applications? Do automatic test sys-
tems (for example on GitHub) identify securi-
ty gaps in the software?

 — Is Continuous Integration used to ensure im-
plementation quality? For a developer, not
only the existence and documentation of the
source code is crucial, but s/he will usually
also expect information about the functional-
ity and compilability of the source code. As
already mentioned in the previous sections,
Continuous Integration can be such a quality
indicator. The Continuous Integration process
tests the compilability of the software after
each change and can indicate the resulting sta-
tus in the repository. It is a sign of well-main-
tained source code if it compiles in the current-
ly released version and, if applicable, in the
current development version.

Tabular key data for software
In the table below we present key data that can be
listed in tabular form at the end or beginning of a
review. This can provide a quick overview of the
software, much like the way book reviews neu-
trally list title, publisher and ISBN. If necessary,
this table can also be supplemented with hard-
ware requirements if these are particularly rele-
vant. We have chosen the GIS application QGIS
as an example.

https://cwrc.ca
https://hub.docker.com
https://hub.docker.com
https://projectacrn.github.io/latest/developer-guides/contribute_guidelines.html
https://projectacrn.github.io/latest/developer-guides/contribute_guidelines.html
https://projectacrn.github.io/latest/developer-guides/contribute_guidelines.html

Timo Homburg et al.

368

Where do we go from here?

The discussion about the evaluation of research
software in archaeology and its neighbouring
disciplines has only just begun and no consensus
has yet been worked out. Our considerations and
the catalogue of questions presented here should
therefore be directly understood as a stimulus
for discussion and an invitation to establish a
common understanding of the requirements for
a software review. As noted at the outset, com-
ments from a wide range of perspectives and dis-
ciplines are invited via GitHub or email. The cata-
logue is by no means set in stone, but rather open
to modifications and updates by archaeologists
and research software engineers in the future.

R e f e r e n c e s

Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe,
A., Renard, B.Y. et al. (2020). An Environment for
Sustainable Research Software in Germany and
Beyond: Current State, Open Challenges, and
Call for Action. F1000Research 9, 295. https://doi.
org/10.12688/f1000research.23224.1.

Bach, F., Druskat, S., Katerbow, M., Loewe, A.,
Seemann, G. (2019). Herausforderungen für die
nachhaltige Entwicklung, Bereitstellung und Pflege von
Forschungssoftware in Deutschland. Berlin: deRSE.
https://de-rse.org/de/conf2019/talk/PVEXDH/
[23.10.2020].

Baxter, R., Chue Hong, N., Gorissen, D., Hetherington,
J., Todorov, I. (2012). The Research Software Engineer.
Digital Research 2012. https://web.archive.org/
web/20180202071627/http://digital-research-2012.
oerc.ox.ac.uk/papers/the-research-software-
engineer/at_download/file [23.10.2020].

Bezjak, S., Clyburne-Sherin, A., Conzett, P., Fernandes,
P., Görögh, E., Helbig, K. et al. (2018). Open Science
Training Handbook. Zenodo, 4.4.2018. https://doi.
org/10.5281/zenodo.1212496.

DFG (2019). Leitlinien zur Sicherung guter
wissenschaftlicher Praxis – Kodex. Bonn: DFG. https://
www.dfg.de/download/pdf/foerderung/rechtliche_
rahmenbedingungen/gute_wissenschaftliche_praxis/
kodex_gwp.pdf [23.10.2020].

Druskat, S., Spaaks, J. H., Hong, N. C., Haines, R.,
Baker, J. (2017). Citation File Format (CFF). Zenodo,
4.11.2019. https://doi.org/10.5281/zenodo.1003149.

forschungsdaten.info (2020). Softwareentwicklung in der
Wissenschaft. Konstanz: forschungsdaten.info. https://
www.forschungsdaten.info/themen/ethik-und-gute-
wissenschaftliche-praxis/softwareentwicklung-und-
gute-wissenschaftliche-praxis/ [23.10.2020].

