
Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018)

4

Abstract: Stoplists are lists of words that have been filtered from documents prior to text analysis tasks,
usually words that are either high frequency or that have low semantic value. This paper describes the
development of a generalizable method for building stoplists in the Classical Language Toolkit (CLTK),
an open-source Python platform for natural language processing research on historical languages.
Stoplists are not readily available for many historical languages, and those that are available often offer
little documentation about their sources or method of construction. The development of a generalizable
method for building historical-language stoplists offers the following benefits: 1. better support for well-
documented, data-driven, and replicable results in the use of CLTK resources; 2. reduction of arbitrary
decision-making in building stoplists; 3. increased consistency in how stopwords are extracted from
documents across multiple languages; and 4. clearer guidelines and standards for CLTK developers
and contributors, a helpful step forward in managing the complexity of a multi-language open-source
project.

1. Introduction
1

Stoplists are lists of words that have been filtered from documents prior to text analysis tasks,
usually words that are either high frequency or that have low semantic value.2 Such words have
been described as lexical “noise” which prevents “signal,” that is semantically or thematically
significant content, from being accurately discriminated.3 For this reason, stoplists have been
called “negative dictionaries,” that is lexica of unwanted terms.4 Stopwords tend to be articles,
particles, prepositions, conjunctions, pronouns, and other, often indeclinable, function words,
but depending on the disposition of the corpus used as the basis for the stoplist, they can in-
clude other parts of speech. For example, forms of the verb “to be” and similar high frequency
verbs are not uncommon. Through the removal of such words, text analysis tasks, such as text
classification, text summarization, and information retrieval, benefit in areas like noise reduc-
tion, feature reduction, or speed optimization.

1 An early version of this paper was presented at the Global Philology: Big Textual Data workshop at Universität Leipzig in
the summer of 2017. The author would like to thank the workshop’s organizer, Thomas Koentges, and the workshop’s par-
ticipants for feedback and suggestions. The paper has also benefited from the feedback of the Classical Language Toolkit’s
community of open-source contributors.

2 Manning et al. (2008) 26, Rasmussen (2009). On the origins of the terms “stop word/stopword” and “stop list/stoplist,” see
Flood (1999).

3 Luhn (1957), Rijsbergen (1975) 14–17, Salton/McGill (1983) 71–72.

4 Salton/McGill (1983) 71.

Constructing Stoplists for Historical Languages1

Patrick J. Burns

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 5

Stopwords are extracted from a document or document collection on the basis of some for-
malization of the relative importance of individual words. Christopher Manning, for example,
offers the following strategy for building stoplists:

Sort the terms by collection frequency (the total number of times each term appears in
the document collection), and then…take the most frequent terms, often hand-filtered for
their semantic content relative to the domain of the documents being indexed, as a stop
list, the members of which are then discarded during indexing.5

Yet “collection frequency” is not the only basis used for constructing stoplists, and research has
shown that it is also not necessarily the best basis. Accordingly, several other methodologies
have been proposed. Stoplists have been developed, for example, based on inverse document
frequency and entropy measures in addition to or in combination with collection frequency.
Furthermore, research in this area has moved decidedly in the direction of limiting, or in some
way formalizing, the arbitrary decision-making–that is, the “hand-filtered” stage of Manning’s
method–that often went into earlier stoplist construction.6

In addition to the basis by which stopwords are extracted from a document collection, there
are additional considerations that go into constructing these lists. Stoplists can be generic or
domain-specific, that is based on a broad cross-section of the language or based on a restricted,
well-defined collection of texts, respectively.7 Different domains have different definitions of
signal and noise, and building domain-specific lists decreases the likelihood that important
terms will be lost in stopword removal. Considerations of preprocessing are also involved in
stoplist construction. Accordingly, decisions such as whether to remove numbers from docu-
ments or retain case need to be made when constructing stoplists. Lastly, a decision needs to
be made about the size of the list, a consideration for which there is no consensus and which
varies widely by application.8

The Classical Language Toolkit (CLTK) is an open-source Python platform for natural lan-
guage processing (NLP) research on historical languages.9 The project offers NLP support
for the languages of Ancient, Classical, and Medieval Eurasia with the goals of compiling
analysis-friendly corpora, collecting and generating linguistic data, and acting as a free and
open platform for generating scientific research for fields such as historical linguistics and
comparative philology among others. The CLTK offers a panoply of NLP resources and tools
in service of these goals. Stoplists are among these offerings and the following languages are
represented in some capacity at the time of writing: Arabic, Classical Greek, Classical Hin-
di, Biblical Hebrew, Latin, Marathi, Middle English, Old English, Old French, Old Norse,
Punjabi, and Sanskrit. That said, the aim of the CLTK is to offer as complete a set of tools as
possible for each language in its scope, as well as a set of tools and resources that is, within
reason, consistent across languages. In this respect, there is room for both increased coverage
and improved quality.

5 Manning et al. (2008) 27.

6 Fox (1989) 19, concerned about “arbitrary decisions,” was already noting the importance of consulting “empirical studies
of word frequencies.”

7 Zaman et al. (2011) 133 uses the terms “arbitrary” and “tailored.”

8 Fox (1989) considers 421 words to be “maximally efficient” for general English application, but the reasons for this are not
entirely clear. Saini/Rakholia (2016) report an average length of 200 words for stoplists across 42 languages in both Latin
and non-Latin scripts.

9 Johnson et al. (2018).

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 6

At present, and excluding CLTK offerings, NLP resources are not always readily available for
historical languages, stoplists included.10 Generic stoplists have long been available online for
Classical Greek and Latin, for example via the Perseus Project and stopwords-json.11 Recently,
Aurélien Berra has published a repository of Greek and Latin stoplists for use with Voyant
Tools, which represents a big step forward in both the presentation and documentation of histo-
rical-language stoplists.12 There has also been recent interest in building stoplists for Sanskrit.13
But for the most part, historical languages lack this kind of support completely and, when it is
available, the absence of documentation, provenance, and related issues of reproducibility and
citation hamper their use.

