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IVPY: ICONOGRAPHIC VISUALIZATION 
INSIDE COMPUTATIONAL NOTEBOOKS
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ABSTRACT |  Iconographic Visualization in Python, or ivpy, is a software module, written 
in the Python programming language, that provides a set of functions for organizing 
iconographic representations of data, including images and glyphs. The module also 
provides methods for extracting visual features from images; generating and hand-tuning 
clusters of data points; and embedding high-dimensional data in 2D coordinate spaces. 
It is designed for use inside computational notebooks, so that users working with data 
needn’t leave the notebook environment in order to generate visualizations. The software is 
designed primarily for those researchers working with large image datasets in fields where 
human visual expertise cannot be replaced with or superseded by machine vision, such as 
art history and media studies.
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Introduction1

There persists, in the computational sciences, a common 
misconception about the nature of visual evidence. This 
misconception is particularly common in analyses of image 
data, which data often appear first, to the researcher, as 
massive arrays of numbers and only later (or perhaps hardly 
at all) as seen images. This way of thinking treats images as 
mere numerical signals, to be used as inputs to predictive 
models or as containers for basic object and scene contents. 
To be sure, images can and do serve these purposes. But 
in the background of this general attitude is the implication 
that, from an information-theoretic perspective, the image 
is nothing more than the numbers used to reconstruct it on 
a computer screen. And this is simply false: the information 
conveyed by an image will depend in part on facts about the 
viewer, facts not carried in the image’s digital encoding. 

Importantly, human experts remain our best and perhaps 
only judges of the significance of particular findings—visual 
or otherwise—and so to restrict search to machine perceivers 
is to search without understanding. It is not enough for the 
human expert to certify this or that result of machine search; 

it is rather required that she search, at least some of the 
time, with her own eyes, because no amount of priming the 
machine to see can confer the wisdom and flexibility of her 
own expertise. The human expert may use known, explicit 
categories to understand her observations, but she also 
works under a vast network of implicit biases that develop 
over time in response to new evidence or changing contexts 
in ways she may fail even to be aware of. It is this drifting 
collection of working principles that the human expert brings 
to bear on her domain and on the specific deployment of her 
public concepts, and no machine can replicate it in full. This is 
the motivation for the ivpy software module.

Iconographic Visualization in Python—ivpy—is a software 
module, written in the Python programming language, for 
visualizing large image datasets, or, alternatively, large 
datasets represented as collections of glyphs. The module 
offers a variety of methods for assigning images to (abstract) 
positions in visual similarity spaces, as well as a set of flexible 
plotting functions for organizing images and glyphs according 
to these and other (nonvisual) properties. These tools enable 
the researcher to extend the reach of her visual expertise into 
image collections too large to examine serially. Although the 
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module can be used in Python scripts to save visualizations 
to disk, it is designed primarily for use inside computational 
notebooks, which are quickly becoming the default working 
environments for academic computational scientists of all 
kinds. For such researchers, ivpy has, accordingly, a distinct 
advantage over web-based, point-and-click visualization 
tools, because in order to use these tools, the researcher must 
either shuttle between incompatible working environments 
or settle for the relatively limited analytical expressiveness 
characteristic of graphical user interfaces.2 Additionally, the 
integration of ivpy into a Python-based analytic workflow 
means that it sits atop Python’s massive scientific toolkit, 
including modules for data retrieval, management, storage, 
modeling, and visualization.3

	Ivpy is designed primarily for researchers whose data 
are images, whose goals are description and explanation 
(as opposed to, say, prediction or intervention), and whose 
domains of study are sufficiently complex that the giving of 
descriptions and explanations requires human expertise. 
This includes (inter alia) those working in art history, visual 
culture, media studies, social science (using social media 
images) and architecture and urban studies (using street 
level and satellite imagery).

Iconographic Visualization
Ivpy is a software module for iconographic visualization, which 

is a special case of unit visualization. Unit visualizations are 
those in which each data record is represented by its own visual 
mark.4 This is in contrast with aggregative visualizations—e.g., 
bar, line, and pie charts—whose visual marks can represent 
any number of data records or statistical transformations on 
those records (e.g., averages). The conceptual simplicity of a 
one-to-one mapping between data and graphics is intuitively 
appealing, of course, although it’s difficult to say precisely what 
advantage this confers on the user, apart from its (perhaps) 
being easier to learn. Importantly for us, unit visualizations 
make it possible to identify individuals in the data (assuming 
their numbers do not exceed the display resolution). This 
means that in any analytical context where individuals figure 
prominently, as we might expect to be the case in analyses 
of cultural collections, unit visualizations are common. And in 
general, unit visualizations have become more common in the 
age of computer graphics, because they are no more difficult to 
make than their aggregative counterparts.5

	Iconographic visualizations are unit visualizations whose 
visual marks can be distinguished by their nonrelational (or 
‘local’) visual characteristics—the qualities they carry with them 
regardless of their spatial positions, things like shape, size, and 
color.6 Distinguishing nonrelational characteristics allow icons 
to carry information even outside the plotting context. In this 
way, each icon is itself a data visualization, and iconographic 
visualizations are therefore (in principle) viewable at multiple 
scales, from the global to the maximally local.

	Strictly speaking, the visualizations ivpy produces needn’t 
be iconographic. As we shall see, the module’s core plotting 
functions are indifferent to the units they receive, and simple, 
identical marks can be used, in the manner of a traditional 
scatterplot. However, the density of information carried in the 
visualizations, and thus the analytical power of the tool, is 
increased by the use of icons, and one special class of icons in 
particular—image thumbnails—will be the focus of this paper.

Direct Visualization and 
Machine Intelligence

In analytical contexts where images are the objects of 
study, visualizations using those images as plotting units can 
be said to be ‘direct’, because perceptual access to them is 
unmediated.7 Or at least, the mediations are both information- 
and format-preserving, limited typically to digital encoding 
and subsequent reconstruction on a screen at near lossless 
fidelity. Images therefore tend to be very information-rich 
relative to mere icons, which are typically lossy by design. 
In cases where lossless transmission is possible, mere icons 
are appropriate only when certain other conditions are met—
if, for example, the analysis is finished and communication is 
the goal, or if the domain of study is so well-understood that 
what is lost is known to be noise. These conditions will likely 
be unmet in any case where images are the proper objects of 
study. In such cases, direct visualization is essential.

	But how, it might be asked, can a lossless viewing of the 
data possibly yield anything of analytical value? After all, it is 
widely acknowledged that, past a certain density threshold, 
a data visualization ceases to be effective, because it 
overwhelms the analyst with information.8 In a lossless data 
display, everything is preserved, but little is discovered, 
because signal and noise exist side-by-side, competing for 
attention—or so it might be in most cases. But images are 
special. For one, images, unlike mere icons, do not require a 
preliminary decoding step.9 Moreover, the viewing of images 
by human experts is itself an implicit process of feature 
extraction, legitimized by the viewer’s expertise. When, for 
example, the art historian casts her eyes over a collection, 
she separates signal from noise on her own; the visual 
interface needn’t do it for her.

