
2019_21 | VOLUME 43.60 2019_21 | VOLUME 43.60

3.612019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

IVPY: ICONOGRAPHIC VISUALIZATION
INSIDE COMPUTATIONAL NOTEBOOKS

DAMON CROCKETT

ABSTRACT | Iconographic Visualization in Python, or ivpy, is a software module, written
in the Python programming language, that provides a set of functions for organizing
iconographic representations of data, including images and glyphs. The module also
provides methods for extracting visual features from images; generating and hand-tuning
clusters of data points; and embedding high-dimensional data in 2D coordinate spaces.
It is designed for use inside computational notebooks, so that users working with data
needn’t leave the notebook environment in order to generate visualizations. The software is
designed primarily for those researchers working with large image datasets in fields where
human visual expertise cannot be replaced with or superseded by machine vision, such as
art history and media studies.

KEYWORDS | iconographic visualization; direct visualization; big image data; distant viewing;
feature extraction

PEER-REVIEWED ARTICLE

Introduction1

There persists, in the computational sciences, a common
misconception about the nature of visual evidence. This
misconception is particularly common in analyses of image
data, which data often appear first, to the researcher, as
massive arrays of numbers and only later (or perhaps hardly
at all) as seen images. This way of thinking treats images as
mere numerical signals, to be used as inputs to predictive
models or as containers for basic object and scene contents.
To be sure, images can and do serve these purposes. But
in the background of this general attitude is the implication
that, from an information-theoretic perspective, the image
is nothing more than the numbers used to reconstruct it on
a computer screen. And this is simply false: the information
conveyed by an image will depend in part on facts about the
viewer, facts not carried in the image’s digital encoding.

Importantly, human experts remain our best and perhaps
only judges of the significance of particular findings—visual
or otherwise—and so to restrict search to machine perceivers
is to search without understanding. It is not enough for the
human expert to certify this or that result of machine search;

it is rather required that she search, at least some of the
time, with her own eyes, because no amount of priming the
machine to see can confer the wisdom and flexibility of her
own expertise. The human expert may use known, explicit
categories to understand her observations, but she also
works under a vast network of implicit biases that develop
over time in response to new evidence or changing contexts
in ways she may fail even to be aware of. It is this drifting
collection of working principles that the human expert brings
to bear on her domain and on the specific deployment of her
public concepts, and no machine can replicate it in full. This is
the motivation for the ivpy software module.

Iconographic Visualization in Python—ivpy—is a software
module, written in the Python programming language, for
visualizing large image datasets, or, alternatively, large
datasets represented as collections of glyphs. The module
offers a variety of methods for assigning images to (abstract)
positions in visual similarity spaces, as well as a set of flexible
plotting functions for organizing images and glyphs according
to these and other (nonvisual) properties. These tools enable
the researcher to extend the reach of her visual expertise into
image collections too large to examine serially. Although the

2019_21 | VOLUME 43.62 2019_21 | VOLUME 43.62

module can be used in Python scripts to save visualizations
to disk, it is designed primarily for use inside computational
notebooks, which are quickly becoming the default working
environments for academic computational scientists of all
kinds. For such researchers, ivpy has, accordingly, a distinct
advantage over web-based, point-and-click visualization
tools, because in order to use these tools, the researcher must
either shuttle between incompatible working environments
or settle for the relatively limited analytical expressiveness
characteristic of graphical user interfaces.2 Additionally, the
integration of ivpy into a Python-based analytic workflow
means that it sits atop Python’s massive scientific toolkit,
including modules for data retrieval, management, storage,
modeling, and visualization.3

	Ivpy is designed primarily for researchers whose data
are images, whose goals are description and explanation
(as opposed to, say, prediction or intervention), and whose
domains of study are sufficiently complex that the giving of
descriptions and explanations requires human expertise.
This includes (inter alia) those working in art history, visual
culture, media studies, social science (using social media
images) and architecture and urban studies (using street
level and satellite imagery).

Iconographic Visualization
Ivpy is a software module for iconographic visualization, which

is a special case of unit visualization. Unit visualizations are
those in which each data record is represented by its own visual
mark.4 This is in contrast with aggregative visualizations—e.g.,
bar, line, and pie charts—whose visual marks can represent
any number of data records or statistical transformations on
those records (e.g., averages). The conceptual simplicity of a
one-to-one mapping between data and graphics is intuitively
appealing, of course, although it’s difficult to say precisely what
advantage this confers on the user, apart from its (perhaps)
being easier to learn. Importantly for us, unit visualizations
make it possible to identify individuals in the data (assuming
their numbers do not exceed the display resolution). This
means that in any analytical context where individuals figure
prominently, as we might expect to be the case in analyses
of cultural collections, unit visualizations are common. And in
general, unit visualizations have become more common in the
age of computer graphics, because they are no more difficult to
make than their aggregative counterparts.5

	Iconographic visualizations are unit visualizations whose
visual marks can be distinguished by their nonrelational (or
‘local’) visual characteristics—the qualities they carry with them
regardless of their spatial positions, things like shape, size, and
color.6 Distinguishing nonrelational characteristics allow icons
to carry information even outside the plotting context. In this
way, each icon is itself a data visualization, and iconographic
visualizations are therefore (in principle) viewable at multiple
scales, from the global to the maximally local.

	Strictly speaking, the visualizations ivpy produces needn’t
be iconographic. As we shall see, the module’s core plotting
functions are indifferent to the units they receive, and simple,
identical marks can be used, in the manner of a traditional
scatterplot. However, the density of information carried in the
visualizations, and thus the analytical power of the tool, is
increased by the use of icons, and one special class of icons in
particular—image thumbnails—will be the focus of this paper.

Direct Visualization and
Machine Intelligence

In analytical contexts where images are the objects of
study, visualizations using those images as plotting units can
be said to be ‘direct’, because perceptual access to them is
unmediated.7 Or at least, the mediations are both information-
and format-preserving, limited typically to digital encoding
and subsequent reconstruction on a screen at near lossless
fidelity. Images therefore tend to be very information-rich
relative to mere icons, which are typically lossy by design.
In cases where lossless transmission is possible, mere icons
are appropriate only when certain other conditions are met—
if, for example, the analysis is finished and communication is
the goal, or if the domain of study is so well-understood that
what is lost is known to be noise. These conditions will likely
be unmet in any case where images are the proper objects of
study. In such cases, direct visualization is essential.

	But how, it might be asked, can a lossless viewing of the
data possibly yield anything of analytical value? After all, it is
widely acknowledged that, past a certain density threshold,
a data visualization ceases to be effective, because it
overwhelms the analyst with information.8 In a lossless data
display, everything is preserved, but little is discovered,
because signal and noise exist side-by-side, competing for
attention—or so it might be in most cases. But images are
special. For one, images, unlike mere icons, do not require a
preliminary decoding step.9 Moreover, the viewing of images
by human experts is itself an implicit process of feature
extraction, legitimized by the viewer’s expertise. When, for
example, the art historian casts her eyes over a collection,
she separates signal from noise on her own; the visual
interface needn’t do it for her.

	And indeed, in fields like art history and media studies,
direct visualization is the norm. Researchers working in
these disciplines have always looked at their images. The
distinction between this traditional activity and direct
visualization of the sort ivpy makes possible is a matter of
scale, and at scale, the process of making observations
cannot be (or at least, it oughtn’t be) wholly unstructured, as
it might be if the data are very small. Too much structure, or
too much of the wrong kind of structure, however, threatens
the analytical independence of the human expert. A process
of direct visualization is successful if it allows the researcher

3.632019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

to search and understand an otherwise unmanageable
amount of data with her own eyes.

	In this way, direct visualization serves as a bulwark against
the encroachment of machine intelligence into data analysis.
In certain cases, such encroachment is appropriate or at least
unobjectionable, as it might be if your goal is an accurate
predictive model and nothing more. In such cases, the
identification of stable numerical regularities will suffice, and,
assuming the conditions are favorable, a suitably designed
machine can find them. If, however, your goal is description or
explanation, and the domain of study is sufficiently complex
that the identification of stable numerical regularities is
either impossible or inadequate to the task, you cannot rely
exclusively on machine search.