The Perseus Project stoplists can serve as an example of the difficulties present when working
with existing lists. There is no documentation to explain how these lists were constructed; that
is, there is no information about the corpus used, no information about the basis by which it
was constructed, and no explanation for the length of the list, among other considerations.
To this can be added that, by the standards of current code-driven research, the code used to
construct the lists is not available.14 This is compounded by the fact that the Perseus lists are
not published as self-contained datasets: they do not provide version control or persistent iden-
tifiers for proper citation. All of these factors should concern a historical-language researcher
faced with the need to use a stoplist for a text analysis task.

The goal of this paper is to present a generalizable method in the CLTK for the construction
of stoplists and to describe the implementation of this method in the CLTK Stop module. By
abstracting stoplist construction and adding language-agnostic stopword extraction tools to the
project, the CLTK is able to offer consistency and standardization in historical-language tool
development. These tools can then be customized to support language-specific requirements.
In addition, by providing a generalizable stoplist construction module to CLTK contributors,
the project is better able to manage the complexity of a multi-language open-source project.

The remainder of this paper is organized as follows: Section 2 offers a literature review of
computational work on building stoplists, with special attention to languages other than Eng-
lish. Section 3 describes the architecture of the CLTK and where the Stop module fits, as well
as the logic used in writing classes and methods for stoplist construction. Section 4 presents
the results of this method for a sample language, namely Latin. By way of conclusion, Section
5 presents the benefits of the Stop module and proposes future directions for development.

10 Interestingly, Weinberg (2004) 129 traces the origin of the stoplist to a 16th-century biblical Hebrew concordance that
included a one-page list of “function” words to be excluded. On the limited availability of resources, this could in fact be
broadened to include lower-resourced modern languages as well; for example, see Makrehchi/Kamel (2008) 224, who
identify the lack of non-English resources for text-retrieval tasks as a primary motivation for developing stopword ext-
raction algorithms.

11 These lists can be found at https://www.perseus.tufts.edu/hopper/stopwords and https://github.com/6/stopwords-json/
blob/master/dist/la.json, respectively. The Tesserae project (https://tesserae.caset.buffalo.edu/) uses a default stoplist ba-
sed on corpus frequency. Note too that there is a desideratum for Greek and Latin stoplists, to say nothing of other histo-
rical languages, in other prominent distributions, for example in the Python package stop-words, available at http://pypi.
python.org/pypi/stopwords.

12 Berra (2018). For Voyant Tools, see Rockwell et al. (2012).

13 Raulji/Saini (2016), Raulji/Saini (2017).

14 See, for example, Peng (2011).

https://www.perseus.tufts.edu/hopper/stopwords
https://github.com/6/stopwords-json/blob/master/dist/la.json
https://github.com/6/stopwords-json/blob/master/dist/la.json
https://tesserae.caset.buffalo.edu/
http://pypi.python.org/pypi/stopwords
http://pypi.python.org/pypi/stopwords

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 7

2. Related Research

Applications for stopword removal include improving information retrieval, document clas-
sification, sentiment analysis, and readability assessment, among others.15 Much of the early
research in this area was done on the English language, beginning in particular with H. P.
Luhn’s theorization of information retrieval.16 But more recently, stopword studies have been
published for a variety of languages, including Ahmaric, Arabic, Chinese, Greek, Gujarati,
Hebrew, Malay, Mongolian, Punjabi, Sanskrit, Thai and Yoruba, among others.17 Some stu-
dies have produced generic stoplists for the languages in question. In English, for example,
the Brown stoplist and the Van stoplist have been used widely and have been referred to as
“classical” stoplists.18 In the language-specific studies listed above, stoplists have been derived
both from simple word frequency as well as from other weighted document measures (for ex-
ample, inverse document frequency, mean probability, variance probability, entropy measures,
and combinations thereof). Other methods have also been proposed, including “term-based
random sampling,” the use of “combinatorial values,” and the use of “term adjacency.”19 Ano-
ther study employed a rules-based approach so as to avoid entirely a statistical approach to
stopword extraction for the Gujarati language.20

Some issues that appear often in stoplist research include the issue of generic versus do-
main-specific list construction, preprocessing, and stoplist size. Early stoplist work focused
on the construction of generic reference lists.21 But recent trends in stoplist research favor
the development of generalizable methods that can construct lists on-the-fly for any given
domain.22 There is no consensus as to preprocessing decisions for stoplist construction, and,
at any rate, these decisions are prone to be highly language-specific. That said, papers such
as Savoy (1999) and Zaman et al. (2011) offer examples of how such early decisions can be
formalized before further processing. Lastly, there is the issue of stoplist size. This appears
to be art as often as science. The DIALOG search interface, for example, took a minimalist

15 See, among many possible examples, Fox (1989), Silva/Ribeiro (2003), Lo et al. (2005), Daowadung/Chen (2012), Saif
et al. (2014).

16 Luhn (1957), Luhn (1958), Luhn (1960).

17 Ahmaric: Miretie/Khedkar (2018); Arabic: El-Khair (2006); Chinese: Zou et al. (2006); Yao/Ze-wen (2011); French: Sa-
voy (1999); Greek: Lazarinis (2007); Gujarati: Rakholia/Saini (2017); Hebrew: HaCohen-Kerner/Shmuel (2010); Malay:
Chekima/Alfred (2016); Mongolian: Zheng/Gaowa (2010); Persian: Sadeghi/Vegas (2014); Punjabi: Puri et al. (2013),
Kaur/Saini (2016); Sanskrit: Raulji/Saini (2016), Raulji/Saini (2017); Thai: Daowadung/Chen (2012); Yoruba: Tijani et
al. (2017).