	And indeed, in fields like art history and media studies, 
direct visualization is the norm. Researchers working in 
these disciplines have always looked at their images. The 
distinction between this traditional activity and direct 
visualization of the sort ivpy makes possible is a matter of 
scale, and at scale, the process of making observations 
cannot be (or at least, it oughtn’t be) wholly unstructured, as 
it might be if the data are very small. Too much structure, or 
too much of the wrong kind of structure, however, threatens 
the analytical independence of the human expert. A process 
of direct visualization is successful if it allows the researcher 
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to search and understand an otherwise unmanageable 
amount of data with her own eyes.

	In this way, direct visualization serves as a bulwark against 
the encroachment of machine intelligence into data analysis. 
In certain cases, such encroachment is appropriate or at least 
unobjectionable, as it might be if your goal is an accurate 
predictive model and nothing more. In such cases, the 
identification of stable numerical regularities will suffice, and, 
assuming the conditions are favorable, a suitably designed 
machine can find them. If, however, your goal is description or 
explanation, and the domain of study is sufficiently complex 
that the identification of stable numerical regularities is 
either impossible or inadequate to the task, you cannot rely 
exclusively on machine search. 

The difference in goals is crucial. If your goal is prediction, 
and your model performs well, you are indifferent to its 
features. But if your goal is description or explanation, you 
don’t have the luxury of indifference: your model needs a very 
particular set of features—the descriptive or explanatory 
ones—and the machine simply cannot know which ones they 
are. In the best cases, you can review its findings and identify 
the features of interest; in the worst cases, the features of 
interest are not found at all. The machine can only find what 
it has been taught to find, and you can’t anticipate everything 
it might encounter. For this reason, it is absolutely essential 
that you search for yourself.

	This is a quite general problem plaguing the application 
of statistical learning to data projects with descriptive 
or explanatory aspirations. In most such cases, direct 
visualization is not available as an alternative. We should 
count ourselves lucky, then, if our data are images. 

Direct Visualization and the 
Graphical User Interface

Despite its considerable power as an analytical method, 
there are few publicly available software tools designed 
specifically for direct visualization.10 Of course, direct 
visualizations can be made ‘from scratch’ using software 
libraries like Processing11 or imaging applications like Adobe 
Photoshop and ImageJ.12 Ideally, however, the user should 
not have to generate the low-level plotting logic on her own or 
construct a plot manually from image files. The specification 
of direct visualizations should happen at a higher level, so 
that the user can focus on the analytical properties of the 
plots rather than on the details of their construction. 

	There is a small but growing number of software tools for 
the high-level specification of direct visualizations, and all 
are embedded in graphical user interfaces. Graphical user 
interfaces are designed to increase both the efficiency and 
accessibility of the computational tools they make available 
to the user. The efficiency of a tool is a measure of the effort 

required to use it; the accessibility of a tool is a measure of 
the effort required to learn it.13 User inputs to a graphical 
user interface are typically limited to things like clicking 
buttons, toggles, and other control elements; navigating 
menus; scrolling; and typing small bits of text into search 
bars. These forms of user input are now so ubiquitous they 
hardly need to be learned, and, if they are well-designed, 
they offer significant gains in efficiency relative to standard 
programming environments.

The Software Studies Initiative’s ImagePlot is perhaps the 
only graphical tool in existence for high-level specification 
of static direct visualizations, and ivpy’s functionality is 
based in large part on its techniques.14 All other software 
tools for direct visualization are graphical user interfaces 
for specifying direct visualizations interactively, usually in 
a web browser. Microsoft Research’s PivotViewer is perhaps 
the earliest such example but now appears to be defunct. It 
was designed for plotting iconographic representations of 
all kinds and offered controls for sorting and filtering, with 
the resulting visualizations appearing as unit histograms or 
bar charts.15 Timeline Tools, by Florian Kräutli, is designed 
specifically for cultural image collections, and plots collection 
items together as a unit histogram along a horizontal temporal 
axis.16 Users can select individual collection items to reveal 
catalog metadata. PixPlot,17 by Doug Duhaime, is designed 
for use with images, and extracts image features using a 
pre-trained convolutional neural network;18 it then uses 
those features to plot the images in a visual similarity space, 
compressed to two dimensions from over two thousand.19 
Additionally, the tool identifies centers of dense clusters of 
images, which clusters can then be selected to re-center the 
plot. VIKUS Viewer,20 by Christopher Pietsch, combines several 
functional elements we’ve seen already: like Timeline Tools, it 
plots images together as a unit histogram along a temporal 
axis; like PivotViewer, it allows the user to filter the data using 
metadata variables; and like PixPlot, it can extract visual 
features using a neural network and allows users to view the 
images in the resulting similarity space, compressed by a 
dimension reduction algorithm.21

All of these tools offer significant gains in both 
accessibility and efficiency relative to low-level specification 
in programming environments. But what they gain in 
accessibility and efficiency, they lose in expressiveness. 
The expressiveness of a visualization tool is a measure of 
the diversity of visualizations it can specify. A graphical 
user interface will always be less expressive than the 
programming language it is built on, but some graphical 
tools—like Adobe Photoshop and Illustrator—are designed 
with expressiveness in mind. In most cases, this will mean 
adding functionality in menus, thereby incurring losses to 
efficiency and accessibility. The visualization tools described 
above have all of them chosen to optimize for efficiency and 
accessibility at the cost of expressiveness, and because of 
this, I argue, none are ideal for data science.22
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Each of these tools presents the same dilemma to 
the data scientist: either switch frequently between 
working environments or settle for the relatively limited 
expressiveness of the graphical user interface. Because 
none of these tools is a software module, all require the data 
scientist to generate visualizations outside her usual working 
environment, a place she can manipulate her data using code. 
If she chooses to stay in her programming environment, she 
cannot use these tools; if she chooses to stay in the graphical 
user interface, she cannot manipulate her data in the usual 
ways.

Ivpy resolves the dilemma by providing a set of plotting 
functions written in the Python programming language, 
which means that the functions are usable in all the same 
environments as any other Python libraries, including 
those belonging to Python’s data science stack, libraries 
like NumPy,23 pandas,24 and scikit-learn.25 Ivpy is therefore 
backed by a powerful set of tools for data manipulation—the 
very tools, indeed, that many data scientists are already using 
to manipulate their data. Together with ivpy’s flexible plotting 
functions, this backing provides the data scientist with a 
highly expressive tool for generating direct visualizations 
inside her native working environment.