Goedicke, M., Lucke, U. (2020). Nationale
Forschungsdateninfrastruktur für und mit Computer
Science (NFDIxCS). https://www.dfg.de/
download/pdf/foerderung/programme/nfdi/nfdi_
konferenz_2020/nfdixcs_abstract.pdf [23.12.2020].

Helmholtz Open Science (2019). Forschungssoftware.
Bremenhaven: Alfred-Wegener-Institut, Helmholtz-
Zentrum für Polar- und Meeresforschung. https://
os.helmholtz.de/open-science-in-der-helmholtz-
gemeinschaft/forschungssoftware/ [23.10.2020].

Hettrick, S. (2016). A not-so-brief history of Research
Software Engineers. Edinburgh: Software Sustainable
Institute. https://www.software.ac.uk/blog/2016-08-
17-not-so-brief-history-research-software-engineers-0
[23.10.2020].

Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N.,
Crouch, S., De Roure, D., et al. (2014). UK Research
Software Survey 2014. Zenodo, 4.12.2014. https://doi.
org/10.5281/zenodo.14809.

Name: The name of the software, e.g. "QGIS“.

Short description: Summary of what the software does, e.g. "Comprehensive graphical tool for spatial data processing“.

Reviewed version: The software version used for the review, e.g. "3.10.10 LTR“.

Platform: (Operating) systems on which the software can be used, e.g. "Windows, macOS, Linux, BSD, Android“.

Website: URL where further information can be found, e.g. ‘https://qgis.org“.

Licensing: Software licence under which the software was published, e.g. "Open Source with GNU General Public
License (GPL)“.

Costs: If applicable, regular or one-off licence fees, e.g. "free of charge“.

Input and output formats: The file formats the software can process, e.g. "geodatabases“ (SpatiaLite, PostGIS, MSSQL, ...), "web
geodata services“ (WMD/WMTS, Vector Tiles, XYZ Tiles, WFS, ...), “geo-vector data formats“ (ESRI
Shapefile, Geopackage,), "geo-raster data formats“ (GeoTIFF, ...), "table data“ (CSV, TXT, ...) and
other data types (for QGIS there are an unusually large number of data formats to consider, which
would go beyond the scope here).

Fig. 1 Proposed tabular key data for e.g. QGIS.

https://doi.org/10.12688/f1000research.23224.1
https://doi.org/10.12688/f1000research.23224.1
https://de-rse.org/de/conf2019/talk/PVEXDH/
https://web.archive.org/web/20180202071627/http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer/at_download/file
https://web.archive.org/web/20180202071627/http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer/at_download/file
https://web.archive.org/web/20180202071627/http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer/at_download/file
https://web.archive.org/web/20180202071627/http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer/at_download/file
https://doi.org/10.5281/zenodo.1212496
https://doi.org/10.5281/zenodo.1212496
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://doi.org/10.5281/zenodo.1003149
https://www.forschungsdaten.info/themen/ethik-und-gute-wissenschaftliche-praxis/softwareentwicklung-und-gute-wissenschaftliche-praxis/
https://www.forschungsdaten.info/themen/ethik-und-gute-wissenschaftliche-praxis/softwareentwicklung-und-gute-wissenschaftliche-praxis/
https://www.forschungsdaten.info/themen/ethik-und-gute-wissenschaftliche-praxis/softwareentwicklung-und-gute-wissenschaftliche-praxis/
https://www.forschungsdaten.info/themen/ethik-und-gute-wissenschaftliche-praxis/softwareentwicklung-und-gute-wissenschaftliche-praxis/
https://www.dfg.de/download/pdf/foerderung/programme/nfdi/nfdi_konferenz_2020/nfdixcs_abstract.pdf
https://www.dfg.de/download/pdf/foerderung/programme/nfdi/nfdi_konferenz_2020/nfdixcs_abstract.pdf
https://www.dfg.de/download/pdf/foerderung/programme/nfdi/nfdi_konferenz_2020/nfdixcs_abstract.pdf
https://os.helmholtz.de/open-science-in-der-helmholtz-gemeinschaft/forschungssoftware/
https://os.helmholtz.de/open-science-in-der-helmholtz-gemeinschaft/forschungssoftware/
https://os.helmholtz.de/open-science-in-der-helmholtz-gemeinschaft/forschungssoftware/
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://doi.org/10.5281/zenodo.14809
https://doi.org/10.5281/zenodo.14809

Recommendations for the review of archaeological research software

369

Jung, H.-W., Kim, S.-G., Chung, C.-S. (2004).
Measuring software product quality: A survey of ISO/
IEC 9126. IEEE software, 21, 88-92.

