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Abstract—The Convey HC-1 Hybrid Core Computer brings
FPGA technologies closer to numerical simulation. It combines
two types of processor architectures in a single system. Highly
capable FPGAs are closely connected to a host CPU and
the accelerator-to-memory bandwidth has remarkable values.
Reconfigurability by means of pre-defined application-specific
instruction sets called personalities have the appeal of opti-
mized hardware configuration with respect to application char-
acteristics. Moreover, Convey’s solution eases the programming
effort considerably. In contrast to hardware-centric and time-
consuming classical coding of FPGAs, a dual-target compiler
interprets pragma-extended C/C++ or Fortran code and produces
implementations running on both, host and accelerator. In
addition, a global view of host and device memory is provided
by means of a cache-coherent shared virtual memory space.

In this work we analyze Convey’s programming paradigm
and the associated programming effort, and we present practical
results on the HC-1. We consider vectorization strategies for the
single and double precision vector personalities and a suite of
basic numerical routines. Furthermore, we assess the viability
of the Convey HC-1 Hybrid Core Computer for numerical
simulation.

Keywords-FPGA, Convey HC-1, reconfigurable architectures,
high-performance heterogeneous computing, coherent memory
system, performance analysis, BLAS

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have their main

pillar and standing in the domain of embedded computing.

Application-specific designs implemented by hardware de-

scription languages (HDL) like VHDL and Verilog [1], [2]

make them a perfect fit for specific tasks. From a software-

oriented programmer’s point of view FPGA’s capabilities are

hidden behind an alien hardware design development cycle.

Although there are some C-to-HDL tools like ROCCC, Im-

pulse C or Handle-C [3] available, viability and translation

efficiency for realistic code scenarios still have to be proven.

For several years, FPGAs have not been interesting for

numerical simulations due to their limited capabilities and

resource requirements for double precision floating point arith-

metics. But following Moore’s law and with increased FPGA

sizes more and more area is becoming available for computing.

Moreover, further rates of increase are expected to outpace

those of common multicore CPUs. For a general deployment

and in particular for numerical simulation FPGAs are very

attractive from further points of view: run-time configurability

is an interesting topic for applications with several phases of

communication and computation and might be considered for

adaptive numerical methods. In addition, energy efficiency is

a great concern in high performance computing and FPGA

technology is a possible solution approach. The main idea

of FPGAs is to build one’s own parallel fixed-function units

according to the special needs of the underlying application.

Currently, numerical simulation adopts all kinds of emerg-

ing technologies. In this context, a trend towards heteroge-

neous platforms has become apparent [4]. Systems accelerated

by graphics processing units (GPUs) offer unrivaled comput-

ing power but often suffer from slow interconnection via PCIe

links. The idea to connect FPGAs via socket replacements

closer to CPUs is nothing new (cf. technologies from Nallat-

ech, DRC, XtremeData) – but the software concept offered

by Convey is revolutionary [5]. A related FPGA platform is

Intel’s Atom reconfigurable processor – an embedded single

board computer based on the Intel Atom E600C processor

series which pairs with an Altera FPGA in a single package.

Here, both entities communicate via PCIe-x1 links. A former

hybrid CPU-FPGA machine was the Cray XD1 [6].

In this work we outline the hardware and software architec-

ture of the Convey HC-1 Hybrid Core Computer. We analyze

Convey’s programming concept and assess the functionalities

and capabilities of Convey’s single and double precision vector

personalities. Furthermore, we evaluate the viability of the

Convey HC-1 Hybrid Core Computer for numerical simulation

by means of selected numerical kernels that are well-known

building blocks for higher-level numercial schemes, solvers,

and applications. Some performance results on the HC-1 can

be found in [7]. Our work puts more emphasis on floating point

kernels relevant for numerical simulation. Stencil applications

on the HC-1 are also considered in [8].