18 See, for example, Lo et al. (2005) 17. The Perseus Project stoplists have attained a kind of “classical” status within the
Greek and Latin research community, though their limitations are noted above.

19 Term-based random sampling: Lo et al. (2005); combinatorial values: Choy (2012); term adjacency: Rose et al. (2010).

20 Rakholia/Saini (2017).

21 See, for example, Fox (1989).

22 For example, Lo et al. (2005) 17 note in their stoplist study: “Each collection of documents is unique. It is therefore sen-
sible to automatically fashion a different stopword list for different collections in order to maximise the performance of
an IR system.”

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 8

approach, capping their stoplist at just nine words: “an and by for from of the to with.”23 Berra
pushes in the other direction, including 4,001 stopwords for Latin and 6,696 for Greek in the
most recent versions of the Voyant Tools stoplists.24

3. Description

This study describes the development and implementation of a generalizable method for buil-
ding stoplists in the CLTK, namely the Stop module. The code for the Stop module, like all
code in the CLTK, is written in Python (version 3.7 at the time of writing).25 The Stop module
is available beginning with version 0.1.84 of the CLTK and is available as part of the free,
open-source platform under an MIT license.

The CLTK increasingly aims at the following development strategy: build language-agnostic
abstract classes for major NLP tasks, such as word tokenization or lemmatization, which can
then be inherited as necessary by language-specific subclasses. The CLTK Stop module fol-
lows this “object-oriented philology” development pattern.

23 Harter (1986) 88. In digital classics, this can be compared to the minimalist approach taken by the Tesserae Project in their
default search settings, where the stoplist, as given in exported files, is also composed of nine words: qui, quis, sum, et, in,
is, non, hic, ego, and ut. With respect to minimalist stoplists, note also Schofield et al. (2017) on stopword effectiveness in
topic modeling: “Except for the dozen or so most frequent words, removing stopwords has no substantial effect on model
likelihood, topic coherence, or classification accuracy.”

24 Berra’s lists are greatly enlarged by the inclusion of inflectional variants; so, for example, all morphological possibilities of
the verb sum (“to be”) are included in the Latin list without consideration of the relative frequency of individual forms. It
is worth noting that Nothman et al. (2018) suggest that the inclusion of inflectional variants “generally seems an advisable
path towards improved consistency.”

25 The complete code for the Stop module is available in the CLTK GitHub repository at https://github.com/cltk/cltk/blob/
master/cltk/stop/.

https://github.com/cltk/cltk/blob/master/cltk/stop/
https://github.com/cltk/cltk/blob/master/cltk/stop/

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 9

The module has the following structure, as shown in Figure 1:
1. There is a Stoplist abstract class that sits at the top of the inheritance hierarchy. Its

main role is basic initialization: first, it allows a language to be set in case there are
language-specific parameters that need to be set, and, secondly, it confirms that package
dependencies for the class, namely Numpy and Scikit-learn, are installed.26 Stoplist
also contains an abstract method called “build_stoplist,” which serves as a placeholder
method to be overridden by subclasses of Stoplist. At the module level, that is in the
file stop.py in the Stop module, the Stoplist abstract class has an additional subclass:
BaseCorpusStoplist, which will be the focus of the remaining discussion in this section.

2. BaseCorpusStoplist inherits and overrides the “build_stoplist” method from Stoplist.
Furthermore, it is customized by way of an array of parameters that need to be set for
the task of stoplist construction. As Fox mentioned in his landmark stoplist publication
for English: “Selecting a stop word list is more difficult than it appears.”27 Likewise,
“selecting” the parameters that need to be considered when constructing a Python class
and related functions for this task poses similar challenges. A primary goal in writing a
generalizable method then is to eliminate, or at least formalize, the “various arbitrary

26 Numpy: Oliphant (2006); Scikit-learn: Pedregosa et al. (2011).

27 Fox (1989) 21.

Fig 1: The inheritance tree for the CLTK Stop module. Note how language-
specific classes, such as ClassicalChineseCorpusStoplist, inherit the build_
stoplist method from BaseCorpusStoplist while overriding the language and
punctuation attributes as necessary.

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 10

decisions” that are often required.28 Providing a class dedicated to producing domain-
specific stoplists in a systematic manner reduces the number of arbitrary decisions that
need to be made, and when decisions are made, it allows these decisions to be declared
explicitly in parameter selection or otherwise documented directly in supporting code.
Accordingly, stoplists built using the “build_stoplist” method meet two of the goals for
stoplist construction stated in the introduction, that is they are well documented and
replicable.

The “build_stoplist” method takes the following parameters: “texts”, “size”, “sort_
words”, “inc_values”, “lower”, “remove_punctuation”, “remove_numbers”, “include”,
“exclude”, and “basis.”

The parameter “texts” take a list of strings that serve as the source texts or document
collection from which stopwords should be extracted. These texts are split into tokens
and it is these tokens from which stopwords are drawn; no lemmatization is performed
by the “build_stoplist” method.29 The parameter “size” is the number of words included
in the output list. The parameter “inc_values” is a Boolean variable that allows users to
produce either a bare wordlist for output (inc_values = False) or include a value related
to how words in the document collection are measured (the default setting, True). So, if
words are measured by simple frequency, a word appearing 99 times in the “texts” would
have a value of 99. The parameters “lower,” “remove_punctuation,” and “remove_
numbers” are built-in preprocessing parameters for handling case (that is, whether to
make all words in the collection lowercase), punctuation, and numbers; also Booleans,
they are all set to True by default.

