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Abstract
The Poisson-Boltzmann equation(PBE) is a fundamental equation for accurate description of electrostatics
in ionic solutions or plasma. Hence, it finds application in a wide variety of fields including plasma physics,
computational biology, colloidal and interface science and chemistry. In this preprint, we describe a first
approach for solving it in a linearized setup using the CutFEM method in the software framework HiFlow3.
The considered methods are easy to use, but not oriented towards extracting optimal computing time. For
this purpose,the weak form of the linear PBE is first derived. Then, the CutFEM based numerical method is
proposed. Finally, the most important code sections in HiFlow3 are explained in more details. The electrostatic
potential for ubiquitin and the adenovirus virion molecules are calculated and presented in a numerical example
at the end of the paper.

1 Introduction
The Poisson-Boltzmann equation(PBE) is a fundamental equation for accurate description of electrostatics
in ionic solutions or plasma. Hence, it finds application in a wide variety of fields including plasma physics,
computational biology, colloidal and interface science and chemistry. The equation is derived under the
assumption that freely mobile ions can be modeled implicitly via a Boltzmann term, which locally describes
their concentration in dependence of the local potential. The equation makes use of two external position
dependent parameters: The local relative permittivity ϵ(x) and the ion accessibility κ(x). In many numerical
applications, these two parameters are modeled via discontinuous functions. Generally, there is a constant
dielectric permittivity inside the atoms and molecules and a (different) constant relative permittivity in the
surrounding medium. Similarly, the ion accessibility assumes either zero in a region around the molecule,
which implicitly modeled ions can not reach and κ0, the inverse Debye length. The recent development of
the CutFEM2 method provides an ideal framework for the solution of PDE depending on such discontinuous
parameters. In this preprint, we therefore describe a first approach for solving the linearized Poisson-Boltzmann
equation using the CutFEM technique. The considered method is easy to use in HiFlow3 but not oriented
towards extracting optimal computing time. HiFlow3 is an in-house developed multi-purpose finite element
software providing powerful tools for efficient and accurate solution of a wide range of problems modeled by
partial differential equations (PDEs).4
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2 Mathematical Setup

2.1 Problem

Consider a molecule with N atoms inside the domain Ω. The Poisson-Boltzmann equation is given by

− ec
kBT

∇ · (ϵ(x)∇Φ(x)) + κ̄2(x) sinh

(
ecΦ(x)

kBT

)
=

e2c
kBTϵ0

N∑
i=1

ziδ(x− xi) (1)

Φ(∞) = 0, (2)

where Φ(x) is the electrical potential at the point x, T is the temperature, kB the Boltzmann constant, ϵ0 is
the vacuum permittivity, ec is the elementary charge, xi is the position of the ion i and zi is the valency of the
ion i. Using the non-dimensional potential

u(x) =
ecΦ(x)

kBT
(3)

the equation (1) gets

−∇ · (ϵ(x)∇u(x)) + κ̄2(x) sinh(u(x)) =
e2c

kBTϵ0

N∑
i=1

ziδ(x− xi) (4)

u(∞) = 0. (5)

Furthermore, if the domain can be divided into the three regions Ω1: location of the molecule, Ω2: the ion
exclusion layer and Ω3 the solvent region, we define the dielectric function as

ϵ(x) =

{
ϵ1, for x ∈ Ω1,
ϵ2 for x ∈ Ω2 ∪ Ω3,

and the modified Debye-Hückel parameter κ̄(x) as

κ̄(x) =

{
0, for x ∈ Ω1 ∪ Ω2,√
ϵ3κ for x ∈ Ω3,

where κ is the inverse Debye length. By approximating sinh(x) with the first-order Taylor approximation, the
linearized equation

−∇ · (ϵ(x)∇u(x)) + κ̄2(x)u(x) = C

N∑
i=1

ziδ(x− xi), (6)

u(∞) = 0, (7)

with C :=
e2c

ϵ0kBT is obtained, which will be solved in this tutorial.
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2.2 Domain and interface conditions

Following the approach proposed in,6 we consider a computational domain Ω ⊂ R3 of hexahedral shape,
that is split into three parts: the molecule domain Ω1, the ion exclusion layer (IEL) Ω2 and the solvent
domain Ω3. The interface that separates the molecule domain from the surrounding solute is defined as the
Solvent-Excluded-Surface (SES)9 and denoted by Γ12 = Ω1 ∩Ω2, see Fig. 1.The SES describes the surface that
a probe of a certain radius cannot penetrate around a molecule. Across this interface and across Γ23 = Ω2 ∩Ω3,
it is assumed that the potential and its normal flux are continuous, i.e.