The difference in goals is crucial. If your goal is prediction,
and your model performs well, you are indifferent to its
features. But if your goal is description or explanation, you
don’t have the luxury of indifference: your model needs a very
particular set of features—the descriptive or explanatory
ones—and the machine simply cannot know which ones they
are. In the best cases, you can review its findings and identify
the features of interest; in the worst cases, the features of
interest are not found at all. The machine can only find what
it has been taught to find, and you can’t anticipate everything
it might encounter. For this reason, it is absolutely essential
that you search for yourself.

	This is a quite general problem plaguing the application
of statistical learning to data projects with descriptive
or explanatory aspirations. In most such cases, direct
visualization is not available as an alternative. We should
count ourselves lucky, then, if our data are images.

Direct Visualization and the
Graphical User Interface

Despite its considerable power as an analytical method,
there are few publicly available software tools designed
specifically for direct visualization.10 Of course, direct
visualizations can be made ‘from scratch’ using software
libraries like Processing11 or imaging applications like Adobe
Photoshop and ImageJ.12 Ideally, however, the user should
not have to generate the low-level plotting logic on her own or
construct a plot manually from image files. The specification
of direct visualizations should happen at a higher level, so
that the user can focus on the analytical properties of the
plots rather than on the details of their construction.

	There is a small but growing number of software tools for
the high-level specification of direct visualizations, and all
are embedded in graphical user interfaces. Graphical user
interfaces are designed to increase both the efficiency and
accessibility of the computational tools they make available
to the user. The efficiency of a tool is a measure of the effort

required to use it; the accessibility of a tool is a measure of
the effort required to learn it.13 User inputs to a graphical
user interface are typically limited to things like clicking
buttons, toggles, and other control elements; navigating
menus; scrolling; and typing small bits of text into search
bars. These forms of user input are now so ubiquitous they
hardly need to be learned, and, if they are well-designed,
they offer significant gains in efficiency relative to standard
programming environments.

The Software Studies Initiative’s ImagePlot is perhaps the
only graphical tool in existence for high-level specification
of static direct visualizations, and ivpy’s functionality is
based in large part on its techniques.14 All other software
tools for direct visualization are graphical user interfaces
for specifying direct visualizations interactively, usually in
a web browser. Microsoft Research’s PivotViewer is perhaps
the earliest such example but now appears to be defunct. It
was designed for plotting iconographic representations of
all kinds and offered controls for sorting and filtering, with
the resulting visualizations appearing as unit histograms or
bar charts.15 Timeline Tools, by Florian Kräutli, is designed
specifically for cultural image collections, and plots collection
items together as a unit histogram along a horizontal temporal
axis.16 Users can select individual collection items to reveal
catalog metadata. PixPlot,17 by Doug Duhaime, is designed
for use with images, and extracts image features using a
pre-trained convolutional neural network;18 it then uses
those features to plot the images in a visual similarity space,
compressed to two dimensions from over two thousand.19
Additionally, the tool identifies centers of dense clusters of
images, which clusters can then be selected to re-center the
plot. VIKUS Viewer,20 by Christopher Pietsch, combines several
functional elements we’ve seen already: like Timeline Tools, it
plots images together as a unit histogram along a temporal
axis; like PivotViewer, it allows the user to filter the data using
metadata variables; and like PixPlot, it can extract visual
features using a neural network and allows users to view the
images in the resulting similarity space, compressed by a
dimension reduction algorithm.21

All of these tools offer significant gains in both
accessibility and efficiency relative to low-level specification
in programming environments. But what they gain in
accessibility and efficiency, they lose in expressiveness.
The expressiveness of a visualization tool is a measure of
the diversity of visualizations it can specify. A graphical
user interface will always be less expressive than the
programming language it is built on, but some graphical
tools—like Adobe Photoshop and Illustrator—are designed
with expressiveness in mind. In most cases, this will mean
adding functionality in menus, thereby incurring losses to
efficiency and accessibility. The visualization tools described
above have all of them chosen to optimize for efficiency and
accessibility at the cost of expressiveness, and because of
this, I argue, none are ideal for data science.22

2019_21 | VOLUME 43.64 2019_21 | VOLUME 43.64

Each of these tools presents the same dilemma to
the data scientist: either switch frequently between
working environments or settle for the relatively limited
expressiveness of the graphical user interface. Because
none of these tools is a software module, all require the data
scientist to generate visualizations outside her usual working
environment, a place she can manipulate her data using code.
If she chooses to stay in her programming environment, she
cannot use these tools; if she chooses to stay in the graphical
user interface, she cannot manipulate her data in the usual
ways.

Ivpy resolves the dilemma by providing a set of plotting
functions written in the Python programming language,
which means that the functions are usable in all the same
environments as any other Python libraries, including
those belonging to Python’s data science stack, libraries
like NumPy,23 pandas,24 and scikit-learn.25 Ivpy is therefore
backed by a powerful set of tools for data manipulation—the
very tools, indeed, that many data scientists are already using
to manipulate their data. Together with ivpy’s flexible plotting
functions, this backing provides the data scientist with a
highly expressive tool for generating direct visualizations
inside her native working environment.

Computational Notebooks
Because it is a Python module, ivpy can be used anywhere

Python is used, including interactive terminals, scripts,
and integrated development environments. It is designed,
however, for use inside computational notebooks. The
computational notebook is a particular form of integrated
development environment that presents as an electronic
version of the scientist’s laboratory notebook, itself a place
to record the various tests and procedures that make up the
daily business of laboratory research. This record is essential
to the practice of science, because it serves as a kind of
scientific memory—what was tried, what were the precise
parameters of the attempts, and what happened as a result.
Computational notebooks improve in some ways on their
computationally inert predecessors, because they include
executable code cells alongside basic text formatting and
figure display. Blocks of code can be run and rerun one at a
time, in any order, making individual computational steps very
easy to debug, and making it possible not only to reproduce
the original research but also iteratively to test re-orderings
and other modifications to the process.26

Computational notebooks have become exceedingly
popular amongst data scientists in recent years, a trend
that is due in part to the Jupyter project, which brings the
notebook format to some of the most important programming
languages in data science: Julia, Python, R and others.27 In
a testament to the exploding popularity of the format, the
code-sharing site GitHub reported that the number of Jupyter
notebooks uploaded to its servers increased from 200,000

in 2015 to 2.5 million in 2018.28 With its rapidly expanding
user base of computational scientists, the Jupyter project
has become an important site for data science tooling, and
in particular for visualization tools, which derive special
benefit from having crucial user interface elements already
in place: functions that return images (or any graphics) see
them displayed immediately below;29 images can be saved to
disk simply by dragging them to the desktop or into a folder;
and Jupyter’s support for markdown text formatting means
that visualizations can be captioned in place and integrated
into passages of text. These and other features allow the
developer to focus on the analytical power of the tool rather
than spending time building the user interface from scratch.
It is because of these distinct advantages—a reproducible
research record, a large user base, a native data science
environment, and a pre-existing user interface—that I chose
to develop ivpy with Jupyter notebooks in mind.

The IVPY Plotting Functions
From the perspective of the user, ivpy is five plotting

functions, together with submodules for feature engineering
and icon generation. These represent the essential operations
of an iconographic visualization system: the generation of
icons, the assignment of icons to positions in abstract feature
spaces, and the subsequent placement of icons in plots. Icon
placement is handled by the plotting functions, which form
the core of the module; indeed, the submodules for feature
engineering and icon generation are not strictly necessary,
in case the user already has in hand a dataset of icons and
features.