Since even in domain-specific applications, there may be an argument for including
additional words or for “culling important terms,”30 there are two parameters that allow
users to formalize the “hand-filtered” aspect of stoplist construction, namely “include”
and “exclude.” Both parameters take a list of strings. Any words included in the former
are added to the final output regardless of their value; words in the latter are removed.
Both parameters are set to empty lists by default.

Lastly, the “build_stoplist” method allows users to set the basis on which words are
measured. At present, the bases that are supported include: frequency, mean probability,
variance probability, entropy, and a composite basis drawn from a 2006 paper on
constructing stoplists by Zou et al.31

28 Savoy (1999) 949. For example, Rijsbergen (1975) 14, on the boundary decisions for cutting off both insignificant very
high frequency and very low frequency words, writes: “A certain arbitrariness is involved in determining the cut-offs.
There is no oracle which gives their values.” That said, the goal here is to make explicit in code any decisions that might
otherwise fall into the category of “certain arbitrariness.”

29 It should also be noted that “build_stoplist” uses the default tokenization method of Scikit-learn’s CountVectorizer class,
namely whitespace tokenization. There is provisional support for character-based languages, such as Classical Chinese; in
this case, a language-specific subclass of BaseCorpusStoplist is created with CountVectorizer’s “analyzer” parameter set
to analyze features at the character level. Since both CountVectorizer’s “tokenizer” and “analyzer” parameters can take a
callable, there is the potential for custom tokenizers and segmenters to be used in these language-specific subclasses. This
is an area of current CLTK development.

30 Fox (1989) 19–20.

31 Zou et al. (2006).

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 11

3. BaseCorpusStoplist can be further subclassed by language, as for example with
ClassicalChineseCorpusStoplist and LatinCorpusStoplist. These can be kept in language-
specific files (for example, classical_chinese.py or latin.py), with certain parameters,
such as the punctuation set for that language or whether to analyze texts by word or
character, set in advance.

As noted above, the method that has been used as the default for classes in the CLTK Stop
module is that of Zou et al. (2016). In their paper, Zou et al. present an “automatic aggregated
methodology” which produces a stoplist through a combination of three measures, two with a
document-statistical model (namely, mean probability and variance probability) and one with
an informational model (namely, entropy). The document-statistical model measures mean
probability to account for overall frequency in a document collection and variance probability
to account for distribution across the documents. The information model uses entropy as a
measure of how informative a word is within a given document. Lists of top terms are produced
for each measure and the lists are aggregated using a Borda count to produce a composite list.
As shown by Zou et al., we should expect stopwords to have a high mean probability and a
low variance probability.32 That is, they should both occur with great frequency in individual
documents in the collection and their distribution across the documents should be stable. The
CLTK Stop module, by using Zou et al.’s method as the default basis, formalizes this model,
allowing users to generate statistically based composite stoplists for any document collection.

Zou et al. developed their method for use in Chinese, but their method has been used for
languages such as Arabic, Persian, Punjabi, Thai and Yoruba.33 Since it has already been shown
to be effective for stoplist construction in several languages and across multiple scripts, this
method seemed particularly well suited for general application in the CLTK Stop module.

4. Example: Constructing Latin Stoplists34

In this section, I provide an example of historical-language stoplists created using the CLTK
Stop module for the Latin language using the default ‘Zou’ basis. This list is then compared to
existing lists.

I have used the CLTK’s Latin Library corpus (LL) to construct the example stoplist.35 This is
a corpus of plaintext files, scraped from the website “The Latin Library.”36 It consists of 2,152
files, representing Latin texts in a wide range of authors, works, and genres, and spanning
chronologically from the earliest Latin authors to 20th-century Neo-Latin authors. For this

32 Zou et al. (2006) 1012: “Intuitively, the probability of a word to be a stop word is directly proportional to the mean of
probability, but inversely to the variance of probability.”

33 Alajmi et al. (2012), Daowadung/Chen (2012), Puri et al. (2013), Sadeghi/Vegas (2014), Tijani et al. (2017).

34 All of the code used to generate text statistics or to build and analyze the stoplists presented in this section of the paper
can be found in the Jupyter notebook in the GitHub repository associated with this paper, available at https://github.com/
diyclassics/stopwords-paper. The version of this repository at the time of publication has been archived with Zenodo at
doi:10.5281/zenodo.1477208.

35 Available at https://github.com/cltk/latin_text_latin_library.

36 Available at http://www.thelatinlibrary.com/.

https://github.com/diyclassics/stopwords-paper
https://github.com/diyclassics/stopwords-paper
https://github.com/cltk/latin_text_latin_library
http://www.thelatinlibrary.com/

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 12

test, the texts have been minimally preprocessed; specifically, 1. HTML entities have been
converted to the corresponding unicode character (that is, entities such as “>” have been
converted to the “>“ character), and 2. the texts have been truncated to start at the first word
appearing 1,000 characters from the beginning of the text and to end at the word appearing
1,000 characters from the end in order to remove paratextual material included in “The Latin
Library” texts, such as title and author information and text related to web navigation.37 Case
has been retained, as have numbers and punctuation. There are approximately 16.2 million
tokens in this corpus.38

Using the “Zou” basis with the “size” parameter set to 100 in “build_stoplist,” the Latin-
specific instance of BaseCorpusStoplist produces the following stoplist for LL:

ab ac ad ante apud atque aut autem causa cui cuius cum de dei deus dum ea ego ei eius enim
eo erat ergo esse esset est et etiam eum ex fuit haec hic his hoc iam id igitur illa ille in inter
ipse ita me mihi modo nam ne nec neque nihil nisi nobis non nos nunc omnes omnia omnibus
per post potest pro qua quae quam quem qui quia quibus quid quidem quis quo quod quoque
res se secundum sed si sibi sic sicut sine sit sub sunt tamen te tibi tu tunc ubi uel uero uos ut.39