Figure 1: Image of the SES (light blue) calculated in HiFlow3 for the case of the ubiquitin molecule

(PDB ID: 1UBQ). The solvent domain used for this example can be seen in light gray.

ϕ1(x) = ϕ2(x), x ∈ Γ12 (8)
ϵm∇ϕ1(x) · n12(x) = ϵs∇ϕ2(x) · n12(x), x ∈ Γ12 (9)

ϕ2(x) = ϕ3(x), x ∈ Γ23 (10)
ϵs∇ϕ2(x) · n23(x) = ϵs∇ϕ3(x) · n23(x), x ∈ Γ23. (11)

n12

Γ12

Ω1

Ω2

Here, ϕi := ϕ|Ωi , n12 denotes the unit normal vector for Γ12,
directed from Ω1 into Ω2; n23 is defined analogously for Γ23

and directed from Ω2 into Ω3.

While the potential is continuous across Γ12 according to (8),
condition (9) implies a jump in the normal derivative of ϕ for
ϵm ≠ ϵs. Thus, the shape of the potential exhibits some kind
of kink across the SES, which must be taken care of when
devising the numerical method. Since there is no change in
permittivity across Γ23, one does not have to cope with this
issue there. Coming to the boundary conditions, we note that
the physically correct conditions is ϕ(∞) = 0. Since we are

restricted to computational domains of finite extension, we approximate this condition by

ϕ(x) = ϕD(x),x ∈ ΓD = ∂Ω = ∂Ω3, (12)

for some suitable Dirichlet boundary condition ϕD, as defined below.
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2.3 Regularization and potential decomposition

The form of the right-hand-side term in (6) involves a sum over Dirac distributions and is thus singular at the
atom center positions xi ∈ Ω1. To avoid resulting problems in the numerical method, this term has to be
regularized. A commonly used technique for this purpose, see7 for instance, is based on the observation that
the function

G(x) =
C

4πϵm

N∑
i=1

zi
|x− xi|

(13)

is the exact solution of the Poisson equation

−∇ · (ϵm∇u(x)) = C

N∑
i=1

ziδ(x− xi),x ∈ R3 with u(∞) = 0. (14)

Note that G is C∞ everywhere on R3, except at the finite number of points {x1, . . . ,xN} ⊂ Ω1. In particular,
the term κ2(x)G(x) is well-defined everywhere, since κ2(x) = 0 for x ∈ Ω1. We now follow the idea of6 and
decompose the potential according to

ϕ =

{
G+ w + u, in Ω1,

u, in Ω2 ∪ Ω3.
(15)

Here, w denotes the solution of the Laplace equation

−∆w(x) = 0, x ∈ Ω1, (16)
w(x) = −G(x), x ∈ Γ12, (17)

and can thus be considered as a harmonic extension of the values of G at Γ12 into Ω1. Plugging the full
potential ϕ as stated in (15) into the linear Poisson-Boltzmann equation (6) and taking into account the
interface and boundary conditions of the section above, we obtain the following system for the regular potential
u:

−∇ · (ϵ(x)∇u(x)) + κ2u(x) = 0, x ∈ Ω, (18)
u1(x) = u2(x), x ∈ Γ12, (19)
u2(x) = u3(x), x ∈ Γ23, (20)

(ϵm∇u1(x)− ϵs∇u2(x)) · n12(x) = −ϵm∇(G(x) + w(x)) · n12(x),x ∈ Γ12, (21)
∇u2(x) · n23(x) = ∇u3(x) · n23(x), x ∈ Γ23, (22)

u(x) = ϕD(x), x ∈ ΓD, (23)

where, as before, ui := u|Ωi
. As approximate Dirichlet boundary conditions, we use7

ϕD(x) :=
C

4πϵs

N∑
i=1

zi
e−κ(|x−xi|−ri)

(1 + κri)|x− xi|
, (24)

with atom radii ri. This choice corresponds to the superposition of the analytical solutions of the linear PBE on
N non-interacting spheres with point charges. Summing up the previous steps, the solution of the linear PBE
(6) is split into two parts: solution of the harmonic equation (HE) (16), (17) and solution of the regularized
PBE (rPBE) (18) - (23).