	Ivpy instantiates a declarative unit visualization grammar
built on the notions of a data axis and a coordinate system.30
Users specify a zero-, one-, or two-axis plot by function
choice: zero-axis plots are chosen by calling montage(),
one-axis plots by calling histogram(), and two-axis plots
by calling scatter(). For each axis, the user specifies a
corresponding column from the data table using the ‘xcol’ and
‘ycol’ keyword arguments. It’s important to keep in mind that
a data axis is not the same as a spatial dimension: although
the plot types differ in their numbers of data axes, all occupy
two spatial dimensions. Additionally, although the histogram
is treated as a one-axis plot, its axis is always binned and
therefore distinct from the axes of the scatterplot, which in
ivpy, though binnable, are continuous by default. The addition
of an axis to a plot will mean in any case that data items are
assigned to fixed positions along its extent. The affixing of
items to axis positions is distinct, then, from mere sorting,
because sorting positions are relative and not fixed. And so
although montages do not have genuine axes, their items can
be sorted, if desired, using ‘xcol’. Similarly, although items in
a single histogram bin share their horizontal axis positions,
they can also be sorted vertically—using ‘ycol’—despite the
fact that the histogram lacks a vertical plotting axis.

3.652019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

	All three plot types have both rectilinear and circular forms,
which for montages are simply square and circular shapes,
while for histograms and scatterplots, they are Cartesian
and polar coordinate systems. There is also a special form
of montage, show(), which is optimized for the notebook
format by having its width matched to a notebook cell.
Faceting is made possible by compose(), which takes plots
as arguments and returns a montage of plots. Users can
either call compose() directly or specify a faceting column in
any plotting function call, which will then return a faceted plot
using compose().31 The latter approach is more efficient but
can only deliver a single outcome: a plot grouped into facets
by values for a single (often categorical) data variable. If the
facets are to be distinguished in some other way, the user
must call compose() directly.

The inclusion of compose() in the module makes it easy
to generate plots of plots—‘second-order’ plots, perhaps, or
‘metaplots’—but in fact, because ivpy reads its plotting units
from image files, any plotting function can use plots as units,
provided they are saved to disk. It’s worth dwelling on this
fact. Ivpy has a ‘pure’ unit visualization grammar, because
its drawing engine (if used at all) is wholly separate from its
compositional operations. Users can create and modify icons
using the module, but these are saved to disk before being used
in plots, and the plotting functions work the same regardless
of the units they receive. In fact, ivpy’s plotting functions are
indifferent even to icon size, because all icons are thumbnailed
to the same (adjustable) size before plotting.32 Ivpy’s grammar,
we might say, is wholly separate from its ‘lexicon’, which as a
result is effectively infinite, comprising any graphical objects
that can be saved as image files.

Often, though not always, the choice of lexical items—i.e.,
the plotting units—will be made in advance of using ivpy,
because each data record will have an image to represent
it, and the user need only tell the plotting functions where
to find these images. But even in such cases, the functions
are capable of modifying the units prior to plotting, either by
printing the index of the associated data record in the upper
left corner or by printing an annotation along the bottom.
Annotations are fixed by the user’s choice of ‘notecol’, which
can be any column in the data table. Because indices and
annotations are simply printed as text, they allow the user to
add information locally to each unit without having to learn a
new graphical encoding.

All other unit-making operations—e.g., icon generation—
happen outside the plotting context. But the plotting functions
additionally play a role in deciding which data records make
it to the screen at all. Minimally, the user must assign a
sequence of filepaths to ‘pathcol’, but this sequence can be
randomly sampled by assigning an integer value to ‘sample’.
This is useful if the dataset is very large or if the user needs
to fix the number of items across multiple plots. If axes are
added to a plot, axis ranges can be controlled using ‘xdomain’

and ‘ydomain’. It’s possible, using these arguments, to plot to
a range larger than the data range, which allows for the fixing
of axis ranges in faceted plots.

Feature Engineering in IVPY
The scope of the plotting functions thus extends beyond

mere unit placement. But most of the unit-making and
data operations happen prior to plotting, and were it not for
specialized submodules for icon generation and feature
engineering, most would happen outside ivpy altogether,
either in pure Python or in one of Python’s existing data
science libraries. Because ivpy is designed primarily for
image analysis, icon generation is the least developed of
ivpy’s operations, and apart from a single example in the next
section, I’ll have little else to say about it here.

	I use the term ‘feature engineering’ in a quite broad sense
to mean any sort of data transformation whatever, since all
yield the same thing: an abstract space in which data records
can be compared. All such spaces provide the analyst with
distinct ways of modeling her data, which for ivpy users will
mean, ultimately, selecting a particular set of images and
positioning them in a plot. The particular forms of feature
engineering that ivpy packages into functions are fixtures
of computer vision research: image feature extraction,
dimension reduction, and clustering.

	Ivpy provides wrappers for a variety of Python-based image
feature extractors, including basic visual properties like
hue, saturation, and brightness, as well as both entropy and
standard deviation of brightness; textural features derived
from the gray-level co-occurrence matrix (GLCM) including
contrast, dissimilarity, homogeneity, angular second moment
(ASM), energy, and correlation;33 and what we might call
‘neural similarity’: the 2048-dimensional output vector of the
penultimate layer of ResNet50,34 an artificial neural network
trained on ImageNet.35 Ivpy also provides wrappers for
three familiar dimension reduction algorithms, implemented
in Python’s scikit-learn library:36 principal component
analysis (PCA); t-distributed stochastic neighbor embedding
(t-SNE);37 and uniform manifold approximation and projection
(UMAP).38 Finally, ivpy wraps under a single function call
nine different clustering algorithms, again using scikit-
learn implementations, including k-means, agglomerative
hierarchical clustering, DBSCAN,39 mean shift,40 and others.

There is nothing strictly necessary about ivpy’s providing
these wrappers, since the user, working in a Python
environment, already has access to the original functions. But
ivpy makes the feature engineering process more efficient
and accessible by unifying these operations under single,
concise APIs. If the user wishes to extract neural similarity
from her images, for example, she can do so simply by calling
extract(‘neural’), and similarly for all other features. If she
wishes to find clusters of images in a similarity space defined

2019_21 | VOLUME 43.66 2019_21 | VOLUME 43.66

by those features, she can call cluster(X), where X is the
matrix containing all and only the extracted features, and the
function will return, by default, four clusters of images, found
by the k-means algorithm. Alternative parameter settings can
be chosen by keyword arguments.

More substantively, ivpy provides a set of functions for
hand-tuning machine clusters, a capability that is of particular
importance in ivpy’s target domains. In such domains,
machine classifications are mere suggestions, to be evaluated
and possibly adjusted by human expertise. Ivpy users can
move items or groups of items from one cluster to another;
cut items or groups of items from clusters without reassigning
them or even remove entire clusters altogether; merge multiple
clusters into a single cluster; initialize a new cluster; and swap
the cluster assignments of two items or groups of items. To
help this process along, ivpy also makes it easy to measure,
for each item in a cluster, what we might call its ‘centrality’, or
how far it is from the center of its cluster, making it easy to
identify the likeliest candidates for reassignment.

Expressiveness and Data
Manipulation

Feature engineering increases ivpy’s ‘lexical’
expressiveness—the diversity of atomic meanings
composable by its grammar. We’ve said that ivpy’s lexicon is
effectively infinite, comprising all possible images, and we
might say, similarly, that feature engineering yields infinities
of higher cardinality, because it decomposes single images
into many constituent ‘words’. And although it’s true that the
user can and will do this on her own, by looking, she can’t
do it without looking, and in most cases, she can’t look at
everything. Feature engineering helps to guide the process
of looking by identifying lexical properties of the data that
can be used both to narrow the search space and to make
patterns more legible.

	None of the graphical tools discussed earlier make it
possible to increase lexical expressiveness in this way.
While it’s true that both PixPlot and VIKUS Viewer rely on
feature engineering, they offer far fewer options, and the
engineering takes place outside the graphical environment,
as a preprocessing step. Ivpy thus has greater lexical
expressiveness than any of these tools. It also has greater
syntactical expressiveness than any of these tools, both
because it can produce a wider range of plot types and
because it makes those types usable with any data you
choose. But I don’t want to hang the argument for ivpy’s utility
entirely on the gains in expressiveness that result from these
advantages, because any of the existing graphical tools could
be augmented to offer additional plot types or full service,
in-browser feature engineering. What they can’t do—or what
it would take a monumental and probably ill-advised effort
to do—is allow for the kind of data manipulation that data

scientists do regularly in their native working environments.
If I want, for example, to join new data to my existing data,
use string operations to correct typos in filenames, or use
complex conditional filtering to select some subset of my
data, I will need to migrate from the graphical environment
back to my native working environment. The graphical user
interface expects a single, fully cleaned and processed
dataset—something you’ll never have in the early stages of
research, if at all. This is why ivpy is necessary.