The LL stoplist, drawn as it is from the largest collection with widest variety of genres, can be
taken as the closest thing to a generic stoplist for Latin and it compares favorably to existing
lists.40 It contains 55.4% of the words (41/92) from the Perseus stoplist and 77.5% of the words
(31/40) from the stopwords-json stoplist. While on the surface, these numbers may appear low,
ready answers appear upon review of the lists. The Perseus list, for example, consists primarily
of lemmas (that is, dictionary headwords), while the LL list contains any token that meet
the statistical criteria of the stopword extraction algorithm.41 So, for example, the nominative
forms of several personal pronouns, such as ego (“I”), tu (“you”), and nos (“we”), appear on
both lists, but oblique forms, such as mihi (“to me”), me (“me”), tibi (“to you”), te (“you”,
accusative) sibi (“himself, herself, itself”), and nobis (“to us”), only appear on the LL list and
so count against the 100-word limit set for this example. Another factor is that there are no
nouns or adjectives in the Perseus list, while by strict statistical determination certain forms
of the nouns causa (“cause, reason”), deus (“god”), and res (“thing”) and certain forms of
the adjective omnis (“all”) appear on the LL list. Interestingly, the situation is reversed in the
stopwords-json list where the largest point of difference when compared to the LL list is the

37 Because of this truncation, files consisting of less than 1000 characters have been removed from the fileset all together.

38 The WordPunctTokenizer from the Natural Language Toolkit has been used to tokenize the texts; cf. https://www.nltk.
org/_modules/nltk/tokenize/regexp.html#WordPunctTokenizer.

39 Specific information about the measurements underlying the “Zou” basis, such as mean probability, variance probability,
and entropy values, can be found in Appendix A of the Jupyter notebook at https://github.com/diyclassics/stopwords-pa-
per/blob/master/notebooks/stopwords-paper.ipynb.

40 Complete results of comparison between the LL stoplist and the Perseus, stopwords-json, and Voyant Tools list can be
found in Appendix B of the Jupyter notebook at https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/
stopwords-paper.ipynb.

41 There are some non-lemma forms such as es (“you are”) and est (“he, she, it is”) in the Perseus list, but these words are
the exception.

https://www.nltk.org/_modules/nltk/tokenize/regexp.html#WordPunctTokenizer
https://www.nltk.org/_modules/nltk/tokenize/regexp.html#WordPunctTokenizer
https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb
https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb
https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb
https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 13

inclusion of three oblique forms of res (re, rem, and rebus). It is unclear why these are included
(and why other forms of res like rei and rerum are not).42 As noted in Section 1, while stoplists
tend to include mostly function words, this is only a tendency and perhaps a subjective one
prone to the caveats against arbitrary decision-making noted by Manning. The direction taken
in this paper tends towards a statistical definition of the stopword extraction process and these
nouns meet the statistical criteria of the algorithm. Arguments for excluding these words can
(and should) be made by other stoplist builders, but the burden will be on them to argue against
the statistically derived description of a corpus of Latin text.

Conversely, because of the large size of Berra’s Voyant Tools Latin stoplist, it makes more
sense to reverse the direction of the comparison with this list. The Voyant Tools list contains
98% of the words in the LL stoplist. As seen in the previous comparisons, noun forms account
for the missing forms: deus (“god”) and its genitive form dei (“of god”). (Interesting to note
that forms of causa and res have made Berra’s cut.) Again, there are good arguments for
exclusion of these terms from stoplists. But the comparison of the two lists demonstrates the
importance of domain in creating (and by extension applying) stoplists. The Latin Library
contains a large amount of post-Classical, Christian writing, in which “god” is a very high
frequency token. Berra uses the Packard Humanities Institute Latin Texts version 5.3, which
for the most part only covers the Latin language up to 200 CE, explaining the difference.43 If
a researcher planned to use a Latin stoplist with a set of Classical texts, the recommendation
would be to build a custom list on a representative sample of Classical texts. As noted in the
Introduction, this flexibility in stoplist construction is one of the main benefits of the CLTK
Stop module.

42 Words like this can be compared to what Nothman et al. (2018) 9 call “controversial” words, that is words that appear in
a stoplist though without clear statistical support.

43 See http://latin.packhum.org/about for a description of the PHI Latin Texts project. In Appendix C of the Jupyter note-
book (https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb), I have provided
examples of three domain-specific stoplists constructed from subsets of the Latin Library corpus: one for the works of
Cicero, one for the Biblia Sacra, or Latin text of the bible, and one for collections of Roman legal texts. It should be noted
that deus is extracted by the ‘Zou’ algorithm from the Biblical texts, though it is not when applied to the Cicero texts or
the legal texts.

http://latin.packhum.org/about
https://github.com/diyclassics/stopwords-paper/blob/master/notebooks/stopwords-paper.ipynb

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 14

5. Conclusion

The use of stoplists is not without its detractors. The origin of their use stems from physical and
computational limitations, such as the avoidance of paper waste on the one hand and low pro-
cessing power and memory on the other, that are increasingly obsolescent. Furthermore, their
use is subject to issues of linguistic ambiguity that can be difficult to control for, like homony-
mity.44 It has also been suggested that constructing domain-specific stoplists is time-consuming
and subject to arbitrary interventions by the creator of the list, while at the same time not being
particularly effective.45 Nevertheless, there are strong arguments in favor of developing the
CLTK Stop module.46

First, there are many existing NLP text processing tools, largely aimed at modern language
applications, that make use of stoplists or include stoplist parameters. For example, the Natural
Language Toolkit provides default stoplists for 21 languages.47 Historical-language researchers
learning NLP basics using the NLTK book find themselves at a loss when the example code
asks them to import a list for an unsupported language.48 Another example is the CountVecto-
rizer class in Scikit-learn, which allows a stoplist to be designated in its parameter list.49 This
list is by default an English stoplist. Researchers wishing to apply machine-learning methods
to historical-language text through Scikit-learn have the option of using a stoplist not appro-
priate for their research question or are otherwise obligated to design their own list or simply
ignore the parameter. By using a list created with methods from the CLTK Stop module, users
can be confident that this resource is appropriate for their language, not to mention the specific
domain that they are working on. Moreover, by offering methods for reading document collec-
tions and systematically building stoplists, the module pushes back against criticisms about the
“time-consuming” or “arbitrary” nature of the process.