Computational Notebooks
Because it is a Python module, ivpy can be used anywhere 

Python is used, including interactive terminals, scripts, 
and integrated development environments. It is designed, 
however, for use inside computational notebooks. The 
computational notebook is a particular form of integrated 
development environment that presents as an electronic 
version of the scientist’s laboratory notebook, itself a place 
to record the various tests and procedures that make up the 
daily business of laboratory research. This record is essential 
to the practice of science, because it serves as a kind of 
scientific memory—what was tried, what were the precise 
parameters of the attempts, and what happened as a result. 
Computational notebooks improve in some ways on their 
computationally inert predecessors, because they include 
executable code cells alongside basic text formatting and 
figure display. Blocks of code can be run and rerun one at a 
time, in any order, making individual computational steps very 
easy to debug, and making it possible not only to reproduce 
the original research but also iteratively to test re-orderings 
and other modifications to the process.26

Computational notebooks have become exceedingly 
popular amongst data scientists in recent years, a trend 
that is due in part to the Jupyter project, which brings the 
notebook format to some of the most important programming 
languages in data science: Julia, Python, R and others.27 In 
a testament to the exploding popularity of the format, the 
code-sharing site GitHub reported that the number of Jupyter 
notebooks uploaded to its servers increased from 200,000 

in 2015 to 2.5 million in 2018.28 With its rapidly expanding 
user base of computational scientists, the Jupyter project 
has become an important site for data science tooling, and 
in particular for visualization tools, which derive special 
benefit from having crucial user interface elements already 
in place: functions that return images (or any graphics) see 
them displayed immediately below;29 images can be saved to 
disk simply by dragging them to the desktop or into a folder; 
and Jupyter’s support for markdown text formatting means 
that visualizations can be captioned in place and integrated 
into passages of text. These and other features allow the 
developer to focus on the analytical power of the tool rather 
than spending time building the user interface from scratch. 
It is because of these distinct advantages—a reproducible 
research record, a large user base, a native data science 
environment, and a pre-existing user interface—that I chose 
to develop ivpy with Jupyter notebooks in mind.

The IVPY Plotting Functions
From the perspective of the user, ivpy is five plotting 

functions, together with submodules for feature engineering 
and icon generation. These represent the essential operations 
of an iconographic visualization system: the generation of 
icons, the assignment of icons to positions in abstract feature 
spaces, and the subsequent placement of icons in plots. Icon 
placement is handled by the plotting functions, which form 
the core of the module; indeed, the submodules for feature 
engineering and icon generation are not strictly necessary, 
in case the user already has in hand a dataset of icons and 
features.

	Ivpy instantiates a declarative unit visualization grammar 
built on the notions of a data axis and a coordinate system.30 
Users specify a zero-, one-, or two-axis plot by function 
choice: zero-axis plots are chosen by calling montage(), 
one-axis plots by calling histogram(), and two-axis plots 
by calling scatter(). For each axis, the user specifies a 
corresponding column from the data table using the ‘xcol’ and 
‘ycol’ keyword arguments. It’s important to keep in mind that 
a data axis is not the same as a spatial dimension: although 
the plot types differ in their numbers of data axes, all occupy 
two spatial dimensions. Additionally, although the histogram 
is treated as a one-axis plot, its axis is always binned and 
therefore distinct from the axes of the scatterplot, which in 
ivpy, though binnable, are continuous by default. The addition 
of an axis to a plot will mean in any case that data items are 
assigned to fixed positions along its extent. The affixing of 
items to axis positions is distinct, then, from mere sorting, 
because sorting positions are relative and not fixed. And so 
although montages do not have genuine axes, their items can 
be sorted, if desired, using ‘xcol’. Similarly, although items in 
a single histogram bin share their horizontal axis positions, 
they can also be sorted vertically—using ‘ycol’—despite the 
fact that the histogram lacks a vertical plotting axis. 
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	All three plot types have both rectilinear and circular forms, 
which for montages are simply square and circular shapes, 
while for histograms and scatterplots, they are Cartesian 
and polar coordinate systems. There is also a special form 
of montage, show(), which is optimized for the notebook 
format by having its width matched to a notebook cell. 
Faceting is made possible by compose(), which takes plots 
as arguments and returns a montage of plots. Users can 
either call compose() directly or specify a faceting column in 
any plotting function call, which will then return a faceted plot 
using compose().31 The latter approach is more efficient but 
can only deliver a single outcome: a plot grouped into facets 
by values for a single (often categorical) data variable. If the 
facets are to be distinguished in some other way, the user 
must call compose() directly.

The inclusion of compose() in the module makes it easy 
to generate plots of plots—‘second-order’ plots, perhaps, or 
‘metaplots’—but in fact, because ivpy reads its plotting units 
from image files, any plotting function can use plots as units, 
provided they are saved to disk. It’s worth dwelling on this 
fact. Ivpy has a ‘pure’ unit visualization grammar, because 
its drawing engine (if used at all) is wholly separate from its 
compositional operations. Users can create and modify icons 
using the module, but these are saved to disk before being used 
in plots, and the plotting functions work the same regardless 
of the units they receive. In fact, ivpy’s plotting functions are 
indifferent even to icon size, because all icons are thumbnailed 
to the same (adjustable) size before plotting.32 Ivpy’s grammar, 
we might say, is wholly separate from its ‘lexicon’, which as a 
result is effectively infinite, comprising any graphical objects 
that can be saved as image files.

Often, though not always, the choice of lexical items—i.e., 
the plotting units—will be made in advance of using ivpy, 
because each data record will have an image to represent 
it, and the user need only tell the plotting functions where 
to find these images. But even in such cases, the functions 
are capable of modifying the units prior to plotting, either by 
printing the index of the associated data record in the upper 
left corner or by printing an annotation along the bottom. 
Annotations are fixed by the user’s choice of ‘notecol’, which 
can be any column in the data table. Because indices and 
annotations are simply printed as text, they allow the user to 
add information locally to each unit without having to learn a 
new graphical encoding.

All other unit-making operations—e.g., icon generation—
happen outside the plotting context. But the plotting functions 
additionally play a role in deciding which data records make 
it to the screen at all. Minimally, the user must assign a 
sequence of filepaths to ‘pathcol’, but this sequence can be 
randomly sampled by assigning an integer value to ‘sample’. 
This is useful if the dataset is very large or if the user needs 
to fix the number of items across multiple plots. If axes are 
added to a plot, axis ranges can be controlled using ‘xdomain’ 

and ‘ydomain’. It’s possible, using these arguments, to plot to 
a range larger than the data range, which allows for the fixing 
of axis ranges in faceted plots.

Feature Engineering in IVPY
The scope of the plotting functions thus extends beyond 

mere unit placement. But most of the unit-making and 
data operations happen prior to plotting, and were it not for 
specialized submodules for icon generation and feature 
engineering, most would happen outside ivpy altogether, 
either in pure Python or in one of Python’s existing data 
science libraries. Because ivpy is designed primarily for 
image analysis, icon generation is the least developed of 
ivpy’s operations, and apart from a single example in the next 
section, I’ll have little else to say about it here.

	I use the term ‘feature engineering’ in a quite broad sense 
to mean any sort of data transformation whatever, since all 
yield the same thing: an abstract space in which data records 
can be compared. All such spaces provide the analyst with 
distinct ways of modeling her data, which for ivpy users will 
mean, ultimately, selecting a particular set of images and 
positioning them in a plot. The particular forms of feature 
engineering that ivpy packages into functions are fixtures 
of computer vision research: image feature extraction, 
dimension reduction, and clustering. 