2.4 Weak formulation

To solve a problem using finite element methods, a variational formulation of the problem must be given. It
can be derived by multiplying the equation with some test functions, integrating over the domain, and applying
integration by parts and Gauss’ theorem. Therefore the domain Ω has to be a Lipschitz domain [10, p.89-96].
As to the weak formulation of (rPBE), let u : Ω → R denote a smooth solution of (18) - (23) and let v : Ω → R
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be smooth as well with v(x) = 0 for x ∈ ΓD. Multiplying (18) by v, integrating over Ω, applying integration
by parts and using the interface conditions (21), (22) (skipping the argument x) yields

0 = −
∫
Ω

∇ · (ϵ∇u)v + κ2uv

= −
∫
Ω1

∇ · (ϵm∇u)v −
∫
Ω2

∇ · (ϵs∇u)v −
∫
Ω3

∇ · (ϵs∇u)v +

∫
Ω3

κ2uv

=

∫
Ω1

ϵm∇u · ∇v +

∫
Ω2

ϵs∇u · ∇v +

∫
Ω3

ϵs∇u · ∇v +

∫
Ω3

κ2uv

+

∫
Γ12

−ϵm(∇u1 · n12)v − ϵs(∇u2 · (−n12))v +

∫
Γ23

−ϵs(∇u2 · n23)v − ϵs(∇u3 · (−n23))v

=

∫
Ω

ϵ∇u · ∇v +

∫
Ω

κ2uv +

∫
Γ12

ϵm∇(G+ w) · n12v

=: a(u, v) + c(u, v)− l(w; v),

with bilinear forms a, c and linear form l(w; ·). Let H1(Ω) denote the usual Sobolev space of L2(Ω) functions
whose distributional derivative is in L2(Ω) as well and H1

0 (Ω) := {v ∈ H1(Ω): u|ΓD
= 0}. Then, the weak

formulation that corresponds to (rPBE) is defined by:
Find u ∈ H1(Ω) with u|ΓD

= ϕD such that

a(u, v) + c(u, v) = l(w; v) for all v ∈ H1
0 (Ω). (25)

On the other hand, the weak formulation for (HE) is derived analogously:
Find w ∈ H1(Ω1) with w|Γ12

= −G such that

0 = b(w, v) :=

∫
Ω1

∇w · ∇v for all v ∈ H1
0 (Ω1). (26)

2.5 Numerical method

The weak formulation of rPBE (25) and of HE (26) are both discretized through the CutFEM approach proposed
in.2 This method is based on the idea of imposing the interface conditions in a weak sense by using Nitsche’s
principle. In doing so, it is possible to maintain the full convergence potential provided by the underlying
polynomial spaces, without the need to fit the computational mesh to the interface Γ12. This is made possible
by additional terms in the discrete variational formulation. In this way, the task of dealing with interface
conditions is shifted from the mesh generation towards the computation of the underlying algebraic linear
system.

Ω∗
1

Fg,1

To simplify the presentation, we ignore the solvent domain
Ω3 at this point and only consider the split Ω = Ω1 ∪ Ω2,
i.e. Ω3 = ∅, κ = 0 and c(u, v) = 0. We further assume
that Γ12 is known and sufficiently regular, such that both Ω1

and Ω2 are Lipschitz domains. Let T denote a triangulation
(in the following called mesh) of the complete domain Ω, i.e.
Ω̄ =