44 Savoy (1999) 945.

45 Schofield et al. (2017).

46 In addition to the arguments presented below, there are other positive uses for statistically based word extraction methods
similar to or identical to stopword extraction. These lists can be used, for example, as the basis for stylometric analysis
and author-attribution studies; see Arun et al. (2009).

47 The NLTK Stopwords corpus includes Arabic, Azerbaijani, Danish, Dutch, English, Finnish, French, German, (modern)
Greek, Hungarian, Indonesian, Italian, Kazakh, Nepali, Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish,
and Turkish; see https://www.nltk.org/nltk_data/.

48 Bird et al. (2015); see section 4.1 on “Wordlist Corpora.” The development of the CLTK Stop module described in this pa-
per has its origins in using the instructions for adding a new language to the spaCy NLP platform, which asks contributors
to define a language-specific stoplist as their first task; see https://spacy.io/usage/adding-languages.

49 Pedregosa et al. (2011). For parameter definitions, see http://scikit-learn.org/stable/modules/generated/sklearn.feature_ex-
traction.text.CountVectorizer.html.

https://www.nltk.org/nltk_data/
https://spacy.io/usage/adding-languages
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.htm
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.htm

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 15

The CLTK Stop module similarly pushes back against the criticisms of available historical-lan-
guage stoplists mentioned in the Introduction, most especially the lack of documentation, pro-
venance, sources, and construction methodology behind many existing resources.50 Stoplists
created using the CLTK Stop module have a clear advantage. The software itself is open sour-
ce, documented, version-controlled, and citable. Moreover, any code written by a user that uses
the CLTK Stop module to build a stoplist can be shared and cited, and as such the document
collection used as the source will be explicitly defined in this code as will the parameters and
any pre- or postprocessing applied to the lists. Accordingly, the CLTK Stop module offers bet-
ter support for well-documented, data-driven, and replicable results.51

There are two additional benefits to the CLTK community in the offering of a generalizable
method for stoplist construction. The first pertains to CLTK users, namely that they can be
assured of consistency in how stopwords are extracted from documents across multiple lan-
guages. As I mentioned in the Introduction, the resources currently offered in the CLTK, spe-
cifically generic reference lists, have been cobbled together from a variety of sources with no
underlying and unifying methodology for how these resources were developed. By offering an
abstract class with language-agnostic methods that can be subclassed and then overridden and
reparameterized as necessary, CLTK users can be confident that the stoplists that they create
are based on research that has been shown to be applicable across a wide variety of languages
but also take into account language-specific demands. So, for example, the Latin and Classical
Chinese submodules both inherit from BaseCorpusStoplist but the former is subclassed in such
a way that it tokenizes documents based on words and the latter on characters.

The second pertains to CLTK contributors. Stoplists are one element of the project’s basic
language resource kit for each language.52 That said, they are currently available for only a
limited number of languages in the project’s scope. Before the development of the new Stops
module, contributors who wished to add a stoplist for a given language did so with minimal
direction. That is, there was no attempt at consistency in extraction methodology across lan-
guages, nor was there a “quality control” standard by which existing CLTK stoplists could be
evaluated.53 With the introduction of the Stop module, contributors now have a clear starting
point for development, a helpful step forward in managing the complexity of a multi-language
open-source project.

50 This problem is not limited to historical-language NLP stoplists as shown in Nothman et al (2018). For example, on the
Scikit-learn default stoplists, Nothman et al. (2018) 7 write: “Despite its popular use, the current Scikit-learn maintainers
cannot justify the use of this particular list, and are unaware of how it was constructed.”

51 In this respect, it is compatible with the RAD (replicable, aggregable, and data-driven) paradigm described in Haswell
(2005). Note also that Nothman et al. (2018) 11 propose the following strategies for stoplist provisioning in open-source
software: better documentation, dynamic adaptation to specific NLP tasks, increased quality control in assessing the in-
clusion of controversial terms and evaluating completeness, and wider availability of tools for automatic list generation.
CLTK Stop development aims at everything on this list, especially the last item.

52 Krauwer (2003).

53 See Nothman et al (2018) 11.

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 16

This paper describes the first version of a generalizable method for building stoplists for his-
torical languages with the CLTK. That said, work on the module continues. Here are some
concluding thoughts on future directions for the module.

Zou et al.’s method has been used in stoplist research for several languages and, for this reason,
is an appropriate starting point for developing generalizable methods. Still, as noted above, it is
not the only method for stoplist construction. Future work will investigate how other methods
for systematically building both generic and domain-specific stoplists, including term-based
random sampling and term adjacency among others, could be effectively implemented in the
CLTK. Further discussion of parameters available in “build_stoplist” and their applicability
within the language-specific subclasses is also necessary.54 Another area that will require ad-
ditional research is the evaluation of historical-language stoplists. Just as these low-resource
languages often lack stoplists all together, they also largely lack the tagged document collec-
tions necessary to serve as benchmarks in evaluation. Only with the development of more
benchmark collections can we truly begin to evaluate the effectiveness of historical-language
stoplists.55 In the meantime, the CLTK Stop module offers a significant step forward in forma-
lizing stoplist construction methodology and, in doing so, promotes consistency and maintains
standards across languages for both users and developers, which in turn facilitates documenta-
tion and reproducibility of an NLP resource for historical-language research.