II. HARDWARE CONFIGURATION OF THE CONVEY HC-1

The Convey HC-1 Hybrid Core Computer is an example

of a heterogeneous computing platform. By its hybrid setup,

specific application needs can either be handled by an x86-

64 dual-core CPU or by the application-adapted FPGAs. All



computational workloads are processed by a 2.13GHz Intel

Xeon 5138 dual-core host CPU and by the application engines

(AE), a set of four Xilinx Virtex 5 LX330 FPGAs. Two

more V5LX110 FPGAs implement the host interface – the

application engine hub (AEH) – for data transfers and control

flow exchange between host and device, and eight V5LX155

FPGAs build the eight accelerator’s memory controllers. Data

transfers are communicated via the CPU’s front-side bus

(FSB), Intel’s aging technology. Across the whole system

a cache-coherent shared virtual memory system is provided

that allows to access data in the CPU’s memory and in

the accelerator device memory. However, the system incor-

porates a ccNUMA system where proper data placement is

performance-critical. In our system the host CPU is equipped

with 16x667MHz FBDIMMs providing 16 GB of memory and

a theoretical bandwidth of 8 GB/s. On the device 16 DDR2

memory channels feed Convey’s special 16x667MHz Scatter-

Gather-DIMMs with 8 GB device memory and a theoretical

peak bandwidth of 80 GB/s. The fundamental advantage of

this memory configuration is that non-unit strides have no

drawback on the effective bandwidth. All data can be accessed

with 8 byte granularity. Functional units on the FPGAs are

implemented by logic synthesis by means of Convey’s person-

alities [5]. The single precision vector personality provides a

load-store vector architecture with 32 function pipes, each one

containing a vector register file and four fused-multiply-add

(FMA) vector units for exploiting data parallelism by means

of vectorization. Furthermore, out-of-order execution provides

a means for instruction-level parallelism. While the clock rate

of the FPGAs is undisclosed, the peak GFlop/s rate is expected

to be about 80 GFlop/s for single precision and 40 GFlop/s for

double precision. The most accented difference of the FPGA

accelerator memory subsystem is that there are no caches and

no local memory available. All block-RAM on the FPGA is

not accessible by the user (unless custom personalities and

FPGA designs are created that support this feature). The whole

system consumes about 650-850 Watt (depending on the actual

workload). A sketch of the HC-1’s hardware configuration is

shown in Figure 1.

In comparison to other accelerators, the HC-1 offers lower

peak performance and lower bandwidth. But in contrast, fast

device memory can be configured up to 128 GB in size and is

not limited to a few GB as on GPUs. Furthermore, Convey’s

technology and its future development will possibly allow fast

cluster-like connection between several FPGA-based entities.

In the latest Convey product, the HC-1ex, Xilinx Virtex 6

FPGAs and an Intel 5408 Xeon quad-core processor provide

the same functionality with improved capabilities.

III. CONVEY HC-1’S SOFTWARE ENVIRONMENT

Programming of FPGAs by means of HDL is a time-

consuming and non-intuitive effort – and so FPGAs have

been out of reach for many domain experts. With Convey’s

solution, FPGAs are now a viable alternative from a

programming point of view. On the Convey HC-1, the

CPU’s capabilities are extended by application-specific
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Fig. 1. Hardware Configuration of the Convey HC-1

instructions for the FPGAs [5]. However, the asymmetric

computing platform is hidden by Convey’s unified software

interface. A single code base (C, C++ or Fortran) can be

enhanced with pragmas to advise the compiler how to treat

computations and data. In particular, code regions that should

be executed on the FPGAs can be identified by inserting

#pragma cny begin_coproc / end_coproc.

Another possibility is to compile whole subroutines for the

accelerator, or even to use compiler’s capability for automatic

identification of parts, that shall be offloaded to the FPGAs.

Typical code sections are those suitable for vectorization,

especially long loops. The compiler then produces a dual

target executable, i.e. the code can be executed on both the

CPU host (e.g. if the coprocessor is not available) and on the

FPGA accelerator. Hence, a portable solution is created that

can run on any x86 system. There are some restrictions to

coprocessor code: it is not possible to do I/O, to make system

calls or to call non-coprocessor functions. A compiler report

gives details on the vectorization procedure. Specific pragmas

give further hints for compiler-based optimizations.

Both memories on the host CPU and on the FPGA ac-

celerator are combined into a common address space and

data types are common across both entities. In order to

prevent NUMA effects, placement of data can be controlled by

pragmas. Data allocated in the CPU memory can be transferred

to the accelerator with #pragma cny migrate_coproc.

Dynamic and static memory on the FPGA device can

be allocated directly via #pragma cny_cp_malloc and

#pragma cny coproc_mem respectively. In case of mem-

ory migration whole memory pages are transferred. In order

to avoid multiple transfers, several data objects should be

grouped into larger structs.