⋃
K∈T K, consisting of hexahedral cells K ⊂ R3. In

an upcoming section, T will be described in more detail. For
K ∈ T we define hK := diam(K), Ki := K ∩Ωi, i = 1, 2 and
ΓK := K ∩ Γ12. We denote by Ti := {K ∈ T : Ki ̸= ∅} an
overlapping triangulation of Ωi, by TΓ := {K ∈ T : ΓK ̸= ∅}
a covering of Γ12 and for some δ > 0 we define Tg := {K ∈
T : dist(Γ12,K) < δ} as collection of cells in the vicinity
of Γ12. Here, dist(Γ12,K) := infx∈Γ12

|x− xK | denotes the
distance between Γ12 and the midpoint xK of K. For a given
facet e, let ne denote an arbitrary, but fixed unit normal vector.
If e is a boundary facet, ne should coincide with the unit
outward normal vector of ∂Ω. If e is an interior facet, let
e = K+

e ∩ K−
e with K±

e ∈ T such that the unit outward
normal of K+

e coincides with ne.
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Moreover, we denote by Fg := {e ⊂ ∂K is facet of some cell K ∈ Tg} the collection of all facets associated
with cells in Tg. This set is further divided into Fg,1 := {e = K+ ∩ K− ∈ Fg : K+,K− /∈ T2 \ Tg} and
Fg,2 := {e = K+ ∩K− ∈ Fg : K+,K− /∈ T1 \ Tg}. We define by

Ω∗
i :=

⋃
K∈Ti∪Tg

K (27)

a domain that overlaps Ωi, i.e. Ωi ⊂ Ω∗
i . On this overlapping domain, we define the finite element spaces of

cell-wise linear polynomials:
Vi := {v ∈ H1(Ω∗

i ) : v|K ∈ Q1}, (28)

where Qk := {v(x) =
∑k

i,j,l=0 αijlx
i
1x

j
2x

l
3, αijl ∈ R}. Functions v ∈ Vi are extended by zero on Ω \ Ω∗

i . The
joint finite element space is then given by

Vh := V1 × V2, Vh,0 := {v ∈ Vh : v|ΓD
= 0}, (29)

with elements v = (v1, v2). Note that v may have two nonzero components on Ω∗
1 ∩ Ω∗

2. Occasionally, we will
simply consider v(x) has single-valued function by following the convention that v(x) = vi(x) for x ∈ Ωi \ Γ12.
For ω+, ω− ∈ [0, 1] with ω++ω− = 1, x ∈ Γ12 and a function f : Ω → R let f±(x) := limh→0+ f(x±hn12(x)),
{{f}}ω(x) := (ω+f+(x) + ω−f−(x)) denote its weighted average, {{f}}ω̄(x) := (ω−f+(x) + ω+f−(x)) its
skew weighted average and [[f ]](x) := f−(x) − f+(x) its jump across Γ12. For a finite element function
vh ∈ Vh we set v+h (x) := v2(x) and v−h (x) := v1(x). For the sake of clarity we outline the ideas presented in2

for a Poisson interface problem and derive a suitable discrete formulation of (25) in the CutFEM framework.
Our goal is the definition of a discrete problem of the form: find uh ∈ Vh with uh|ΓD

= ϕD such that

ah(uh, vh) = lh(w; vh) for all vh ∈ Vh. (30)

The discrete bilinear form ah and linear form lh should be defined such that

1. the discrete problem is consistent, i.e. a sufficiently regular, exact solution u of (18) - (23) also satisfies
(30)

2. the discrete problem is well-posed, i.e. it exhibits a unique solution whose norm can be bounded in terms
of the input data.

We start with slightly modified terms ã, l̃ that are close to the ones used in (25) and which take into account
that the test functions are now double-valued. We further assume that u denotes a sufficiently regular exact
solution of (18) - (23) and plug this function into

2∑
i=1

∫
Ωi

ϵ∇u · ∇vh,i =: ã(u, vh) = l̃(w; vh) := −
∫
Γ12

ϵm∇(G+ w) · n12{{vh}}ω̄, (31)

for all vh ∈ Vh,0.
Applying once again integration by parts we obtain:

−
∫
Γ12

ϵm∇(G+ w) · n12{{vh}}ω̄ =

2∑
i=1

∫
Ωi

ϵ∇u · ∇vh,i

= −
2∑

i=1

∫
Ωi

∇ · (ϵ∇u)vh,i

+

∫
Γ12

ϵm(∇u · n12)vh,1 −
∫
Γ12

ϵs(∇u · n12)vh,2

=

∫
Γ12

[[ϵ(∇u · n12)vh]]