54 Discussions about best practices for stoplist construction in the CLTK are ongoing in the project’s GitHub ‘Issues’; see,
for example, the following thread on “improvements to multilingual stop module,” through which character-based tokeni-
zation for Classical Chinese was introduced to the Stop module: https://github.com/cltk/cltk/issues/743.

55 So, for example, supervised classifier-based stopword extraction methods, such as those used in Makrehchi/Kamel 2008,
are not yet practical for most languages represented in the CLTK.

https://github.com/cltk/cltk/issues/743

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 17

6. References

Alajmi et al. (2012): A. Alajmi, E. M. Saad and R. R. Darwish. “Toward an Arabic Stop-Words
List Generation,” International Journal of Computer Applications 46 (8), 8–13.

Arun et al. (2009): R. Arun, R. Saradha, R., V. Suresh, M. Narasimha Murty and C. E. Veni
Madhavan, “Stopwords and Stylometry: A Latent Dirichlet Allocation Approach,” in: NIPS
Workshop on Applications for Topic Models: Text and Beyond, 1–4.

Berra (2018): Aurélien Berra, Ancient Greek and Latin Stopwords for Textual Analysis, version
2.1.0. https://github.com/aurelberra/stopwords. (accessed on 30 August 2018)

Bird et al. (2015). Steven Bird, Ewan Klein and Edward Loper, “Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit,” https://www.nltk.org/book/.
(accessed on 30 August 2018)

Chekima/Alfred (2016): Khalifa Chekima and Rayner Alfred, “An Automatic Construction of
Malay Stop Words Based on Aggregation Method,” in: Proceedings of Soft Computing in Data
Science: Second International Conference, 180–189.

Choy (2012): Murphy Choy, “Effective Listings of Function Stop Words for Twitter,” arXiv
preprint, http://arxiv.org/abs/1205.6396.

Daowadung/Chen (2012): Patcharanut Daowadung and Yaw-Huei Chen, “Stop Word in
Readability Assessment of Thai Text,” in: 2012 IEEE 12th International Conference on
Advanced Learning Technologies, 497–99.

El-Khair (2016): Ibrahim Abu El-Khair, “Effects of Stop Words Elimination for Arabic
Information Retrieval: A Comparative Study,” International Journal of Computing and
Information Sciences 4 (3), 119–133.

Flood (1999): Flood, Barbara J., “Historical Note: The Start of a Stop List at Biological
Abstracts,” Journal of the American Society for Information Science 50 (12), 1066.

Fox (1989): Christopher Fox, “A Stop List for General Text.” SIGIR Forum 24 (1–2), 19–21.
HaCohen-Kerner/Shmuel (2010): Yaakov HaCohen-Kerner and Yishai Blitz Shmuel, “Initial
Experiments with Extraction of Stopwords in Hebrew,” in: Proceedings of the International
Conference on Knowledge Discovery and Information Retrieval, 449–453.

Harter (1986): Stephen P. Harter, Online Information Retrieval: Concepts, Principles, and
Techniques. San Diego.

Haswell (2005): Richard H. Haswell, “NCTE/CCCC’s Recent War on Scholarship,” Written
Communication 22 (2): 198–223.

Johnson (2018): Kyle P. Johnson and the Classical Language Toolkit contributors, “The
Classical Language Toolkit,” http://cltk.org/. (accessed on 30 August 2018)

Kaur/Saini (2016): Jasleen Kaur and Jatinderkumar R. Saini, “Punjabi Stop Words: A Gurmukhi,
Shahmukhi and Roman Scripted Chronicle,” in: Proceedings of the ACM Symposium on
Women in Research, 32–37.

Krauwer (2003): Steven Krauwer, “The Basic Language Resource Kit (BLARK) as the First
Milestone for the Language Resources Roadmap.” Proceedings of International Workshop
Speech and Computer (SPECOM), 8–15.

https://github.com/aurelberra/stopwords
https://www.nltk.org/book/
http://arxiv.org/abs/1205.6396
http://cltk.org/

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 18

Lazarinis (2007): Fotis Lazarinis, “Engineering and Utilizing a Stopword List in Greek Web
Retrieval,” Journal of the American Society for Information Science and Technology 58 (11),
1645–1652.

Lo et al. (2005): Rachel Tsz-Wai Lo, Ben He and Iadh Ounis, “Automatically Building a
Stopword List for an Information Retrieval System,” in: 5th Dutch-Belgium Information
Retrieval Workshop, 17–24.

Luhn (1957): Hans Peter Luhn, “A Statistical Approach to Mechanized Encoding and Searching
of Literary Information,” IBM Journal of Research and Development 1 (4): 309–17.

Luhn (1958): Hans Peter Luhn, “The Automatic Creation of Literature Abstracts.” IBM Journal
of Research and Development 2 (2): 159–65.

Luhn (1960): Hans Peter Luhn, “Key Word-in-Context Index for Technical Literature (KWIC
Index).” American Documentation 11 (4): 288–95.

Makrehchi/Kamel (2008): Masoud Makrehchi and Mohamed S. Kamel, “Automatic Extraction
of Domain-Specific Stopwords from Labeled Documents,” in: Advances in Information
Retrieval, 222–33.

Manning et al. (2012): Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
Introduction to Information Retrieval, Cambridge.

Miretie/Khedkar (2018): Sileshi Girmaw Miretie and Vijayshri Khedkar, “Automatic Genera-
tion of Stopwords in the Amharic Text,” International Journal of Computer Applications 180
(10), 19–22.

Nothman et al. (2018): Joel Nothman, Hanmin Qin and Roman Yurchak, “Stop Word Lists in
Free Open-Source Software Packages,” in: Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), 7–12.