	Ivpy provides wrappers for a variety of Python-based image 
feature extractors, including basic visual properties like 
hue, saturation, and brightness, as well as both entropy and 
standard deviation of brightness; textural features derived 
from the gray-level co-occurrence matrix (GLCM) including 
contrast, dissimilarity, homogeneity, angular second moment 
(ASM), energy, and correlation;33 and what we might call 
‘neural similarity’: the 2048-dimensional output vector of the 
penultimate layer of ResNet50,34 an artificial neural network 
trained on ImageNet.35 Ivpy also provides wrappers for 
three familiar dimension reduction algorithms, implemented 
in Python’s scikit-learn library:36 principal component 
analysis (PCA); t-distributed stochastic neighbor embedding 
(t-SNE);37 and uniform manifold approximation and projection 
(UMAP).38 Finally, ivpy wraps under a single function call 
nine different clustering algorithms, again using scikit-
learn implementations, including k-means, agglomerative 
hierarchical clustering, DBSCAN,39 mean shift,40 and others.

There is nothing strictly necessary about ivpy’s providing 
these wrappers, since the user, working in a Python 
environment, already has access to the original functions. But 
ivpy makes the feature engineering process more efficient 
and accessible by unifying these operations under single, 
concise APIs. If the user wishes to extract neural similarity 
from her images, for example, she can do so simply by calling 
extract(‘neural’), and similarly for all other features. If she 
wishes to find clusters of images in a similarity space defined 
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by those features, she can call cluster(X), where X is the 
matrix containing all and only the extracted features, and the 
function will return, by default, four clusters of images, found 
by the k-means algorithm. Alternative parameter settings can 
be chosen by keyword arguments. 

More substantively, ivpy provides a set of functions for 
hand-tuning machine clusters, a capability that is of particular 
importance in ivpy’s target domains. In such domains, 
machine classifications are mere suggestions, to be evaluated 
and possibly adjusted by human expertise. Ivpy users can 
move items or groups of items from one cluster to another; 
cut items or groups of items from clusters without reassigning 
them or even remove entire clusters altogether; merge multiple 
clusters into a single cluster; initialize a new cluster; and swap 
the cluster assignments of two items or groups of items. To 
help this process along, ivpy also makes it easy to measure, 
for each item in a cluster, what we might call its ‘centrality’, or 
how far it is from the center of its cluster, making it easy to 
identify the likeliest candidates for reassignment.

Expressiveness and Data 
Manipulation

Feature engineering increases ivpy’s ‘lexical’ 
expressiveness—the diversity of atomic meanings 
composable by its grammar. We’ve said that ivpy’s lexicon is 
effectively infinite, comprising all possible images, and we 
might say, similarly, that feature engineering yields infinities 
of higher cardinality, because it decomposes single images 
into many constituent ‘words’. And although it’s true that the 
user can and will do this on her own, by looking, she can’t 
do it without looking, and in most cases, she can’t look at 
everything. Feature engineering helps to guide the process 
of looking by identifying lexical properties of the data that 
can be used both to narrow the search space and to make 
patterns more legible.

	None of the graphical tools discussed earlier make it 
possible to increase lexical expressiveness in this way. 
While it’s true that both PixPlot and VIKUS Viewer rely on 
feature engineering, they offer far fewer options, and the 
engineering takes place outside the graphical environment, 
as a preprocessing step. Ivpy thus has greater lexical 
expressiveness than any of these tools. It also has greater 
syntactical expressiveness than any of these tools, both 
because it can produce a wider range of plot types and 
because it makes those types usable with any data you 
choose. But I don’t want to hang the argument for ivpy’s utility 
entirely on the gains in expressiveness that result from these 
advantages, because any of the existing graphical tools could 
be augmented to offer additional plot types or full service, 
in-browser feature engineering. What they can’t do—or what 
it would take a monumental and probably ill-advised effort 
to do—is allow for the kind of data manipulation that data 

scientists do regularly in their native working environments. 
If I want, for example, to join new data to my existing data, 
use string operations to correct typos in filenames, or use 
complex conditional filtering to select some subset of my 
data, I will need to migrate from the graphical environment 
back to my native working environment. The graphical user 
interface expects a single, fully cleaned and processed 
dataset—something you’ll never have in the early stages of 
research, if at all. This is why ivpy is necessary. 

I want to be clear that I don’t see ivpy as a direct competitor 
with graphical tools. I’m certain that as time goes on, they will 
narrow the expressiveness gap, and their greater efficiency 
and accessibility make them attractive to anyone who 
doesn’t want to write code. But there will remain a need for 
direct visualization in native working environments, and ivpy 
is currently the only high-level tool in existence that makes 
it possible. 

Example of Use
In this section, I’ll walk through some examples designed 

to help illustrate both what is possible when basic module 
elements are combined and what sorts of analyses these 
combinations support. There are, of course, countless ways 
the module can be used, and I will here cover only a tiny 
fraction. The examples are chosen both for their familiarity to 
me and out of a desire to cover as much ground as possible in 
a handful of examples.

	The goal of the first example is to place images in a visual 
similarity space. There are as many such spaces as there are 
kinds of visual similarity, and as we’ve seen, ivpy makes a 
variety of these spaces available to the user. But many are 
structured by very specific kinds of visual similarity—e.g., 
average hue—and for this example, we’d like as general a 
measure as possible. What we above called ‘neural similarity’ 
tends to work well as a general measure, likely because it 
makes possible the machine recognition of a vast range 
of familiar objects—viz., the label set of ImageNet, which 
includes over 20,000 object categories. For this reason, neural 
similarity is commonest amongst the features used to sort 
images in contemporary image visualization applications, 
including, as we’ve seen, both PixPlot and VIKUS Viewer.41

	In this example, we’ve extracted a neural feature vector for 
each of a collection of astrophotography images found in the 
Yahoo! Flickr Creative Commons 100M dataset.42 The vectors 
populate a matrix, assigned to ‘X’. Figure 1 is a screenshot 
from a Jupyter notebook and contains a single code cell along 
with its output, a triptych of image scatterplots. The plots 
are generated in a loop, each pass of which uses a different 
algorithm to compress the 2,048 dimensions of X to just two. 
The ‘side’, ‘thumb’, ‘xbins’, and ‘ybins’ keyword arguments are 
used to force the resulting continuous plotting coordinates to 
a grid, so that all visible images are fully visible. Images stack 
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atop each other, with the topmost image fully occluding all 
beneath it.43 As they are generated, the plots are appended to 
a list, and the expanded list is then passed to compose().

	The resulting metaplot allows us to see the effects of 
applying three different forms of dimension reduction to the 
same vector space. The leftmost plot, which uses PCA, has the 
evenest spread of the three, but its groupings do not appear 
as sharp as the other two. The rightmost plot, which uses 
UMAP, has an interesting shape and successful groupings, 
but its spread is so uneven that many images are hidden. 
The middle plot, which uses t-SNE, balances the competing 
virtues of grouping quality and spread. Figure 2 shows the 
result of recreating the middle plot at a much larger size and 
saving it to disk. The pattern of analysis used here—testing 
a number of analytical possibilities by generating plots in a 
loop—is perfectly general and can be used to visualize the 
effects of differential parameter settings of all kinds.