=

∫
Γ12

{{ϵ(∇u · n12)}}ω[[vh]] +
∫
Γ12

[[ϵ(∇u · n12)]]{{vh}}ω̄.
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Using (21), the above identity only holds for {{ϵ(∇u · n12)}}ω = 0, which however, can not be inferred from
the definition of u. Thus, (31) is not consistent. A straightforward modification of ã that yields a consistent
formulation is given by simply subtracting the problematic term:

ac(u, vh) := ã(u, vh)−
∫
Γ12

{{ϵ(∇u · n12)}}ω[[vh]]. (32)

Repeating the same steps as above shows that

ac(u, vh) = l(w; vh) for all vh ∈ Vh,0. (33)

The bilinear form ac is not symmetric, unlike a. For our (potentially discontinuous) discrete solution uh, we,
therefore, subtract an additional term to define a symmetric form as by

as(uh, vh) := ac(uh, vh)−
∫
Γ12

{{ϵ(∇vh · n12)}}ω[[uh]]. (34)

To fulfill the continuity condition (19) on Γ12 of we penalize jumps with another term:

ap(uh, vh) := as(uh, vh) + γIP
∑

K∈TΓ

2ϵmϵs
ϵm + ϵs

h−1
K

∫
ΓK

[[uh]][[vh]]. (35)

Finally, to ensure coercivity of the bilinear form throughout the computational domain, we add the so-called
ghost penalty term j given by

j(uh, vh) := γg

2∑
i=1

∑
e∈Fg,i

hK+
e
(ϵmδi1 + ϵsδi2)

∫
e

([[∇uh,i]] · ne)([[∇vh,i]] · ne) (36)

to arrive at
ag(uh, vh) := ap(uh, vh) + j(uh, vh). (37)

Now assuming Ω3 ̸= ∅, κ ̸= 0 and defining Ṽ2 := V2 ∩H1(Ω2 ∪ Ω3) and Ṽh := V1 × Ṽ2, the CutFEM weak
formulation reads:

Find uh ∈ Ṽh with uh|ΓD
= ϕD such that

ah(uh, vh) = lh(w; vh) := l(w; vh) for all vh ∈ Ṽh,0, (38)

with
ah(uh, vh) := ag(uh, vh) +

∫
Ω3

ϵ∇uh · ∇vh,2 + c(uh, vh). (39)

3 Numerical Example
As a numerical example, the electrostatic potentials of the ubiquitin (PDB ID: 1UBQ) and the adenovirus virion
(PDB ID: 4CWU) molecules are calculated. The parameters used for this can be seen in the parameter file
shown in 4.3 for 1UBQ and in the file pbe_tutorial_4CWU.xml for 4CWU. The SI (international standard)
units are used in this simulations1 and in the parameter files. The main physical constants in our problem are
given as

Abbr Value in SI Physical Constant
ec 1.6021476634× 10−19C Elementary charge
kB 1.380649× 10−23 J/K Boltzmann constant
ε0 8.854187812813× 10−12 F/m Vacuum permittivity
NA 6.02214076× 10231/mol Avogadro’s number

To solve the linear system GMRES with the ILU++ preconditioner8 is used. For the structured mesh, the
performance of this combination is not optimal. However, an easily accessible preconditioner is chosen in
HiFlow3 to keep this tutorial simple.
The computational effort varies depending on the mesh refinement, the size of the molecule and the number of
atoms. For the smaller 1UBQ molecule a coarser mesh is used resulting in 173806 dofs and for the larger 4CWU
a mesh resulting in 11273130 dofs was used to obtain the results shown in Fig. 2.
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(a) Ubiquitin

(b) Adenovirus virion

Figure 2: Electrostatic potential map of u defined in (3) of ubiquitin and adenovirus virion computed with this

tutorial and visualized with ParaView5 with contour lines at ±0.1.