Katerbow, M. & Feulner, G. (2018). Handreichung
zum Umgang mit Forschungssoftware. Zenodo,
27.2.2018. https://doi.org/10.5281/zenodo.1172970.

Katz, D.S., Niemeyer, K.E., Smith, A.M., Anderson,
W.L., Boettiger, C., Hinsen, K. et al. (2016). Software
vs. data in the context of citation (No. e2630v1). PeerJ
Preprints, 10.12.2016. https://doi.org/10.7287/peerj.
preprints.2630v1.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C.,
Arcila, R., Martin Del Pico, E. et al. (2019). Towards
FAIR principles for research software. Data Science,
3(1), 37-59. https://doi.org/10.3233/DS-190026.

Löffler, F. (2020). Nationale Forschungsdateninfrastruktur
für wissenschaftliche Software (NFDI4RSE). https://
www.rse4nfdi.de/de/index.html [23.10.2020].

Scheliga, K., Pampel, H., Bernstein, E., Bruch,
C., zu Castell, W., Diesmann, M. et al. (2017).
Helmholtz Open Science Workshop „Zugang zu
und Nachnutzung von wissenschaftlicher Software“.
#hgfos16: Report Nov. 2016. https://doi.org/10.2312/
lis.17.01.

Schmidt, S. C. & Marwick, B. (2020). Tool-Driven
Revolutions in Archaeological Science. Journal of
Computer Applications in Archaeology, 3, 18-32. https://
doi.org/10.5334/jcaa.29.

Stallman, R. (2001). What is Free Software? The
Free Software Definition. https://www.gnu.org/
philosophy/free-sw.html.en [23.12.2020].

Wilkinson, M.D., Dumontier, M., Aalbersberg,
Ij.J., Appleton, G., Axton, M., Baak, A. et al. (2016).
The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3,
160018. https://doi.org/10.1038/sdata.2016.18.

Acknowledgements

We thank Lutz Schubert for fruitful discussions,
layouting and proofreading the initial German
version of this article. Furthermore, we thank Dr.
Sarah Finlayson for her swift assistance in proof-
reading the English version, which was partially
prepared using the DeepL (https://deepl.com)
online translation service.

About the authors
(in alphabetical order)

timo HomBurg, Hochschule Mainz, studied com-
puter science with a focus on computational lin-
guistics (assyriology), semantic web and sinology.
In recent years, he has worked in the field of GIS
applications in geoinformatics. His doctoral the-
sis deals with better integration of geodata into a
Semantic Web environment. His current research
project deals with the design and establishment
of digital standards in the field of assyriology and
a best practice for documentation of excavations
with cuneiform texts – an extension of his pub-
lications on ‘Cuneiform Script in the Digital Hu-
manities’.

https://orcid.org/0000-0002-9499-5840

anne klammt, Deutsches Forum für Kunst-
geschichte Paris, completed her doctorate on
a landscape archaeology topic and has been re-
sponsible for the further development of Digital
Art History at the German Forum for Art History
Paris as Head of Research since 2020.

https://orcid.org/0000-0003-3697-9241

HuBert mara, mainzed & Hochschule Mainz,
studied computer science at the Vienna Univer-
sity of Technology. There he already worked on
digital methods in archaeology for ceramic analy-
sis. He was subsequently a Marie Curie Fellow at
the University of Florence within the framework
of the Cultural Heritage Informatics Research Orient-
ed Network (CHIRON). He completed his doctor-
ate at the University of Heidelberg in the Inter-
disciplinary Centre for Scientific Computing (IWR).
There he developed the GigaMesh Software Frame-
work (https://gigamesh.eu) and installed the Fo-
rensic Computational Geometry Laboratory (FCGL).
Since June 2020, he has been the managing direc-
tor of mainzed and is a researcher at the Institute
for Spatial Information and Measurement Tech-
nology at Mainz University of Applied Sciences.