Oliphant (2006): Travis E. Oliphant, A Guide to NumPy, vol. 1, Spanish Fork, UT.

Pedregosa et al. (2011): Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss and
Vincent Dubourg, “Scikit-Learn: Machine Learning in Python,” Journal of Machine Learning
Research 12: 2825–2830.

Peng (2011): Roger D. Peng, “Reproducible Research in Computational Science,” Science 334
(6060): 1226–27.

Puri et al. (2013): Rajeev Puri, R. P. S. Bedi and Vishal Goyal, “Automated Stopwords
Identification in Punjabi Documents,” Research Cell: An International Journal of Engineering
Sciences 8, 119–125.

Rakholia/Saini (2017): Rajnish M. Rakholia and Jatinderkumar R. Saini, “A Rule-Based
Approach to Identify Stop Words for Gujarati Language,” in: Proceedings of the 5th International
Conference on Frontiers in Intelligent Computing: Theory and Applications, 797–806.

Rasmussen (2009): Edie Rasmussen, “Stoplists,” in: Ling Liu and M. Tamer Özsu (eds.),
Encyclopedia of Database Systems, Boston, 2794–96.

Raulji/Saini (2016): Jaideepsinh K. Raulji and Jatinderkumar R. Saini, “Stop-Word Removal
Algorithm and Its Implementation for Sanskrit Language,” International Journal of Computer
Applications 150 (2), 15–17.

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 19

Raulji/Saini (2017): Jaideepsinh K. Raulji and Jatinderkumar R. Saini, “Generating Stopword
List for Sanskrit Language,” in: 2017 IEEE 7th International Advance Computing Conference
(IACC), 799–802.

Rijsbergen (1975): C.J. van Rijsbergen, Information Retrieval, Newton, MA.

Rockwell et al. (2012): Geoffrey Rockwell, Stéfan Sinclair and the Voyant Tools team, “Voyant
Tools,” https://voyant-tools.org/. (accessed on 30 August 2018)

Rose et al. (2010): Stuart Rose, Dave Engel, Nick Cramer, Wendy Cowley, “Automatic
Keyword Extraction from Individual Documents,” in: Michael W. Berry and Jacob Kogan
(eds.), Text Mining, Chichester, UK, 1–20.

Sadeghi/Vegas (2014): Mohammad Sadeghi and Jésus Vegas, “Automatic Identification of
Light Stop Words for Persian Information Retrieval Systems,” Journal of Information Science
40 (4), 476–487.

Saif et al. (2014): Hassan Saif, Miriam Fernández, Yulan He and Harith Alani, “On Stopwords,
Filtering and Data Sparsity for Sentiment Analysis of Twitter,” in: Proceedings of the 9th
Language Resources and Evaluation Conference (LREC), 810–817.

Saini/Rakholia (2016): Jatinderkumar R. Saini and Rajnish M. Rakholia, “On Continent
and Script-Wise Divisions-Based Statistical Measures for Stop-Words Lists of International
Languages,” in: Procedia Computer Science 89, 313–19.

Salton/McGill (1983): Gerard Salton and Michael J. McGill, Introduction to Modern
Information Retrieval, New York City.

Savoy (1999): Jacques Savoy, “A Stemming Procedure and Stopword List for General French
Corpora,” Journal of the American Society for Information Science 50 (10), 944–52.

Schofield et al. (2017): Alexandra Schofield, Måns Magnusson and David Mimno, “Pulling
Out the Stops: Rethinking Stopword Removal for Topic Models,” in: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume
2, Short Papers, 432–36.

Silva/Ribiero (2003): Catarina Silva and Bernardete Ribeiro, “The Importance of Stop Word
Removal on Recall Values in Text Categorization,” in: Proceedings of the International Joint
Conference on Neural Networks, 1661–1666.

Tijani et al. (2017): Olatunde D. Tijani, A. T. Akinwale, Saidat A. Onashoga and E. O. Adeleke,
“An Auto-Generated Approach Of Stop Words Using Aggregated Analysis,” in: Proceedings
of the 13th International Conference of the Nigeria Computer Society, 99–115.

Weinberg (2004): Bella Hass Weinberg, “Predecessors of Scientific Indexing Structures in the
Domain of Religion,” in: Second Conference on the History and Heritage of Scientific and
Technical Information Systems, 126–134.

Yao/Ze-wen (2011): Zhou Yao and Cao Ze-wen, “Research on the Construction and Filter
Method of Stop-Word List in Text Preprocessing,” in: Fourth International Conference on
Intelligent Computation Technology and Automation, 217–21.

Zaman et al. (2011): A. N. K. Zaman, Pascal Matsakis and Charles Brown, “Evaluation of Stop
Word Lists in Text Retrieval Using Latent Semantic Indexing,” in: 2011 Sixth International
Conference on Digital Information Management, 133–36.

https://voyant-tools.org/

Digital Classics Online

Burns: Constructing Stoplists for Historical Languages DCO 4,2 (2018) 20

Zheng/Gaowa (2010): Gong Zheng and Guan Gaowa, “The Selection of Mongolian Stop
Words,” in: IEEE International Conference on Intelligent Computing and Intelligent Systems,
vol. 2, 71–74.

Zou et al. (2006): Feng Zou, Fu Lee Wang, Xiaotie Deng, Song Han and Lu Sheng Wang,
“Automatic Construction of Chinese Stop Word List,” in: Proceedings of the 5th WSEAS
International Conference on Applied Computer Science, 1010–1015.

7. Author56

Patrick J. Burns

New York University
Institute for the Study of the Ancient World

Email: patrick.j.burns@nyu.edu

56 The rights pertaining to content, text, graphics, and images, unless otherwise noted, are reserved by the author. This
contribution is licensed under CC BY-SA 4.0 International.