I want to be clear that I don’t see ivpy as a direct competitor
with graphical tools. I’m certain that as time goes on, they will
narrow the expressiveness gap, and their greater efficiency
and accessibility make them attractive to anyone who
doesn’t want to write code. But there will remain a need for
direct visualization in native working environments, and ivpy
is currently the only high-level tool in existence that makes
it possible.

Example of Use
In this section, I’ll walk through some examples designed

to help illustrate both what is possible when basic module
elements are combined and what sorts of analyses these
combinations support. There are, of course, countless ways
the module can be used, and I will here cover only a tiny
fraction. The examples are chosen both for their familiarity to
me and out of a desire to cover as much ground as possible in
a handful of examples.

	The goal of the first example is to place images in a visual
similarity space. There are as many such spaces as there are
kinds of visual similarity, and as we’ve seen, ivpy makes a
variety of these spaces available to the user. But many are
structured by very specific kinds of visual similarity—e.g.,
average hue—and for this example, we’d like as general a
measure as possible. What we above called ‘neural similarity’
tends to work well as a general measure, likely because it
makes possible the machine recognition of a vast range
of familiar objects—viz., the label set of ImageNet, which
includes over 20,000 object categories. For this reason, neural
similarity is commonest amongst the features used to sort
images in contemporary image visualization applications,
including, as we’ve seen, both PixPlot and VIKUS Viewer.41

	In this example, we’ve extracted a neural feature vector for
each of a collection of astrophotography images found in the
Yahoo! Flickr Creative Commons 100M dataset.42 The vectors
populate a matrix, assigned to ‘X’. Figure 1 is a screenshot
from a Jupyter notebook and contains a single code cell along
with its output, a triptych of image scatterplots. The plots
are generated in a loop, each pass of which uses a different
algorithm to compress the 2,048 dimensions of X to just two.
The ‘side’, ‘thumb’, ‘xbins’, and ‘ybins’ keyword arguments are
used to force the resulting continuous plotting coordinates to
a grid, so that all visible images are fully visible. Images stack

3.672019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

atop each other, with the topmost image fully occluding all
beneath it.43 As they are generated, the plots are appended to
a list, and the expanded list is then passed to compose().

	The resulting metaplot allows us to see the effects of
applying three different forms of dimension reduction to the
same vector space. The leftmost plot, which uses PCA, has the
evenest spread of the three, but its groupings do not appear
as sharp as the other two. The rightmost plot, which uses
UMAP, has an interesting shape and successful groupings,
but its spread is so uneven that many images are hidden.
The middle plot, which uses t-SNE, balances the competing
virtues of grouping quality and spread. Figure 2 shows the
result of recreating the middle plot at a much larger size and
saving it to disk. The pattern of analysis used here—testing
a number of analytical possibilities by generating plots in a
loop—is perfectly general and can be used to visualize the
effects of differential parameter settings of all kinds.

	 The second example, like the first, begins by extracting

a neural feature vector for each of its images—here,

digitized watercolors from the Yale Center for British Art’s

collection—and compressing the resulting vector space to

two dimensions, here using UMAP. We saw in Figure 1 that

UMAP produces an interesting global shape but encourages

occlusion. For the purposes of drawing a ‘map’ of visual

similarity, as in the previous example, the tendency to

occlude is a problem, but we can recover the occluded images

by applying a clustering algorithm to UMAP’s similarity space

and subsequently plotting each cluster as a simple montage.

Figure 3 demonstrates one way of doing this. We use ivpy’s
cluster() function to add a column of cluster assignments
to our data table, ‘df’;44 we then measure, for each cluster,
the centrality of each of its members, adding the resulting
sequence as another column; finally, we specify a circular
montage, faceted by cluster assignment and sorted radially
by centrality. In each facet, the cluster’s most prototypical
images are plotted in the center; its outliers are plotted in
the periphery. Figure 4 zooms in on several of these clusters,
revealing how neatly our method has separated the images
into visual style groups. It’s important to note that no
metadata is being used to group the images, and the clusters
are not modified in any way. The groupings result from the
plain application of neural similarity, dimension reduction,
and clustering. Remarkably, although the leftmost clusters in
Figure 4 very clearly share a visual style, we’ve managed to
split images in this style into plant and animal clusters. In the
rightmost clusters of Figure 4, we’ve similarly separated the
natural from the built environment, again using only visual
similarity as a guide.

The first two examples illustrate ways that a researcher
might begin looking at her data in order to get a sense of its
global structure. But these techniques can figure in more
targeted analyses as well. The image collection used in the
second example is the result of a massive digitization effort
by the Yale Center for British Art, and attached to the collection
is a trove of human-generated metadata about the works.
This metadata can be used together with measures of visual
similarity to reveal aesthetic patterns across time periods,

Figure 1. Three image scatterplots, each using a different dimension reduction algorithm, are generated in a loop and added to a
list, which is then expanded and passed to compose()

2019_21 | VOLUME 43.68 2019_21 | VOLUME 43.68

Figure 2. Astrophotography images posted To Flickr, arranged by visual similarity using an artificial neural
network and the t-SNE dimension reduction algorithm.

artists’ bodies of work, artistic media and materials, and
even depicted subject matter. Say, for example, that we are
interested in which subject concepts are the most visually
diverse. We could start with a visual similarity ‘map’, as in
Figure 2, and then, using the subject concept tags contained in
our metadata, create a map for each concept showing only its
instances. It would be trivially easy to see, for each concept,
the degree of its spread across the global visual landscape,
thereby discovering which concepts have the greatest visual
diversity (according to the chosen measure). There are
countless such ways we might use these techniques to better
understand our data, and targeted analyses like these derive
special benefit from ivpy’s embedding in Python, because the
often complex data manipulations they require can be carried
out alongside the plotting operations.

Like the previous two, the third example, shown in Figure 5,
uses neural similarity as a basic relation between images, but
unlike the previous two, there is no attempt to represent the

totality of these relations in a single plot. Instead, we begin
with an image of interest—here, a particular photogram
by the artist László Moholy-Nagy—and proceed to find its
thirty nearest neighbors, which are then plotted as a simple
montage using show(). These steps are packaged into a
single function call, nearest(), because the nearest neighbor
search itself requires several lines of code, and I wanted to
make the technique as efficient and accessible as possible,
given its considerable utility.45

Our distance metric is the one used to measure the
centrality of cluster members: Euclidean distance in the
high-dimensional space defined by the image collection’s
neural similarity vectors. The target image is plotted first, in
the upper left, and the rest follow in reading order. The resulting
plot is a rather satisfying validation of the metric, as the first
six or so neighbors appear to feature the very same object
(whatever it is). Neighbors further down the list all contain
something that explains their close relationship to the target,

3.692019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

Figure 3. Watercolors from the Yale Center for British Art’s collection are grouped into clusters by visual similarity.

Figure 4. Zoom detail of six clusters from Fig. 3.

2019_21 | VOLUME 43.70 2019_21 | VOLUME 43.70

Figure 5. The 30 nearest neighbors of a photogram by artist László Moholy-Nagy, arranged in reading order by their
similarity with the target image, which appears first, in the upper left. In addition to the plot, the function returns a list
containing each item’s data table index, which is also printed in the upper left corner of each thumbnail.