https://orcid.org/0000-0002-2004-4153

https://doi.org/10.5281/zenodo.1172970
https://doi.org/10.7287/peerj.preprints.2630v1
https://doi.org/10.7287/peerj.preprints.2630v1
https://doi.org/10.3233/DS-190026
https://www.rse4nfdi.de/de/index.html
https://www.rse4nfdi.de/de/index.html
https://doi.org/10.2312/lis.17.01
https://doi.org/10.2312/lis.17.01
https://doi.org/10.5334/jcaa.29
https://doi.org/10.5334/jcaa.29
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/free-sw.html.en
https://doi.org/10.1038/sdata.2016.18
https://deepl.com
https://orcid.org/0000-0002-9499-5840
https://orcid.org/0000-0003-3697-9241
https://gigamesh.eu
https://orcid.org/0000-0002-2004-4153

Timo Homburg et al.

370

clemenS ScHmid, Max-Planck-Institut für Mensch-
heitsgeschichte Jena, studied prehistoric, histori-
cal and scientific archaeology as well as computer
science in Tübingen and Kiel. After graduating, he
worked with computational data analysis in vari-
ous archaeological research projects at the Univer-
sity of Kiel, the Roman-Germanic Central Museum
in Mainz and the University of Bern. Now he is
employed for a PhD project on quantitative esti-
mation of past human mobility with ancient genet-
ic and historical-linguistic data at the Department
of Archaeogenetics of the Max Planck Institute for
the Science of Human History in Jena.

https://orcid.org/0000-0003-3448-5715

SopHie cHarlotte ScHmidt, Deutsches Archäo-
logisches Institut, studied Classical Studies and
Prehistoric Archaeology at the Free University of
Berlin. She then worked as a research assistant in
the field of archaeoinformatics at the universities
of Cologne and Bonn, and is currently employed
in the NFDI4Objects consortium project at the
German Archaeological Institute.

https://orcid.org/0000-0003-4696-2101

Florian tHiery, Römisch-Germanisches Zen-
tralmuseum – Leibniz-Forschungsinstitut für
Archäo logie, studied geodesy and is a Re-
search Software Engineer (RSE) in the Scientif-
ic IT, Digital Platforms and Tools department at
the Römisch-Germanisches Zentralmuseum in
Mainz. He is the initiator of the Research Squirrel
Engineers, a network for RSEs in the Digital Hu-
manities that pursues community projects with
a focus on free and open data, as well as Linked
Open Data. As part of a fellowship of the Wiki-
media Fellow-Programm Freies Wissen, he is work-
ing on the modelling of Irish (Ogham) stones and
their publication in the Wikimedia universe.

https://orcid.org/0000-0002-3246-3531

martina trognitz, Austrian Centre for Digital
Humanities and Cultural Heritage, ÖAW Wien,
studied computational linguistics and classical
archaeology in Heidelberg. From 2012 to 2017,
she worked in the IANUS project at the German
Archaeological Institute. Since 2017, she has been
in charge of the digital archive ARCHE of the
ACDH-CH at the Austrian Academy of Scienc-
es. She is working on a PhD project on the ma-
chine analysis of multi-sided Aegean seals of the
Bronze Age.

https://orcid.org/0000-0003-0485-6861

Martina Trognitz M.A.
Austrian Centre for Digital Humanities

and Cultural Heritage
ÖAW Wien

Martina.Trognitz@oeaw.ac.at

https://orcid.org/0000-0003-3448-5715
https://orcid.org/0000-0003-4696-2101
https://orcid.org/0000-0002-3246-3531
https://orcid.org/0000-0003-0485-6861
mailto:Martina.Trognitz@oeaw.ac.at