	 The second example, like the first, begins by extracting 

a neural feature vector for each of its images—here, 

digitized watercolors from the Yale Center for British Art’s 

collection—and compressing the resulting vector space to 

two dimensions, here using UMAP. We saw in Figure 1 that 

UMAP produces an interesting global shape but encourages 

occlusion. For the purposes of drawing a ‘map’ of visual 

similarity, as in the previous example, the tendency to 

occlude is a problem, but we can recover the occluded images 

by applying a clustering algorithm to UMAP’s similarity space 

and subsequently plotting each cluster as a simple montage.

Figure 3 demonstrates one way of doing this. We use ivpy’s 
cluster() function to add a column of cluster assignments 
to our data table, ‘df’;44 we then measure, for each cluster, 
the centrality of each of its members, adding the resulting 
sequence as another column; finally, we specify a circular 
montage, faceted by cluster assignment and sorted radially 
by centrality. In each facet, the cluster’s most prototypical 
images are plotted in the center; its outliers are plotted in 
the periphery. Figure 4 zooms in on several of these clusters, 
revealing how neatly our method has separated the images 
into visual style groups. It’s important to note that no 
metadata is being used to group the images, and the clusters 
are not modified in any way. The groupings result from the 
plain application of neural similarity, dimension reduction, 
and clustering. Remarkably, although the leftmost clusters in 
Figure 4 very clearly share a visual style, we’ve managed to 
split images in this style into plant and animal clusters. In the 
rightmost clusters of Figure 4, we’ve similarly separated the 
natural from the built environment, again using only visual 
similarity as a guide.

The first two examples illustrate ways that a researcher 
might begin looking at her data in order to get a sense of its 
global structure. But these techniques can figure in more 
targeted analyses as well. The image collection used in the 
second example is the result of a massive digitization effort 
by the Yale Center for British Art, and attached to the collection 
is a trove of human-generated metadata about the works. 
This metadata can be used together with measures of visual 
similarity to reveal aesthetic patterns across time periods, 

Figure 1. Three image scatterplots, each using a different dimension reduction algorithm, are generated in a loop and added to a 
list, which is then expanded and passed to compose()
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Figure 2. Astrophotography images posted To Flickr, arranged by visual similarity using an artificial neural 
network and the t-SNE dimension reduction algorithm.

artists’ bodies of work, artistic media and materials, and 
even depicted subject matter. Say, for example, that we are 
interested in which subject concepts are the most visually 
diverse. We could start with a visual similarity ‘map’, as in 
Figure 2, and then, using the subject concept tags contained in 
our metadata, create a map for each concept showing only its 
instances. It would be trivially easy to see, for each concept, 
the degree of its spread across the global visual landscape, 
thereby discovering which concepts have the greatest visual 
diversity (according to the chosen measure). There are 
countless such ways we might use these techniques to better 
understand our data, and targeted analyses like these derive 
special benefit from ivpy’s embedding in Python, because the 
often complex data manipulations they require can be carried 
out alongside the plotting operations.

Like the previous two, the third example, shown in Figure 5, 
uses neural similarity as a basic relation between images, but 
unlike the previous two, there is no attempt to represent the 

totality of these relations in a single plot. Instead, we begin 
with an image of interest—here, a particular photogram 
by the artist László Moholy-Nagy—and proceed to find its 
thirty nearest neighbors, which are then plotted as a simple 
montage using show(). These steps are packaged into a 
single function call, nearest(), because the nearest neighbor 
search itself requires several lines of code, and I wanted to 
make the technique as efficient and accessible as possible, 
given its considerable utility.45

Our distance metric is the one used to measure the 
centrality of cluster members: Euclidean distance in the 
high-dimensional space defined by the image collection’s 
neural similarity vectors. The target image is plotted first, in 
the upper left, and the rest follow in reading order. The resulting 
plot is a rather satisfying validation of the metric, as the first 
six or so neighbors appear to feature the very same object 
(whatever it is). Neighbors further down the list all contain 
something that explains their close relationship to the target, 
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Figure 3. Watercolors from the Yale Center for British Art’s collection are grouped into clusters by visual similarity.

Figure 4. Zoom detail of six clusters from Fig. 3. 
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Figure 5. The 30 nearest neighbors of a photogram by artist László Moholy-Nagy, arranged in reading order by their 
similarity with the target image, which appears first, in the upper left. In addition to the plot, the function returns a list 
containing each item’s data table index, which is also printed in the upper left corner of each thumbnail.
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Figure 6. Small fragments of digitized van Gogh paintings are arranged as a polar histogram with bins of equal height, sorted 
angularly by hue and radially by brightness.

generally something circular, something trellis-like, or both. 
The table index of each image is printed in its upper left corner, 
and the entire neighbor set is returned as text, appearing just 
above the plot. Users can copy this text and assign it to a 
variable, so that the set is easily selectable for further analysis. 
One might, for example, use this technique to build clusters of 
images from a set of chosen prototypes, rather than allowing 
an algorithm to choose the cluster centers.

The neural feature vectors used in the previous three 
examples allow us to compare the visual contents of images 
in as comprehensive a way as possible, because, as we’ve 
said, the unanalyzed measure of similarity they encode is 
what grounds the successful machine recognition of over 
20,000 object categories. But even if we were to select a set 
of images defined by a single object category, visualizations 
using only those images would nonetheless contain objects 
in other categories as well. In direct visualizations, sorting 
and filtering may bring certain contents to the foreground, 
but they do not close off our perceptual access to the 
background. Direct visualizations are thus semantically richer 
than their sorting and filtering parameters might suggest, a 
circumstance which might be undesirable in certain cases. 

If a more targeted semantics is what we want, we need 
to remove foregrounded contents from their background 
contexts. There are sophisticated ways of doing this for 
particular object classes, although ivpy does not use them.46 
Ivpy does, however, offer a utility—shatter()—for slicing 
images into fragments of roughly equal size, which, depending 
on the chosen fragment size, may succeed in isolating the 
contents of interest. Technically, the slicing operation is a form 
of feature engineering, since it transforms our data and expands 
our lexicon, but because the resulting fragments are plain image 
files, they cannot be used to narrow the search space or make 
patterns more legible unless we first extract their features.

In the fourth example, we do just that. A collection of 

digitized van Gogh paintings is sliced into fragments small 

enough that their basic visual properties—hue, saturation, 

and brightness—are roughly uniform. At this size, object 

categories are no longer legible, although certain fragments 

might contain hints about their origins. What’s left is a clear look 

at the collection’s color palette, which can be difficult to discern 

when the fragments are embedded in their original contexts. In 

Figure 6, a bright, saturated subset of the fragments is plotted 

as a ‘flat’ polar histogram, sorted angularly by hue and radially 
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Figure 7.  Small fragments of digitized van Gogh paintings are grouped into genres and plotted as Cartesian histograms, sorted 
horizontally by saturation and vertically by hue.

by brightness.47 Although flat histograms, with bins of equal 
height, are not natively specifiable in ivpy, the code cell in 
Figure 6 shows how two lines of Python can be used to coerce 
histogram() to produce them.