3.712019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

Figure 6. Small fragments of digitized van Gogh paintings are arranged as a polar histogram with bins of equal height, sorted
angularly by hue and radially by brightness.

generally something circular, something trellis-like, or both.
The table index of each image is printed in its upper left corner,
and the entire neighbor set is returned as text, appearing just
above the plot. Users can copy this text and assign it to a
variable, so that the set is easily selectable for further analysis.
One might, for example, use this technique to build clusters of
images from a set of chosen prototypes, rather than allowing
an algorithm to choose the cluster centers.

The neural feature vectors used in the previous three
examples allow us to compare the visual contents of images
in as comprehensive a way as possible, because, as we’ve
said, the unanalyzed measure of similarity they encode is
what grounds the successful machine recognition of over
20,000 object categories. But even if we were to select a set
of images defined by a single object category, visualizations
using only those images would nonetheless contain objects
in other categories as well. In direct visualizations, sorting
and filtering may bring certain contents to the foreground,
but they do not close off our perceptual access to the
background. Direct visualizations are thus semantically richer
than their sorting and filtering parameters might suggest, a
circumstance which might be undesirable in certain cases.

If a more targeted semantics is what we want, we need
to remove foregrounded contents from their background
contexts. There are sophisticated ways of doing this for
particular object classes, although ivpy does not use them.46
Ivpy does, however, offer a utility—shatter()—for slicing
images into fragments of roughly equal size, which, depending
on the chosen fragment size, may succeed in isolating the
contents of interest. Technically, the slicing operation is a form
of feature engineering, since it transforms our data and expands
our lexicon, but because the resulting fragments are plain image
files, they cannot be used to narrow the search space or make
patterns more legible unless we first extract their features.

In the fourth example, we do just that. A collection of

digitized van Gogh paintings is sliced into fragments small

enough that their basic visual properties—hue, saturation,

and brightness—are roughly uniform. At this size, object

categories are no longer legible, although certain fragments

might contain hints about their origins. What’s left is a clear look

at the collection’s color palette, which can be difficult to discern

when the fragments are embedded in their original contexts. In

Figure 6, a bright, saturated subset of the fragments is plotted

as a ‘flat’ polar histogram, sorted angularly by hue and radially

2019_21 | VOLUME 43.72 2019_21 | VOLUME 43.72

Figure 7. Small fragments of digitized van Gogh paintings are grouped into genres and plotted as Cartesian histograms, sorted
horizontally by saturation and vertically by hue.

by brightness.47 Although flat histograms, with bins of equal
height, are not natively specifiable in ivpy, the code cell in
Figure 6 shows how two lines of Python can be used to coerce
histogram() to produce them.

The plot in Figure 6 is composed of fragments from every
image in the collection and thus reveals van Gogh’s overall
hue palette, dominated by oranges and yellows. In Figure 7,
we’ve used collection metadata to split the fragments into
six genre groups, chosen here for the distinctiveness of their
palettes. Where previously we were interested only in hue
and thus used only those fragments with legible hues, we now
add back all of the blacks, whites, and greys in order to render
a complete color palette for each genre. Each palette is a
Cartesian histogram with 300 saturation bins of equal width,
sorted vertically by hue.48 Genres with greater representation
in the collection will have correspondingly larger histograms,
as they are composed of more fragments.

The analytical possibilities of a fragment plot will depend
a great deal on the choice of fragment size: the larger the
fragments, the easier it is to recover their origins and the
less likely they are to isolate particular contents of interest.
If we use larger fragments here, we might be better able to
explain the dominance of oranges and yellows by identifying
what they are used to depict, but we might fail to notice that
dominance in the first place. We can circumvent this tradeoff
by tracing fragments back to their source images and even

back to their pixel positions, both of which are recoverable if
shatter() is used to create the fragments.

In each of the previous examples, our visual lexicon is
delimited by a source collection of images or image fragments
and whatever numerical features can be derived from them.
So although the diversity of visualizations expressible by the
plotting grammar will depend in part on our ingenuity—in
feature engineering, data manipulation, etc.—the plotting units
themselves are given to us essentially fully formed. That this is
the default mode for ivpy means that its codebase can remain
relatively lean without affecting its expressiveness. Nearly
all visualization systems include (or borrow) a core drawing
module out of necessity, and most of the time, ivpy can get by
without one. But if our data are not images, and we thus cannot
visualize them directly, we’ll have to do so indirectly, and we’ll
therefore need to draw our own plotting units.

In the final example, we visualize a small set of
photographic prints using glyphs as our plotting units.49 The
plot itself, shown in Figure 8, is a simple montage, specified
using show(). Each glyph represents a particular print made
from the same photographic negative, and accordingly, we are
interested not in the images themselves (which are identical)
but in the photographic papers, whose properties are mapped
to the axes of a modified radar chart. There are four axes,
each encoding what is called an ‘expressive dimension’ of the
paper: thickness on the left, color on top, gloss on the right,

3.732019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

Fig. 8. Eight photographic prints by Harry Callahan, each from the same negative, are represented as
compound glyphs. A thumbnail of each print is affixed to the upper right, while the expressive dimensions
of their photographic papers are mapped to the axes of a modified radar chart. Along the bottom is an
annotation that contains both the print’s holding institution, as well as an institutional index called an
‘accession number’. Indices for the local data table are printed in the upper left.

2019_21 | VOLUME 43.74 2019_21 | VOLUME 43.74

and texture on the bottom. Each property value is mapped to an
axis location, and these points form the vertices of a polygon,
whose fill color encodes another data variable—here, a Boolean,
although it could likewise be categorical or continuous.
Additionally, the table index is printed in the upper left (as in
the third example); an annotation is printed along the bottom;
and a small thumbnail of the print is affixed to the upper right.

These are compound glyphs, each containing three
distinct forms of representation: direct, glyphic, and textual.
This considerable density of information and diversity of
presentational formats is appropriate in this context, because
our aim is to make detailed comparisons among a small set
of individually important items. Each component serves
a distinct purpose: the thumbnail image tells us which
negative was used to make the print; the annotation tells us
which collecting institution holds the print and gives us its
accession number, allowing us to trace the print back to its
holding institution’s database; the radar chart tells us about
the expressive dimensions of the paper it is printed on and
thus allows us quickly to identify differences in the ways
the prints will appear to the viewer; the color of the polygon
tells us whether the print is ‘vintage’, or contemporary with
its negative; and the table index gives us a path back to our
own data table, should we need it. When the number of plotting
units is so few, glyphs like these can be read without difficulty,
but in case that number is drastically increased, we might
opt to remove the annotations, indices, thumbnails, and even
the bounding box, leaving only the radar chart. In ivpy’s glyph
module, all of these elements can be toggled on or off.

At present, glyphs of this type are the only ones ivpy can
generate. They are designed for relatively high-dimensional
data; indeed, the design of the radar chart generalizes
to arbitrarily many dimensions, and ivpy allows the user
specify any number of radar axes. The choice to focus
ivpy’s glyph generation on high-dimensional data was
made in part because low-dimensional glyph plotting is
handled adequately by existing tools, but also because
low-dimensional glyphs—e.g., circles of different sizes and
colors—are easy enough to generate and save to disk using
the Python Imaging Library directly. But development of ivpy
is ongoing, and future versions will likely include support for
a wider range of glyph types.

Limitations
These examples serve to illustrate both ivpy’s considerable

expressive range and its relative efficiency and accessibility
when compared with low-level, imperative specification of
iconographic visualizations. But no tool can optimize for
every use case, and ivpy is no exception. I’ll finish with a
discussion of ivpy’s limitations, including those that reflect
deliberate design choices, as well as those that point to areas
for future development.

	Ivpy is the sole occupant of the space between low-level
drawing libraries like Processing and the Python Imaging
Library on the one hand and high-level graphical tools like
PixPlot and VIKUS Viewer on the other. And we might ask
why there are no others in this space. Of course, the total
space of available tools is quite small, and thus we shouldn’t
expect any particular tool to have a great many neighbors,
but all available tools have collected at the poles, choosing
to optimize either for expressiveness or for efficiency and
accessibility. This is not insignificant. In choosing to sit
between the poles, ivpy makes a pair of sacrifices: it is less
expressive than the drawing library that powers it, and,
relative to graphical tools, a greater effort is required to use
it. Throughout, I’ve made a case for ivpy’s utility in spite of
these sacrifices—in short, that its middle position also yields
a pair of advantages—but I’d like, for a moment, to focus on
the sacrifices themselves. What, precisely, do we give up?