The actual configuration of the FPGAs is represented by

means of application-specific instruction sets called personali-

ties. These personalities augment the host’s x86-64 instruction

set. This features allows adaptation and optimization of the

hardware with respect to the specific needs of the underlying



algorithms. The user only has to treat an integrated instruction

set controlled by pragmas and compiler settings. Convey

offers a set of pre-defined personalities for single and double

precision floating point arithmetics that turn the FPGAs into

a soft-core vector processor. Furthermore, personalities for

financial analytics and for proteomics are available. Currently,

a finite difference personality for stencil computations is

under development. The choice for a requested personality

is specified at compile time by setting compiler flags. With

Convey’s personality development kit custom personalities

can be developed by following the typical FPGA hardware

design tool chain (requiring considerable effort and additional

knowledge). Convey’s Software Performance Analysis Tool

(SPAT) gives insight into the system’s actual runtime behavior

and feedback on possible optimizations. The Convey Math

Library (CML) provides tuned basic mathematical kernels.

For our experiments we used the Convey64 Compiler Suite,

Version 2.0.0.

IV. THE POTENTIAL OF FPGAS

FPGAs have been considered to be non-optimal for floating

point number crunching. But FPGAs show particular benefits

for specific workloads like processing complex mathematical

expressions (logs, exponentials, transcendentals), performing

bit operations (shifts, manipulations), and performing sort

operations (string comparison, pattern recognition). Further

benefits can be achieved for variable bit length of data

types with reduced or increased precision, or for treating

non-standard number formats (e.g. decimal representation).

The latter points are exploited within Convey’s personalities

for financial applications and proteomics. Recently, Convey

reported a remarkable speedup of 172 for the Smith-Waterman

algorithm [9].

Pure floating point-based algorithms in numerical simu-

lation are often limited by bandwidth constraints and low

arithmetic intensity (ratio of flop per byte). The theoretical

peak bandwidth of 80 GB/s on the Convey FPGA device goes

along with a specific appeal in this context. However, memory

accesses on the device are not cached. Hence, particular bene-

fits are expected for kernels with limited data reuse like vector

updates (SAXPY/DAXPY), scalar products (SDOT/DDOT)

and sparse matrix-vector multiplications (SpMV). Convey’s

special Scatter-Gather DIMMs are well adapted to applications

with irregular data access patterns where CPUs and GPUs

typically show tremendous performance breakdowns.

V. PERFORMANCE EVALUATION

In order to assess the performance potential of Convey’s

FPGA platform for floating point-based computations in nu-

merical simulation we analyze some basic numerical kernels

and their performance behavior. In particular, we consider

library-based kernels provided by the CML and hand-written,

optimized kernels. By comparing both results we draw some

conclusion on the capability of Convey’s compiler. In all cases,

vectorization of the code and NUMA-aware placement of data

is crucial for performance. Without vectorization there is a

dramatic performance loss since scalar code for the accelerator

is executed on the slow application engine hub (AEH) that

builds the interface between host and accelerator device. If

data is not located in the accelerator memory but is accessed

in the host memory over the FSB, bandwidth and hence

performance also drop considerably.

For our numerical experiments we consider some basic

building blocks for high-level solvers, namely vector updates

z = ax + y (SAXPY/DAXPY in single and double precision),

vector product α = x · y (SDOT/DDOT), dense matrix-vector

multiplication y = Ax (SGEMV/DGEMV), dense matrix-matrix

multiplication C = AB (DGEMM/SGEMM), sparse matrix

vector multiplication (SpMV), and stencil operations.

VI. VECTORIZATION AND OPTIMIZATION OF CODE

In order to exploit the full capabilities of the FPGA ac-

celerator specific measures are necessary for code creation,

for organizing data accesses, and to support the compiler for

vectorizing code. Due to its nature as a low frequency, highly

parallel vector architecture, performance on the Convey HC-1

heavily depends on the ability of the compiler to vectorize the

code. One of the examples where this did not work out-of-the-

box is dense matrix-vector multiplication SGEMV. The code

snippet in Figure 2 shows a straightforward implementation.

Here, the pragma cny no_loop_dep gives a hint to the

compiler for vectorization that there are no data dependencies

in the corresponding arrays.

void gemv(int length, float A[], float x[],

float y[]){

for( int i = 0; i < length; i++) {

float sum = 0;

#pragma cny no_loop_dep(A, x, y)

for( int j = 0; j < length; j++)

sum += A[i*length+j] * x[j];

y[i] = sum;

}

}

Fig. 2. Straightforward implementation of dense matrix-vector multiplication
(SGEMV)

Although the compiler claims to vectorize the inner loop,

performance is only approx. 2 GFlop/s and by a factor of

7 below the performance of the CML math library version.

The coprocessor instruction set supports vector reduction

operations, but these seem to have a pretty high startup

latency. The outer loop is not unrolled. Attempts to do that

manually improved the performance somewhat, but introduced

new performance degradations for certain vector lengths.