The plot in Figure 6 is composed of fragments from every 
image in the collection and thus reveals van Gogh’s overall 
hue palette, dominated by oranges and yellows. In Figure 7, 
we’ve used collection metadata to split the fragments into 
six genre groups, chosen here for the distinctiveness of their 
palettes. Where previously we were interested only in hue 
and thus used only those fragments with legible hues, we now 
add back all of the blacks, whites, and greys in order to render 
a complete color palette for each genre. Each palette is a 
Cartesian histogram with 300 saturation bins of equal width, 
sorted vertically by hue.48 Genres with greater representation 
in the collection will have correspondingly larger histograms, 
as they are composed of more fragments. 

The analytical possibilities of a fragment plot will depend 
a great deal on the choice of fragment size: the larger the 
fragments, the easier it is to recover their origins and the 
less likely they are to isolate particular contents of interest. 
If we use larger fragments here, we might be better able to 
explain the dominance of oranges and yellows by identifying 
what they are used to depict, but we might fail to notice that 
dominance in the first place. We can circumvent this tradeoff 
by tracing fragments back to their source images and even 

back to their pixel positions, both of which are recoverable if 
shatter() is used to create the fragments.

In each of the previous examples, our visual lexicon is 
delimited by a source collection of images or image fragments 
and whatever numerical features can be derived from them. 
So although the diversity of visualizations expressible by the 
plotting grammar will depend in part on our ingenuity—in 
feature engineering, data manipulation, etc.—the plotting units 
themselves are given to us essentially fully formed. That this is 
the default mode for ivpy means that its codebase can remain 
relatively lean without affecting its expressiveness. Nearly 
all visualization systems include (or borrow) a core drawing 
module out of necessity, and most of the time, ivpy can get by 
without one. But if our data are not images, and we thus cannot 
visualize them directly, we’ll have to do so indirectly, and we’ll 
therefore need to draw our own plotting units.

In the final example, we visualize a small set of 
photographic prints using glyphs as our plotting units.49 The 
plot itself, shown in Figure 8, is a simple montage, specified 
using show(). Each glyph represents a particular print made 
from the same photographic negative, and accordingly, we are 
interested not in the images themselves (which are identical) 
but in the photographic papers, whose properties are mapped 
to the axes of a modified radar chart. There are four axes, 
each encoding what is called an ‘expressive dimension’ of the 
paper: thickness on the left, color on top, gloss on the right, 
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Fig. 8. Eight photographic prints by Harry Callahan, each from the same negative, are represented as 
compound glyphs. A thumbnail of each print is affixed to the upper right, while the expressive dimensions 
of their photographic papers are mapped to the axes of a modified radar chart. Along the bottom is an 
annotation that contains both the print’s holding institution, as well as an institutional index called an 
‘accession number’. Indices for the local data table are printed in the upper left.
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and texture on the bottom. Each property value is mapped to an 
axis location, and these points form the vertices of a polygon, 
whose fill color encodes another data variable—here, a Boolean, 
although it could likewise be categorical or continuous. 
Additionally, the table index is printed in the upper left (as in 
the third example); an annotation is printed along the bottom; 
and a small thumbnail of the print is affixed to the upper right. 

These are compound glyphs, each containing three 
distinct forms of representation: direct, glyphic, and textual. 
This considerable density of information and diversity of 
presentational formats is appropriate in this context, because 
our aim is to make detailed comparisons among a small set 
of individually important items. Each component serves 
a distinct purpose: the thumbnail image tells us which 
negative was used to make the print; the annotation tells us 
which collecting institution holds the print and gives us its 
accession number, allowing us to trace the print back to its 
holding institution’s database; the radar chart tells us about 
the expressive dimensions of the paper it is printed on and 
thus allows us quickly to identify differences in the ways 
the prints will appear to the viewer; the color of the polygon 
tells us whether the print is ‘vintage’, or contemporary with 
its negative; and the table index gives us a path back to our 
own data table, should we need it. When the number of plotting 
units is so few, glyphs like these can be read without difficulty, 
but in case that number is drastically increased, we might 
opt to remove the annotations, indices, thumbnails, and even 
the bounding box, leaving only the radar chart. In ivpy’s glyph 
module, all of these elements can be toggled on or off.

At present, glyphs of this type are the only ones ivpy can 
generate. They are designed for relatively high-dimensional 
data; indeed, the design of the radar chart generalizes 
to arbitrarily many dimensions, and ivpy allows the user 
specify any number of radar axes. The choice to focus 
ivpy’s glyph generation on high-dimensional data was 
made in part because low-dimensional glyph plotting is 
handled adequately by existing tools, but also because 
low-dimensional glyphs—e.g., circles of different sizes and 
colors—are easy enough to generate and save to disk using 
the Python Imaging Library directly. But development of ivpy 
is ongoing, and future versions will likely include support for 
a wider range of glyph types.

Limitations
These examples serve to illustrate both ivpy’s considerable 

expressive range and its relative efficiency and accessibility 
when compared with low-level, imperative specification of 
iconographic visualizations. But no tool can optimize for 
every use case, and ivpy is no exception. I’ll finish with a 
discussion of ivpy’s limitations, including those that reflect 
deliberate design choices, as well as those that point to areas 
for future development.

	Ivpy is the sole occupant of the space between low-level 
drawing libraries like Processing and the Python Imaging 
Library on the one hand and high-level graphical tools like 
PixPlot and VIKUS Viewer on the other. And we might ask 
why there are no others in this space. Of course, the total 
space of available tools is quite small, and thus we shouldn’t 
expect any particular tool to have a great many neighbors, 
but all available tools have collected at the poles, choosing 
to optimize either for expressiveness or for efficiency and 
accessibility. This is not insignificant. In choosing to sit 
between the poles, ivpy makes a pair of sacrifices: it is less 
expressive than the drawing library that powers it, and, 
relative to graphical tools, a greater effort is required to use 
it. Throughout, I’ve made a case for ivpy’s utility in spite of 
these sacrifices—in short, that its middle position also yields 
a pair of advantages—but I’d like, for a moment, to focus on 
the sacrifices themselves. What, precisely, do we give up?

	On one side, we give up polish. The space of possible graphic 
customizations is simply too large for ivpy to cover in full. And 
while it’s true that, for example, ivpy’s plotting functions could 
be modified to allow for greater customization, there is an 
associated risk of making the module seem difficult to learn. And 
because ivpy courts a user base that includes researchers in the 
humanistic sciences, many of whom are new to programming, 
its seeming difficult to learn would be a liability. Ivpy’s relatively 
simple conceptual scheme is a deliberate choice, and I’m not 
open to changing it. But this means that for highly specialized 
forms of analysis or highly stylized graphic outputs, ivpy will, 
at the very least, need to be supplemented with additional 
programming in a low-level grammar or additional manipulation 
with tools like Adobe Photoshop.