	On one side, we give up polish. The space of possible graphic
customizations is simply too large for ivpy to cover in full. And
while it’s true that, for example, ivpy’s plotting functions could
be modified to allow for greater customization, there is an
associated risk of making the module seem difficult to learn. And
because ivpy courts a user base that includes researchers in the
humanistic sciences, many of whom are new to programming,
its seeming difficult to learn would be a liability. Ivpy’s relatively
simple conceptual scheme is a deliberate choice, and I’m not
open to changing it. But this means that for highly specialized
forms of analysis or highly stylized graphic outputs, ivpy will,
at the very least, need to be supplemented with additional
programming in a low-level grammar or additional manipulation
with tools like Adobe Photoshop.

	On the other side, we give up speed. While it’s true that
graphical tools are marginally easier to learn than ivpy’s
function calls, their chief advantage lies in allowing users to
move quickly through a series of analytical steps, keeping
pace with their thoughts. I discussed above a set of functions
that allow the user to modify cluster memberships in various
ways. But let these functions be as learnable and powerful as
you like, they can’t match the user experience of clicking and
dragging images between clusters and seeing them update
in real time, like sorting Polaroids on a tabletop. To be fair, no
such tool currently exists. But if it did, it could only exist in a
graphical user interface.

	 The graphical interface is more efficient—or at least, it
can be—because clicking is faster than coding, no matter
how concise the grammar. The choice to embed ivpy in a
programming language, then, places a speed limit on plot
specification. The choice to use image files as ivpy’s primary
inputs and outputs places similar limitations on performance.
While ivpy itself does not limit the number of allowable plotting
units, its performance will suffer as the user approaches the
hardware limits of her machine. An ivpy plot is a single raster
image file that must fit into working memory if it is to be

3.752019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

displayed. This is in contrast with, for example, image viewers
that display tiled canvases at multiple scales to create the
experience of panning and zooming massive images, ones
far too large to fit in working memory. An ivpy plot is also
made up of raster images, read into memory one at a time.
This means that ivpy’s plotting speed cannot exceed the read
speed of the source hard drive. So, while ivpy can be used to
explore and analyze image collections of any size, very large
collections will have to be examined in parts small enough to
be manageable by the host hardware.

	But how should this examination proceed? I’ve emphasized
the importance of the expert’s searching ‘with her own
eyes’, but what does that look like for collections too large
to examine in full? We here confront, once again, the core
difficulty of descriptive and explanatory data science at
scale: striking a balance between aimless, random search on
the one hand and excessive machine guidance on the other.
If we surrender our search entirely to the machine, we cannot
escape its biases; if we search aimlessly, we risk finding
nothing at all. We know that, at least for image collections of
manageable size, direct visualization offers an easy solution:
let the human expert look at everything. What to do, then, if
she cannot? In the paragraphs above, we discussed those
limitations arising from ivpy’s basic design characteristics,
all of them independently motivated and therefore unlikely
to change, despite their negative impacts. But the problem
of guided search is one we might mitigate with additional
development. And to some extent, we have, by adding to
the module various utilities for feature engineering. Feature
engineering, as we’ve said, helps us to narrow the search
space, but how can we know whether this narrowing has the
effect of closing off promising ways of analysis?

	 In truth, we can never know for sure, but we can minimize
the chances of our missing something important by searching

our collections under as many forms of narrowing as possible.

And although ivpy already makes available a considerable

variety of image feature extractors, it could always offer

more. In fact, I believe this to be the most promising direction

for ivpy’s future development. The problem, then, is that

the features with the greatest descriptive and explanatory

utility depend essentially on human visual expertise, which

is both costly and time-consuming to obtain. Moreover,

the very best features in a given domain will come from its

experts, who typically have better things to do than to sit

at computer terminals labeling images. To date, the most

significant effort to collect human labels for artistic images

is the Behance Artistic Media (BAM) dataset, which is

conceived as a non-photographic alternative to ImageNet.50

Models trained on its data will therefore expose alternative

forms of visual similarity, ones with particular relevance for

ivpy’s target domains. Relatedly, the most significant effort

to train such models comes from Saleh and Elgammal, who

develop specialized measures of visual similarity between

paintings using the Wikiart dataset.51 Activity in this space

is likely to increase over time, and although ivpy is neither a

tool for collecting labels nor a platform for training computer

vision models, it can participate in this movement forward by

offering ways of visualizing the results of these experiments

and comparing them with existing models. Ivpy’s embedding

in Python is particularly useful in this case, as the vast

majority of computer vision is now done in Python.

	Ivpy offers an expressive, declarative grammar for
iconographic visualization that is easy to learn, easy to use,
and, perhaps most importantly, usable in the native working
environments of the modern data scientist. I hope that its
particular advantages will lead to widespread adoption in
its target domains, and that, accordingly, it will help keep
human visual judgment at the forefront in these domains,
where it belongs.

NOTES

1 The coding patterns used in this module were developed initially
in the Cultural Analytics Lab at the University of California, San
Diego. During that time, my work was funded by a Frontiers
of Innovation Scholarship. The module itself was developed
during my postdoctoral associateship in the Digital Humanities
Lab at Yale University and can be found at https://github.com/
damoncrockett/ivpy.

2 The term ‘expressiveness’ is being used here in a technical
sense—as applied to visualization grammars in the information
visualization literature—and is discussed below in the section
titled ‘Direct Visualization and the Graphical User Interface’.

3 Much, though not all, of this toolkit exists as part of the SciPy

project; see Oliphant, “Python for Scientific Computing.”
4 Drucker and Fernandez, “A Unifying Framework for Animated and

Interactive Unit Visualizations.” See also Park et al., “Atom: A
Grammar for Unit Visualizations.” It might be pointed out that all
visualizations are unit visualizations on a suitably general notion
of a ‘data record’; the distinction between unit and aggregative
visualization can therefore be made only in particular contexts
of analysis. If the ‘atomic’ units of analysis, whatever they be,
have their own visual marks, we have unit visualization.

5 A list of prominent unit visualizations in the wild appears in Park et
al., “Atom: A Grammar for Unit Visualizations.”

6 There is a strict reading of ‘icon’ according to which it must bear
some pictorial resemblance to its target—e.g., Borgo et al.,
“Glyph-Based Visualization.”—but I am using the term in the

2019_21 | VOLUME 43.76 2019_21 | VOLUME 43.76

the record-keeping function of the notebook. This tension is
discussed at length in Rule, Tabard, and Hollan, “Exploration and
Explanation in Computational Notebooks.”

27 Ragan-Kelley et al., “The Jupyter/IPython Architecture.”
28 Perkel, “Why Jupyter Is Data Scientists’ Computational Notebook of

Choice.”
29 Ivpy functions return instances of the Python Imaging Library’s

‘Image’ class. Ivpy’s source code uses Pillow, a popular fork of the
Python Imaging Library; see https://pillow.readthedocs.io/.

30 Declarative grammars are popular in information visualization,
because they allow users to specify visualizations by declaring
their properties, rather than by giving explicit instructions for
building them. Declarative grammars tend to be both more
efficient and more accessible than imperative grammars. For a
discussion of visualization grammars, see Park et al., “Atom: A
Grammar for Unit Visualizations.” The authors also contribute a
declarative unit visualization grammar very different in design
from the one presented here. Though I make no explicit rejection
of the Atom grammar in ivpy’s design, it wouldn’t work as an ivpy
grammar. For example, because my plotting units are usually
images, I can’t control their colors—and thus cannot signal
group memberships using color—a constraint that would make
unavailable a considerable portion of Atom’s expressive space.

31 Faceted plots are sometimes called ‘small multiples’ or ‘trellis’
plots; see Becker, Cleveland, and Shyu, “The Visual Design and
Control of Trellis Display.” I borrow the language of ‘faceting’ from
ggplot2; see Wickham, “A Layered Grammar of Graphics.”