The solution lies in exploiting Convey’s scatter-gather mem-

ory which allows for fast strided memory reads and therefore

allows to change the loop ordering (see Figure 3). This

gives considerably better results; performance improvements

by loop reordering are detailed in Figure 4. For the reordered

loops we consider three different memory allocation scenarios:

dynamic memory allocated on the host and migrated with



Convey’s pragma cny migrate_coproc, dynamic mem-

ory allocated on the device, and static memory allocated on

the host and migrated to the device with the pragma mentioned

above. Performance increases with vector length but has some

oscillations. These results even outperform the CML CBLAS

library implementation from Convey (cf. Figure 14).

void optimized_gemv(int length, float A[],

float x[], float y[]){

for( int i = 0; i < length; i++ )

y[i] = 0.0;

for( int j = 0; j < length; j++ )

#pragma cny no_loop_dep(A, x, y)

for( int i = 0; i < length; i++ )

y[i] += A[i*length+j] * x[j];

}

Fig. 3. Dense matrix-vector multiplication (SGEMV) optimized by loop
reordering
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VII. PERFORMANCE RESULTS AND ANALYSIS

A. Device Memory Bandwidth for Different Access Patterns

Performance of numerical kernels is often influenced by

the corresponding memory bandwidth for loading and storing

data. For our memory bandwidth measurements we use the

following memory access patterns that are characteristic for

diverse kernels:

Sequential Load (SeLo): d[i] = s[i]
Sequential Load Indexed (SeLoI): d[i] = s[seq[i]]
Scattered Load Indexed (ScaLoI): d[i] = s[rnd[i]]
Sequential Write (SeWr): d[i] = s[i]
Sequential Write Indexed (SeWrI): d[seq[i]] = s[i]
Scattered Write Indexed (ScaWrI): d[rnd[i]] = s[i]

Here, seq[i] = i, i = 1, . . . , N , is a sequential but indirect

addressing and rnd[i] is an indirect addressing by an arbitrary

permutation of [1, . . . , N ]. Results are presented in Figure 5

and should be seen in comparison to results obtained on a 2-

way Intel Nehalem processor with 2.53 GHz and a total of 8

cores and 8 threads running (corresponding results are shown

in Figure 6).
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Fig. 5. Memory bandwidth of the Convey HC-1 coprocessor for different
memory access patterns

For the sequential indirect access, Convey’s compiler cannot

detect possible improvements. For the scattered load and write,

Convey’s memory configuration gives better values than the

Nehalem system. The Convey HC-1 not only has an about 60%

percent higher peak memory bandwidth, but it really shows

the potential of its scatter-gather capability when accessing

random locations in memory. Here, traditional cache-based

architectures typically perform poorly and GPU systems have

a breakdown by an order of magnitude.

B. Data-Transfers Between Host and Device

Because of the strong asymmetric NUMA-architecture of

the HC-1 there are different methods to use main memory.

Three of them are used in the following examples:

• dynamically allocate (malloc) and initialize on the host;

use migration pragmas

• dynamically allocate (cny cp malloc) and initialize on

the device

• statically allocate and initialize on the host; use migration

pragmas

By initialization we mean the first touch of the data in mem-

ory. Because the Convey HC-1 is based on Intel’s precedent

technology of using the front-side bus (FSB) to connect mem-

ory to processors a major bottleneck is the data connection

between host memory and device memory. Figure 7 shows

the relation between initialization and migration bandwidth in
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Fig. 6. Memory bandwidth of a 2-way Intel Nehalem processor with 2.53
GHz using 8 cores for different memory access patterns

terms of GB/s on the host and device and between host and

device for the SAXPY vector update. Furthermore, Figure 7

depicts performance of the SAXPY in terms of GFlop/s (the

unit on the y-axis has to be chosen correspondingly). For

data originally allocated on the host and migrated to the

device we observe some oscillations in the performance. While

initialization inside the device memory reaches almost 20

GB/s, the transfer over the FSB achieves only about 700 MB/s.