4 Implementation in Hiflow3

4.1 How to run the code?

You find the example code (pbe_tutorial.cc, pbe_tutorial.h), a parameter file for the first numerical example
(pbe_tutorial.xml) and the molecule data (*.pqr) in the folder
/hiflow/examples/pbe_tutorial.
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4.1.1 Using HiFlow3 as a Developer

First, build and compile HiFlow3 (an installation guide can be found in the readme.md file in the pbe_tutorial
folder). Go to the directory /build/examples/pbe_tutorial, where the binary pbe_tutorial is
stored. Type ./pbe_tutorial pbe_tutorial_1UBQ.xml, to execute the program in sequential mode for the
ubiquitin molecule. To execute in parallel mode with four processes, type mpirun -np 4 ./pbe_tutorial
pbe_tutorial_1UBQ.xml. In both cases, you need to make sure that the parameter file .xml and the
molecule data .pqr are stored in the same directory as the binary. You can specify the path of your own
XML-file with the name of your XML-file and the path, i.e.
./pbe_tutorial /"path_to_parameterfile"/"name_of_parameterfile".xml.

4.2 Preliminaries

HiFlow3 is designed for high-performance computing on massively parallel machines. So it applies the Message
Passing Interface (MPI) library specification for message-passing. For the illustrative purpose of this tutorial,
not all functionalities of HiFlow3 are used. Adaptive mesh refinement and parallel partitioning are therefore not
used. The example needs to be compiled with p4est.3

The following two input files are needed for the PBE tutorial:

• A parameter file: The parameter file is an XML file, which contains all parameters needed to execute
the program. It is read in by the program, for example, parameters that define the molecule as well as
parameters needed for the linear solver and linear algebra. It is not necessary to recompile the program
when parameters in the XML file are changed.

• Molecule information: The file containing the information of the molecule specified in the parameter file.
A few molecule files can already be found in the pbe_tutorial example folder.

4.3 Parameter File

The needed parameters are initialized in the parameter file (.xml). The name of the molecule is set by the
parameter <Molecule><Name>. Further molecular parameters listed at the beginning of the xml file are the
temperature in Kelvin, the ionic strength Is defined by <IoStrength>, the solvent dielectric of the solvent
material (for example dielectric of water) defined by <SolventDiel> and the solute dielectric dependent
on the input molecule and temperature given by <SoluteDiel>. The dielectric constants are dimensionless
numbers while the ionic strength is given in molar.
It is important that the parameters <Mesh><XMin>, <Mesh><XMax>, <Mesh><YMin>,
<Mesh><YMax>, <Mesh><ZMin> and <Mesh><ZMax> indicating the bounding box for the solvent region
are chosen large enough depending on the molecule for the linear solver to converge. The following shows the
parameter file for the ubiquitin molecule.

,

<Param>

<Molecule>

<Name>1UBQ</Name>

<IoStrength>0.1</IoStrength>

<Temperature>298.15</Temperature>

<SolventDiel>78.54</SolventDiel>

<SoluteDiel>2.0</SoluteDiel>

<MaxNumAtoms>-1</MaxNumAtoms>

</Molecule>

<General>

<FeDegree>1</FeDegree>

<LSFeDegree>1</LSFeDegree>

<QuadratureOrder>4</QuadratureOrder>

</General>

<SingularPotential>

<QuadPointEvalType>1</QuadPointEvalType>
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<PostProcessingEvalType>0</PostProcessingEvalType>