	On the other side, we give up speed. While it’s true that 
graphical tools are marginally easier to learn than ivpy’s 
function calls, their chief advantage lies in allowing users to 
move quickly through a series of analytical steps, keeping 
pace with their thoughts. I discussed above a set of functions 
that allow the user to modify cluster memberships in various 
ways. But let these functions be as learnable and powerful as 
you like, they can’t match the user experience of clicking and 
dragging images between clusters and seeing them update 
in real time, like sorting Polaroids on a tabletop. To be fair, no 
such tool currently exists. But if it did, it could only exist in a 
graphical user interface. 

	 The graphical interface is more efficient—or at least, it 
can be—because clicking is faster than coding, no matter 
how concise the grammar. The choice to embed ivpy in a 
programming language, then, places a speed limit on plot 
specification. The choice to use image files as ivpy’s primary 
inputs and outputs places similar limitations on performance. 
While ivpy itself does not limit the number of allowable plotting 
units, its performance will suffer as the user approaches the 
hardware limits of her machine. An ivpy plot is a single raster 
image file that must fit into working memory if it is to be 
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displayed. This is in contrast with, for example, image viewers 
that display tiled canvases at multiple scales to create the 
experience of panning and zooming massive images, ones 
far too large to fit in working memory. An ivpy plot is also 
made up of raster images, read into memory one at a time. 
This means that ivpy’s plotting speed cannot exceed the read 
speed of the source hard drive. So, while ivpy can be used to 
explore and analyze image collections of any size, very large 
collections will have to be examined in parts small enough to 
be manageable by the host hardware.

	But how should this examination proceed? I’ve emphasized 
the importance of the expert’s searching ‘with her own 
eyes’, but what does that look like for collections too large 
to examine in full? We here confront, once again, the core 
difficulty of descriptive and explanatory data science at 
scale: striking a balance between aimless, random search on 
the one hand and excessive machine guidance on the other. 
If we surrender our search entirely to the machine, we cannot 
escape its biases; if we search aimlessly, we risk finding 
nothing at all. We know that, at least for image collections of 
manageable size, direct visualization offers an easy solution: 
let the human expert look at everything. What to do, then, if 
she cannot? In the paragraphs above, we discussed those 
limitations arising from ivpy’s basic design characteristics, 
all of them independently motivated and therefore unlikely 
to change, despite their negative impacts. But the problem 
of guided search is one we might mitigate with additional 
development. And to some extent, we have, by adding to 
the module various utilities for feature engineering. Feature 
engineering, as we’ve said, helps us to narrow the search 
space, but how can we know whether this narrowing has the 
effect of closing off promising ways of analysis?

	 In truth, we can never know for sure, but we can minimize 
the chances of our missing something important by searching 

our collections under as many forms of narrowing as possible. 

And although ivpy already makes available a considerable 

variety of image feature extractors, it could always offer 

more. In fact, I believe this to be the most promising direction 

for ivpy’s future development. The problem, then, is that 

the features with the greatest descriptive and explanatory 

utility depend essentially on human visual expertise, which 

is both costly and time-consuming to obtain. Moreover, 

the very best features in a given domain will come from its 

experts, who typically have better things to do than to sit 

at computer terminals labeling images. To date, the most 

significant effort to collect human labels for artistic images 

is the Behance Artistic Media (BAM) dataset, which is 

conceived as a non-photographic alternative to ImageNet.50 

Models trained on its data will therefore expose alternative 

forms of visual similarity, ones with particular relevance for 

ivpy’s target domains. Relatedly, the most significant effort 

to train such models comes from Saleh and Elgammal, who 

develop specialized measures of visual similarity between 

paintings using the Wikiart dataset.51 Activity in this space 

is likely to increase over time, and although ivpy is neither a 

tool for collecting labels nor a platform for training computer 

vision models, it can participate in this movement forward by 

offering ways of visualizing the results of these experiments 

and comparing them with existing models. Ivpy’s embedding 

in Python is particularly useful in this case, as the vast 

majority of computer vision is now done in Python. 

	Ivpy offers an expressive, declarative grammar for 
iconographic visualization that is easy to learn, easy to use, 
and, perhaps most importantly, usable in the native working 
environments of the modern data scientist. I hope that its 
particular advantages will lead to widespread adoption in 
its target domains, and that, accordingly, it will help keep 
human visual judgment at the forefront in these domains, 
where it belongs.

NOTES

1  The coding patterns used in this module were developed initially 
in the Cultural Analytics Lab at the University of California, San 
Diego. During that time, my work was funded by a Frontiers 
of Innovation Scholarship. The module itself was developed 
during my postdoctoral associateship in the Digital Humanities 
Lab at Yale University and can be found at https://github.com/
damoncrockett/ivpy. 

2  The term ‘expressiveness’ is being used here in a technical 
sense—as applied to visualization grammars in the information 
visualization literature—and is discussed below in the section 
titled ‘Direct Visualization and the Graphical User Interface’.

3  Much, though not all, of this toolkit exists as part of the SciPy 

project; see Oliphant, “Python for Scientific Computing.”
4  Drucker and Fernandez, “A Unifying Framework for Animated and 

Interactive Unit Visualizations.” See also Park et al., “Atom: A 
Grammar for Unit Visualizations.” It might be pointed out that all 
visualizations are unit visualizations on a suitably general notion 
of a ‘data record’; the distinction between unit and aggregative 
visualization can therefore be made only in particular contexts 
of analysis. If the ‘atomic’ units of analysis, whatever they be, 
have their own visual marks, we have unit visualization.  

5  A list of prominent unit visualizations in the wild appears in Park et 
al., “Atom: A Grammar for Unit Visualizations.”

6  There is a strict reading of ‘icon’ according to which it must bear 
some pictorial resemblance to its target—e.g., Borgo et al., 
“Glyph-Based Visualization.”—but I am using the term in the 
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the record-keeping function of the notebook. This tension is 
discussed at length in Rule, Tabard, and Hollan, “Exploration and 
Explanation in Computational Notebooks.”

27  Ragan-Kelley et al., “The Jupyter/IPython Architecture.”
28  Perkel, “Why Jupyter Is Data Scientists’ Computational Notebook of 

Choice.”
29  Ivpy functions return instances of the Python Imaging Library’s 

‘Image’ class. Ivpy’s source code uses Pillow, a popular fork of the 
Python Imaging Library; see https://pillow.readthedocs.io/.

30  Declarative grammars are popular in information visualization, 
because they allow users to specify visualizations by declaring 
their properties, rather than by giving explicit instructions for 
building them. Declarative grammars tend to be both more 
efficient and more accessible than imperative grammars. For a 
discussion of visualization grammars, see Park et al., “Atom: A 
Grammar for Unit Visualizations.” The authors also contribute a 
declarative unit visualization grammar very different in design 
from the one presented here. Though I make no explicit rejection 
of the Atom grammar in ivpy’s design, it wouldn’t work as an ivpy 
grammar. For example, because my plotting units are usually 
images, I can’t control their colors—and thus cannot signal 
group memberships using color—a constraint that would make 
unavailable a considerable portion of Atom’s expressive space.