32 Ivpy’s grammar is in this way distinct from Atom (Park et al.,
“Atom: A Grammar for Unit Visualizations.”). Differential unit
sizes are possible in Atom, and Atom’s filling and packing logic
therefore needs to be unit-aware in a way ivpy’s compositional
operations do not.

33 All of the preceding extractors—some of which are used by ivpy
in novel ways—are found in scikit-image; see Walt et al., “Scikit-
Image.”

34 He et al., “Deep Residual Learning for Image Recognition.” Ivpy
uses ResNet50, but any successful architecture trained on
ImageNet will perform similarly.

35 Deng et al., “ImageNet.”
36 Pedregosa et al., “Scikit-Learn.”
37 Maaten and Hinton, “Visualizing Data Using T-SNE.”
38 McInnes, Healy, and Melville, “UMAP.”
39 Ester et al., “A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise.”
40 Fukunaga and Hostetler, “The Estimation of the Gradient of a

Density Function, with Applications in Pattern Recognition.”
41 Other notable examples of neural similarity being used (along

with dimension reduction) to sort images include Free Fall,
Curator Table, and t-SNE Map, all of them Google Arts & Culture
Experiments by Cyril Diagne, Nicolas Barradeau, and Simon
Doury. See https://experiments.withgoogle.com/collection/arts-
culture.

42 Thomee et al., “YFCC100M.”
43 The problem of occlusion is sometimes resolved by special

gridding algorithms that move occluded images to nearby
open grid locations, but because such algorithms necessarily
introduce error, ivpy does not use them. See, for example, Mario
Klingemann’s RasterFairy: https://github.com/Quasimondo/
RasterFairy.

44 The name ‘df’ is the one conventionally given to instances of
the DataFrame object in pandas, a Python library for managing

more permissive sense of Pickett and Grinstein, “Iconographic
Displays For Visualizing Multidimensional Data.”

7 Manovich, “What Is Visualization?”
8 Whether a particular data visualization has exceeded this

threshold will depend on a host of contextual factors. For a
detailed discussion of this problem as it pertains to iconographic
visualization, see Borgo et al., “Glyph-Based Visualization.”

9 Images are of course multiply interpretable, and we might view
interpretation as a kind of decoding. But in most cases, even the
basic meaning of an icon will depend on arbitrary associations
the user has to learn before the visualization can carry any
information for her. Put succinctly, icons need a ‘legend’; images
don’t.

10 I am here exempting image browsers, fixtures of nearly every
computer operating system since the 1990s. There are too many
to list, and their analytical expressiveness is typically limited to
filtering and sorting by metadata properties of the image files
(e.g., filename, date created, date modified). Moreover, most are
proprietary software and thus their use is restricted in various ways.

11 Reas and Fry, “Processing.”
12 Abramoff, Magalhães, and Ram, “Image Processing with ImageJ.”
13 The terms ‘efficient, ‘accessible’, and ‘expressive’, as they are used

in this paper, are defined in Bostock, Ogievetsky, and Heer, “D3
Data-Driven Documents.”

14 For discussion of these techniques, see Manovich, “Media
Visualization.” The ImagePlot software itself, implemented as a
macro for ImageJ, can be found at http://lab.softwarestudies.
com/p/imageplot.html.

15 Google’s People + AI Research Initiative (PAIR) has developed a tool
called Facets Dive that is similar in some respects to PivotViewer,
although its functionality is more limited, and it is designed
specifically for exploring machine learning datasets. It offers
interactive specification of iconographic plots that can be faceted
by data values. See https://pair-code.github.io/facets/.

16 Kräutli and Boyd Davis, “Revealing Cultural Collections Over Time.”
17 For the PixPlot source code, visit https://github.com/YaleDHLab/

pix-plot.
18 PixPlot’s feature extraction uses the Inception network; see

Szegedy et al., “Going Deeper With Convolutions.”
19 PixPlot’s dimensional compression uses Uniform Manifold

Approximation and Projection, or UMAP; see McInnes, Healy, and
Melville, “UMAP.”

20 For the VIKUS Viewer source code, visit https://github.com/
cpietsch/vikus-viewer. For the project website, visit https://
vikusviewer.fh-potsdam.de/.

21 VIKUS’s dimension reduction uses t-distributed Stochastic
Neighbor Embedding, or t-SNE; see Maaten and Hinton,
“Visualizing Data Using T-SNE.”

22 Arguments here and in the next section draw on remarks made by
Hadley Wickham in his 2017 IEEE VIS keynote, “You Can’t Do Data
Science in a GUI”. To be clear, the argument is not that PixPlot and
VIKUS Viewer ought to be made more expressive and thus better
suited to data science; rather, it is that graphical user interfaces
are simply the wrong place to do data science, however they
are designed. I discuss this further in the section below, titled
‘Expressiveness and Data Manipulation’.

23 https://www.numpy.org/
24 https://pandas.pydata.org/
25 Pedregosa et al., “Scikit-Learn.”
26 It should be pointed out that certain exploratory behaviors like

cell editing and nonsequential cell execution can undermine

3.772019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

tabular data. See https://pandas.pydata.org/. Ivpy makes
extensive use of the pandas library; in fact, when ivpy users call
plotting functions, they are required to pass pandas objects to
any ‘column’ arguments—‘pathcol’, ‘xcol’, ‘ycol’, ‘facetcol’, and
‘clustercol’. Many ivpy functions return pandas objects in order
to satisfy this requirement.

45 Ivpy uses annoy, a C++ library with Python bindings for
approximate nearest neighbor search, written by Erik
Bernhardsson. See https://github.com/spotify/annoy.

46 Mask R-CNN, for example, can identify the precise boundaries
of objects of particular types—e.g., cars, trees, traffic lights,
pedestrians. See He et al., “Mask R-CNN.”

47 Flat histograms are analytically useful only if composed of
distinguishable units—only if, that is, they are iconographic
histograms.

48 Plots like these are called ‘slice histograms’ in Crockett, “Direct

Visualization Techniques for the Analysis of Image Data.”
49 The prints are made by photographer Harry Callahan and each

belongs to a different collecting institution.
50 Wilber et al., “BAM! The Behance Artistic Media Dataset for

Recognition Beyond Photography.”
51 Saleh and Elgammal, “Large-Scale Classification of Fine-Art

Paintings.”

BIBLIOGRAPHY

Abramoff, M. D., Paulo J. Magalhães, and Sunanda J. Ram.
“Image Processing with ImageJ.” Article. Biophoton-
ics international, 2004. http://dspace.library.uu.nl/
handle/1874/204900.

Becker, Richard A., William S. Cleveland, and Ming-Jen Shyu.
“The Visual Design and Control of Trellis Display.” Journal
of Computational and Graphical Statistics 5, no. 2 (June 1,
1996): 123–55. https://doi.org/10.1080/10618600.1996
.10474701.

Borgo, Rita, Johannes Kehrer, David H. S. Chung, Eamonn
Maguire, Robert S. Laramee, Helwig Hauser, Matthew Ward,
and Min Chen. “Glyph-Based Visualization: Foundations,
Design Guidelines, Techniques and Applications,” 2013.
http://dx.doi.org/10.2312/conf/EG2013/stars/039-063.

Bostock, M., V. Ogievetsky, and J. Heer. “D3 Data-Driven Docu-
ments.” IEEE Transactions on Visualization and Computer
Graphics 17, no. 12 (December 2011): 2301–9. https://doi.
org/10.1109/TVCG.2011.185.

Crockett, Damon. “Direct Visualization Techniques for the
Analysis of Image Data: The Slice Histogram and the
Growing Entourage Plot.” International Journal for Digital
Art History 0, no. 2 (October 18, 2016). https://doi.
org/10.11588/dah.2016.2.33529.

Deng, J., W. Dong, R. Socher, L. Li, and and. “ImageNet:
A Large-Scale Hierarchical Image Database.” In 2009
IEEE Conference on Computer Vision and Pattern
Recognition, 248–55, 2009. https://doi.org/10.1109/
CVPR.2009.5206848.