<DirichletEvalType>0</DirichletEvalType>

<CropDistance>10</CropDistance>

</SingularPotential>

<Mesh>

<SESGrid>

<RefLevel>3</RefLevel>

<RelAcceptThresh>2.</RelAcceptThresh>

<PolynomialDegree>1</PolynomialDegree>

<RemoveCavities>0</RemoveCavities>

</SESGrid>

<CellWidth>4.0</CellWidth>

<RefLevel>0</RefLevel>

<XMin>-12</XMin>

<XMax>72</XMax>

<YMin>-12</YMin>

<YMax>72</YMax>

<ZMin>-28</ZMin>

<ZMax>64</ZMax>

<RefLevel>1</RefLevel>

</Mesh>

<Logging>

<Visu_SubtractSingular>0</Visu_SubtractSingular>

<VisuIntervals>1</VisuIntervals>

</Logging>

<CutFEM>

<Extension>

<SIPG_Sym>1.</SIPG_Sym>

<SIPG_Pen>1e2</SIPG_Pen>

<Ghost_Pen>1e-0</Ghost_Pen>

<Ghost_Type>2</Ghost_Type>

</Extension>

<PB>

<SIPG_Sym>1.</SIPG_Sym>

<SIPG_Pen>1e1</SIPG_Pen>

<Ghost_Pen>1e-1</Ghost_Pen>

<Ghost_Type>2</Ghost_Type>

</PB>

<Overlap>

<Type>2</Type>

<AbsWidth>1.</AbsWidth>

<RelWidth>1.</RelWidth>

<UseRelWidth>1</UseRelWidth>

<UseOverlapOnFineMeshOnly>0</UseOverlapOnFineMeshOnly>

</Overlap>

<Quadrature>

<IfaceOrder>3</IfaceOrder>

<SubcellOrder>3</SubcellOrder>

</Quadrature>

</CutFEM>

<LinearAlgebra>

<NameMatrix>CoupledMatrix</NameMatrix>

<NameVector>CoupledVector</NameVector>

<Platform>CPU</Platform>
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<MatrixFormat>CSR</MatrixFormat>

<SparseCompression>1</SparseCompression>

<Implementation>Naive</Implementation>

</LinearAlgebra>

<LinearSolver>

<Name>LINSOLVER</Name>

<Type>GMRES</Type>

<MaxIt>2000</MaxIt>

<AbsTol>1.e-14</AbsTol>

<RelTol>1.e-8</RelTol>

<DivLimit>1.e6</DivLimit>

<KrylovSize>200</KrylovSize>

<UsePrecond>0</UsePrecond>

<PrintLevel>1</PrintLevel>

</LinearSolver>

</Param>

4.4 Important member functions

The main function starts the simulation of the PBE problem (pbe_tutorial.cc).

4.4.1 run()

The member function run() executes the PBE tutorial. The function is defined in the class PoissonBoltzmann
(pbe_tutorial.cc). The first operation read_parameters() reads the simulation parameters from the
xml file. The build_initial_mesh() and prepare_system() functions construct the computational
mesh and initialize the global finite element space. Afterwards, the linear algebra and the level set system are
prepared in the prepare_LA() and prepare_LS_system() functions. Then, the local assemblers for the
(HE) and (rPBE) problem are prepared in prepare_local_assembler(). The interface mesh is prepared
and boundary conditions are assembled in the following functions initialize_SES_mesh() and
prepare_interface_and_boundary_conditions(). Finally the two systems are assembled in
assemble_extension and assemble_linear_cut() and solved in solve_system to be visualized
with visualize_LS() and visualize().

,

/**

* Runs the Poisson-Boltzmann simulation.

*/

void PoissonBoltzmann::run()

{

Timer timer_complete;

timer_complete.start();

LOG_INFO("XML file", SOLVER_PARAM_FILENAME);

parcom_.barrier();

// Read parameters from XML file

this->read_parameters();

// Read molecule configuration

this->read_molecule_configuration();

// Build initial mesh

this->build_initial_mesh();

// Prepare spaces

11



this->prepare_system();

// Prepare linear algebra

this->prepare_LA();

// Prepare level set system

this->prepare_LS_system();

// Prepare local assemblers

this->prepare_local_assemblers();

// Initialize SES mesh

this->initialize_SES_mesh();

// Prepare interface and boundary conditions

this->prepare_interface_and_boundary_conditions();

// Visualize level set functions

this->visualize_LS();

// compute harmonic extension

this->assemble_extension();

this->solve_system(ext_solver_, ext_rhs_, ext_sol_,

this->ext_matrices_,

this->fixed_ext_dofs_, this->fixed_ext_values_);

// Compute CutFEM solution

this->assemble_linear_cut();

this->solve_system(cut_solver_,

*rhs_, *sol_,

this->matrices_,

this->fixed_cut_dofs_, this->fixed_cut_values_);

parcom_.barrier();

// Visualize solution

this->visualize();

MPI_Barrier(this->comm_);

timer_complete.stop();

LOG_INFO("", "===========================================");

LOG_INFO("", "===========================================");

LOG_INFO("Time", "COMPLETE : " << timer_complete.get_duration() << " sec");

LOG_INFO("", "===========================================");

LOG_INFO("", "===========================================");

}

4.4.2 solve_system

The member function solve_system is called twice for solving the (HE) and the (rPBE) problem. Therefore,
the respective linear problem is passed to the solve_system function.