31  Faceted plots are sometimes called ‘small multiples’ or ‘trellis’ 
plots; see Becker, Cleveland, and Shyu, “The Visual Design and 
Control of Trellis Display.” I borrow the language of ‘faceting’ from 
ggplot2; see Wickham, “A Layered Grammar of Graphics.”

32  Ivpy’s grammar is in this way distinct from Atom (Park et al., 
“Atom: A Grammar for Unit Visualizations.”). Differential unit 
sizes are possible in Atom, and Atom’s filling and packing logic 
therefore needs to be unit-aware in a way ivpy’s compositional 
operations do not.

33  All of the preceding extractors—some of which are used by ivpy 
in novel ways—are found in scikit-image; see Walt et al., “Scikit-
Image.”

34  He et al., “Deep Residual Learning for Image Recognition.” Ivpy 
uses ResNet50, but any successful architecture trained on 
ImageNet will perform similarly.

35  Deng et al., “ImageNet.”
36  Pedregosa et al., “Scikit-Learn.”
37  Maaten and Hinton, “Visualizing Data Using T-SNE.”
38  McInnes, Healy, and Melville, “UMAP.”
39  Ester et al., “A Density-Based Algorithm for Discovering Clusters in 

Large Spatial Databases with Noise.”
40  Fukunaga and Hostetler, “The Estimation of the Gradient of a 

Density Function, with Applications in Pattern Recognition.”
41  Other notable examples of neural similarity being used (along 

with dimension reduction) to sort images include Free Fall, 
Curator Table, and t-SNE Map, all of them Google Arts & Culture 
Experiments by Cyril Diagne, Nicolas Barradeau, and Simon 
Doury. See https://experiments.withgoogle.com/collection/arts-
culture.

42  Thomee et al., “YFCC100M.”
43  The problem of occlusion is sometimes resolved by special 

gridding algorithms that move occluded images to nearby 
open grid locations, but because such algorithms necessarily 
introduce error, ivpy does not use them. See, for example, Mario 
Klingemann’s RasterFairy: https://github.com/Quasimondo/
RasterFairy.

44  The name ‘df’ is the one conventionally given to instances of 
the DataFrame object in pandas, a Python library for managing 

more permissive sense of Pickett and Grinstein, “Iconographic 
Displays For Visualizing Multidimensional Data.”

7  Manovich, “What Is Visualization?”
8  Whether a particular data visualization has exceeded this 

threshold will depend on a host of contextual factors. For a 
detailed discussion of this problem as it pertains to iconographic 
visualization, see Borgo et al., “Glyph-Based Visualization.”

9  Images are of course multiply interpretable, and we might view 
interpretation as a kind of decoding. But in most cases, even the 
basic meaning of an icon will depend on arbitrary associations 
the user has to learn before the visualization can carry any 
information for her. Put succinctly, icons need a ‘legend’; images 
don’t.

10  I am here exempting image browsers, fixtures of nearly every 
computer operating system since the 1990s. There are too many 
to list, and their analytical expressiveness is typically limited to 
filtering and sorting by metadata properties of the image files 
(e.g., filename, date created, date modified). Moreover, most are 
proprietary software and thus their use is restricted in various ways.

11  Reas and Fry, “Processing.”
12  Abramoff, Magalhães, and Ram, “Image Processing with ImageJ.”
13  The terms ‘efficient, ‘accessible’, and ‘expressive’, as they are used 

in this paper, are defined in Bostock, Ogievetsky, and Heer, “D3 
Data-Driven Documents.”

14  For discussion of these techniques, see Manovich, “Media 
Visualization.” The ImagePlot software itself, implemented as a 
macro for ImageJ, can be found at http://lab.softwarestudies.
com/p/imageplot.html.

15  Google’s People + AI Research Initiative (PAIR) has developed a tool 
called Facets Dive that is similar in some respects to PivotViewer, 
although its functionality is more limited, and it is designed 
specifically for exploring machine learning datasets. It offers 
interactive specification of iconographic plots that can be faceted 
by data values. See https://pair-code.github.io/facets/. 

16  Kräutli and Boyd Davis, “Revealing Cultural Collections Over Time.”
17  For the PixPlot source code, visit https://github.com/YaleDHLab/

pix-plot.
18  PixPlot’s feature extraction uses the Inception network; see 

Szegedy et al., “Going Deeper With Convolutions.”
19  PixPlot’s dimensional compression uses Uniform Manifold 

Approximation and Projection, or UMAP; see McInnes, Healy, and 
Melville, “UMAP.”

20  For the VIKUS Viewer source code, visit https://github.com/
cpietsch/vikus-viewer. For the project website, visit https://
vikusviewer.fh-potsdam.de/.

21  VIKUS’s dimension reduction uses t-distributed Stochastic 
Neighbor Embedding, or t-SNE; see Maaten and Hinton, 
“Visualizing Data Using T-SNE.”

22  Arguments here and in the next section draw on remarks made by 
Hadley Wickham in his 2017 IEEE VIS keynote, “You Can’t Do Data 
Science in a GUI”. To be clear, the argument is not that PixPlot and 
VIKUS Viewer ought to be made more expressive and thus better 
suited to data science; rather, it is that graphical user interfaces 
are simply the wrong place to do data science, however they 
are designed. I discuss this further in the section below, titled 
‘Expressiveness and Data Manipulation’. 

23  https://www.numpy.org/
24  https://pandas.pydata.org/
25  Pedregosa et al., “Scikit-Learn.”
26  It should be pointed out that certain exploratory behaviors like 

cell editing and nonsequential cell execution can undermine 
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tabular data. See https://pandas.pydata.org/. Ivpy makes 
extensive use of the pandas library; in fact, when ivpy users call 
plotting functions, they are required to pass pandas objects to 
any ‘column’ arguments—‘pathcol’, ‘xcol’, ‘ycol’, ‘facetcol’, and 
‘clustercol’. Many ivpy functions return pandas objects in order 
to satisfy this requirement.

45  Ivpy uses annoy, a C++ library with Python bindings for 
approximate nearest neighbor search, written by Erik 
Bernhardsson. See https://github.com/spotify/annoy.

46  Mask R-CNN, for example, can identify the precise boundaries 
of objects of particular types—e.g., cars, trees, traffic lights, 
pedestrians. See He et al., “Mask R-CNN.”

47  Flat histograms are analytically useful only if composed of 
distinguishable units—only if, that is, they are iconographic 
histograms.

48  Plots like these are called ‘slice histograms’ in Crockett, “Direct 

Visualization Techniques for the Analysis of Image Data.”
49  The prints are made by photographer Harry Callahan and each 

belongs to a different collecting institution.
50  Wilber et al., “BAM! The Behance Artistic Media Dataset for 

Recognition Beyond Photography.”
51  Saleh and Elgammal, “Large-Scale Classification of Fine-Art 

Paintings.”
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