Drucker, Steven M, and Roland Fernandez. “A Unifying Frame-
work for Animated and Interactive Unit Visualizations.”
Microsoft Research, 2015.

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise.” ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD),

1996.
Fukunaga, K., and L. Hostetler. “The Estimation of the Gradi-

ent of a Density Function, with Applications in Pattern
Recognition.” IEEE Transactions on Information Theory 21,
no. 1 (January 1975): 32–40. https://doi.org/10.1109/
TIT.1975.1055330.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. “Mask R-CNN,” March 20, 2017. https://arxiv.org/
abs/1703.06870v3.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Deep Residual Learning for Image Recognition,” 770–78,
2016. http://openaccess.thecvf.com/content_cvpr_2016/
html/He_Deep_Residual_Learning_CVPR_2016_paper.html.

Kräutli, Florian, and Stephen Boyd Davis. “Revealing Cultural
Collections Over Time.” London, 2016. http://researchon-
line.rca.ac.uk/1725/.

Maaten, Laurens van der, and Geoffrey Hinton. “Visualizing
Data Using T-SNE.” Journal of Machine Learning Research
9, no. Nov (2008): 2579–2605.

Manovich, Lev. “Media Visualization.” In The Internation-
al Encyclopedia of Media Studies. 2012. https://doi.
org/10.1002/9781444361506.wbiems144.

Manovich, Lev. “What Is Visualization?” Accessed December
13, 2018. https://publishup.uni-potsdam.de/frontdoor/
index/index/docId/5047.

McInnes, Leland, John Healy, and James Melville. “UMAP:
Uniform Manifold Approximation and Projection for
Dimension Reduction,” February 9, 2018. https://arxiv.org/
abs/1802.03426v2.

Oliphant, T. E. “Python for Scientific Computing.” Computing in
Science Engineering 9, no. 3 (May 2007): 10–20. https://
doi.org/10.1109/MCSE.2007.58.

Park, D., S. M. Drucker, R. Fernandez, and N. Elmqvist. “Atom:
A Grammar for Unit Visualizations.” IEEE Transactions
on Visualization and Computer Graphics 24, no. 12
(December 2018): 3032–43. https://doi.org/10.1109/
TVCG.2017.2785807.

https://pandas.pydata.org/
http://dspace.library.uu.nl/handle/1874/204900
http://dspace.library.uu.nl/handle/1874/204900
https://doi.org/10.1080/10618600.1996.10474701
https://doi.org/10.1080/10618600.1996.10474701
http://dx.doi.org/10.2312/conf/EG2013/stars/039-063
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.11588/dah.2016.2.33529
https://doi.org/10.11588/dah.2016.2.33529
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330
https://arxiv.org/abs/1703.06870v3
https://arxiv.org/abs/1703.06870v3
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://researchonline.rca.ac.uk/1725/
http://researchonline.rca.ac.uk/1725/
https://doi.org/10.1002/9781444361506.wbiems144
https://doi.org/10.1002/9781444361506.wbiems144
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/5047
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/5047
https://arxiv.org/abs/1802.03426v2
https://arxiv.org/abs/1802.03426v2
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807

2019_21 | VOLUME 43.78 2019_21 | VOLUME 43.78

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, et al. “Scikit-Learn: Machine Learning in Python.”
Journal of Machine Learning Research 12, no. Oct (2011):
2825–30.

Perkel, Jeffrey M. “Why Jupyter Is Data Scientists’ Computa-
tional Notebook of Choice.” Nature 563 (October 30, 2018):
145. https://doi.org/10.1038/d41586-018-07196-1.

Pickett, R. M., and G. G. Grinstein. “Iconographic Displays For
Visualizing Multidimensional Data.” In Proceedings of the
1988 IEEE International Conference on Systems, Man, and
Cybernetics, 1:514–19, 1988. https://doi.org/10.1109/
ICSMC.1988.754351.

Ragan-Kelley, M., F. Perez, B. Granger, T. Kluyver, P. Ivanov, J.
Frederic, and M. Bussonnier. “The Jupyter/IPython Architec-
ture: A Unified View of Computational Research, from Interac-
tive Exploration to Communication and Publication.” AGU Fall
Meeting Abstracts 44 (December 1, 2014): H44D-07.

Reas, Casey, and Ben Fry. “Processing: Programming for the
Media Arts.” AI & SOCIETY 20, no. 4 (September 1, 2006):
526–38. https://doi.org/10.1007/s00146-006-0050-9.

Rule, Adam, Aurélien Tabard, and James D. Hollan.
“Exploration and Explanation in Computational Note-
books.” In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, 32:1–32:12.
CHI ’18. New York, NY, USA: ACM, 2018. https://doi.
org/10.1145/3173574.3173606.

Saleh, Babak, and Ahmed Elgammal. “Large-Scale Classifi-
cation of Fine-Art Paintings: Learning The Right Metric on

The Right Feature.” ArXiv:1505.00855 [Cs], May 4, 2015.

http://arxiv.org/abs/1505.00855.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. “Going Deeper With

Convolutions,” 1–9, 2015. https://www.cv-foundation.org/

openaccess/content_cvpr_2015/html/Szegedy_Going_Deep-

er_With_2015_CVPR_paper.html.

Thomee, Bart, David A. Shamma, Gerald Friedland, Benjamin

Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia

Li. “YFCC100M: The New Data in Multimedia Research.”

Communications of the ACM 59, no. 2 (January 25, 2016):

64–73. https://doi.org/10.1145/2812802.

Walt, Stéfan van der, Johannes L. Schönberger, Juan

Nunez-Iglesias, François Boulogne, Joshua D. Warner, Neil

Yager, Emmanuelle Gouillart, and Tony Yu. “Scikit-Image:

Image Processing in Python.” PeerJ 2 (June 19, 2014):

e453. https://doi.org/10.7717/peerj.453.

Wickham, Hadley. “A Layered Grammar of Graphics.”

Journal of Computational and Graphical Statistics 19,

no. 1 (January 1, 2010): 3–28. https://doi.org/10.1198/

jcgs.2009.07098.

Wilber, Michael J., Chen Fang, Hailin Jin, Aaron Hertzmann,

John Collomosse, and Serge Belongie. “BAM! The Behance

Artistic Media Dataset for Recognition Beyond Photog-

raphy,” 1202–11, 2017. http://openaccess.thecvf.com/

content_iccv_2017/html/Wilber_BAM_The_Behance_

DAMON CROCKETT is the Principal Data Scientist at the Institute for the Preservation
of Cultural Heritage at Yale University. He manages the institute’s data science
projects, focusing on data integration, visualization, interpretability, and
communication. Prior to joining the institute, he was a Postdoctoral Associate in
Computer Science at Yale, working in the Digital Humanities Lab. He has also worked
as a researcher at the Center for Data Science and Public Policy at the University of
Chicago; the Institute for Pure and Applied Mathematics at UCLA; and the Cultural
Analytics Lab at UC San Diego, where he graduated in 2015 with a Ph.D. in Philosophy
and Cognitive Science.

Correspondence email: damoncrockett@gmail.com

https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1109/ICSMC.1988.754351
https://doi.org/10.1109/ICSMC.1988.754351
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
http://arxiv.org/abs/1505.00855
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://doi.org/10.1145/2812802
https://doi.org/10.7717/peerj.453
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
http://openaccess.thecvf.com/content_iccv_2017/html/Wilber_BAM_The_Behance_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Wilber_BAM_The_Behance_ICCV_2017_paper.html

3.792019__21 | VOLUME 4INTERNATIONAL JOURNAL FOR DIGITAL ART HISTORY

ICONOGRAPHIC VISUALIZATION

	_GoBack
	_GoBack
	_GoBack
	_h69r5rq2puim
	_37st58spc2zv
	_z02ydg8lg0fg
	_ruco8i5dk4m1
	_s6m976i6gyh
	_nnkli5sygsi9
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_GoBack