,

void PoissonBoltzmann::solve_system(std::shared_ptr<LinearSolver<LAD>> &outer_solver,

CVector &rhs,

CVector &sol,

typename LAD::MatrixType &op,

const std::vector<int> &fixed_dofs,

const std::vector<DataType> &fixed_vals)

{

sol.Zeros();
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if (!fixed_dofs.empty())

{

sol.SetValues(vec2ptr(fixed_dofs),

fixed_dofs.size(),

vec2ptr(fixed_vals));

}

sol.Update();

Timer setup_timer;

setup_timer.start();

outer_solver->SetupOperator(op);

PreconditionerBlockJacobiExt<LAD> precond_;

precond_.Init_ILU_pp();

precond_.SetupOperator(op);

precond_.Build();

outer_solver->SetupPreconditioner(precond_);

setup_timer.stop();

Timer solve_timer;

solve_timer.start();

rhs.Update();

outer_solver->Solve(rhs, &sol);

sol.Update();

solve_timer.stop();

DataType norm_rhs = rhs.Norm2();

std::string solver_name = solver_params_["LinearSolver"]["Type"].get<std::string>();

LOG_INFO(solver_name, "#Iter " << outer_solver->iter());

LOG_INFO(solver_name, "Abs Residual " << outer_solver->res());

LOG_INFO(solver_name, "Rel Residual " << outer_solver->res() / norm_rhs);

LOG_INFO(solver_name, "Time setup " << setup_timer.get_duration());

LOG_INFO(solver_name, "Time solution " << solve_timer.get_duration());

}

5 Conclusion
We have demonstrated the feasibility of solving the linear Poisson-Boltzmann equation numerically on a
three-dimensional, uniform, Cartesian mesh with the CutFEM approach. Since CutFEM allows us to work with
simple, non-matching grids, we could easily compute the electrostatic potential of various molecules. We also
showed how the HiFlow3 library could be practically utilized to discretize, solve and post-process the results of
the PBE. Future work will concentrate on benchmarking our implementation under various metrics. Thereafter,
we intend use the benchmarks to indicate areas of potential improvement in terms of both solution accuracy
and computational efficiency.
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A Appendix

A.1 Program Output

HiFlow3 can be executed in a parallel or sequential mode which influences the generated output data.
Executing the program in parallel, for example with four processes by mpirun -np 4 ./pbe_tutorial generates
the following output data in the /hiflow/examples/pbe_tutorial/visu/ folder.

• Mesh data:

– pbe_tutorial_mesh.pvtu Uniformly refined mesh in the parallel vtk-format. It combines the local
mesh data owned by the different processes to a global mesh.

– pbe_tutorial_mesh_X.vtu Local mesh (vtk-format).

• Level set function data:

– pbe_tutorial_LS_MoleculeName.pvtu Level set function Xi for representing the interface com-
puted for the CutFEM approach.

– pbe_tutorial_LS_MoleculeName_X.vtu Local solution of the level set function which belongs
to cells owned by process X, for X=0, . . . , processes (vtk-format).

• Solution data:

– pbe_tutorial_sol_MoleculeName_.pvtu Solution of electrostatic potential u. Furthermore,
solution data of the harmonic extension uext, solution data inside the and the regular part of the
solution ureg is contained in this file. It combines the local solutions owned by the different processes
to a global solution.

– pbe_tutorial_sol_MoleculeName_X.vtu Local solution of the electric potential of the degrees of
freedoms which belong to cells owned by process X, for X=0, 1, 2, and 3 (vtk-format).

• Log files:

– pbe_tutorial_debug.log Log file listing errors helping to simplify the debugging process. This file
is empty if the program runs without errors.

– pbe_tutorial_info.log Log file listing parameters and some helpful information to control the
program such as about the residual of the linear and non-linear solver used.

A.2 Visualizing the Solution

HiFlow3 only generates output data but does not visualize. The mesh data as well as the solution data can be
visualized by any external program that can handle the vtk data format e.g. the program ParaView5 by opening
the .pvtu files. A good way to visualize the electrical potential in this problem is with a contour plot showing
potential isosurfaces.
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