This impedes fast switching between parts of an algorithm

which perform well on the coprocessor and its vector units and

other parts relying on the flexibility of high-clocked general

purpose CPU. Compared to GPUs attached via PCIe, the FSB

represents an even more narrow bottleneck.
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Fig. 7. Measured bandwidth for data initialization and migration for different
memory allocation schemes in GB/s and performance results in GFlop/s for
the SAXPY vector update

C. Avoiding Bank Conflicts with 31-31 Interleave

The scatter-gather memory configuration of the Convey HC-

1 can be used in two different mapping modes:

• Binary interleave: traditional approach, parts of the ad-

dress bitmap are mapped round-robin to different memory

banks

• 31-31 interleave: modulo 31 mapping of parts of the

address bitmap

Because in the 31-31 interleave mode the memory is divided

into 31 groups of 31 banks, memory strides of powers of

two and many other strides hit different banks and therefore

do not suffer from memory bandwidth degradation. But to

integrate this prime number scheme into a power of two

dominated world, one of 32 groups and every 32th bank are

not used resulting in a loss of some addressable memory and

approximately 6% of peak memory bandwidth. In Figure 8

performance results for the SAXPY vector update are shown

for both interleave options. For the SAXPY, binary memory

interleave is slightly worse. Performance results for the CML

DGEMM routine in Figure 9 show larger variations with 31-31

interleave. The DGEMM routine achieves about 36 GFlop/s

and the SGEMM routine yields about 72 GFlop/s on our

machine. In both cases this is roughly 90% of the estimated

machine peak performance.
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Fig. 8. Performance of SAXPY vector updates with 31-31 and binary
interleave

D. BLAS Operations

Basic Linear Algebra Subprograms (BLAS) [10] are a

collection and interface for basic numerical linear algebra

routines. We use these routines for assessment of the HC-

1 FPGA platform. We compare our own, straightforward

implementations of BLAS-routines with those provided by

Convey’s Math Library (CML). Loop reordering techniques

are applied for performance improvements. In the following

examples we use the three different memory usage schemes
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detailed in Section VII-B. In all three cases initialization and

migration costs are not considered in our measurements.

Data allocation on the host followed by migration routines

or pragmas is not really a controllable and reliable procedure.

From time to time considerable drops in performance are

observed. So far, we could not identify a reasonable pattern or

a satisfactory explanation for these effects. Our measurements

are made using separate program calls for a set of parameters.

When trying to measure by looping over different vector

lengths, allocating and freeing memory on the host and using

migration calls in between, the results are even less reliable.

We observe that our own implementations are usually faster

for short vector lengths – probably due to lower call over-

head and less parameter checking. For longer vector lengths

the CML library implementations usually give better results.

Results for the SAXPY/DAXPY vector updates are depicted

in Figure 10 and in Figure 11. Performance data for the

SDOT/DDOT scalar products are shown in Figure 12 and in

Figure 13, and for the SGEMV/DGEMV dense matrix-vector

multiplication in Figure 14 and in Figure 15.

E. Sparse Matrix-Vector Multiplication

Many numerical diescretization schemes for scientific prob-

lems result in sparse system matrices. Typically, iterative meth-

ods are used for solving these sparse systems. On top of scalar

products and vector updates, the efficiency of sparse matrix-

vector multiplications is very important for these scenarios.

When using the algorithm for the compressed sparse row

(CSR) storage format [11] presented in Figure 16, loops and

reduction operations are vectorized by the compiler. However,

the performance results are very disappointing – being in the

range of a few MFlop/s. Although the memory bandwidth

for indexed access as presented in Figure 5 is very good, the

relatively short vector length and the overhead of the vector

reduction in the inner loop seem to slow down computations
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(see also observations in Section VI on loop optimizations).

Unfortunately, in this case loop reordering is not that easy be-

cause the length of the inner loop depends on the outer loop. A

possible solution is to use other sparse matrix representations

like the ELL format, as used on GPUs e.g. in [12].

F. Stencil Operations

Stencil kernels are one of the most important routines

applied in the context of solving partial differential equa-

tions (PDEs) on structured grids. They originate from the

discretization of differential expressions in PDEs by means of

finite element, finite volume or finite difference methods. They

are defined as a fixed subset of nearest neighbors where the

corresponding node values are used for computing weighted
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Fig. 13. DDOT scalar product using different implementations and different
memory allocation strategies

sums. Theassociated weights correspond to the coefficients

of the PDEs where coefficients are assumed to be constant

in our context. In our test we used a 3-dimensional 7-point

stencil for solving the Laplace equation on grids of different

sizes. The performance results are shown in Figure 17. Our

stencil code is close to the example given in the Convey

documentation material. The CPU implementation is the one

used in [13], not using the presented in-place optimization but

only conventional space-blocking and streaming optimizations.

For the conventional CPU one can see a high peak for small

grid sizes when the data can be kept in the cache. For larger

grid sizes a pretty constant performance with slight increases

due to less loop overhead is observed. The Convey HC-1 on

the other hand shows no cache effects but lower performance
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Fig. 14. SGEMV matrix-vector multiplication using different implementa-
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Fig. 15. DGEMV matrix-vector multiplication using different implementa-
tions and different memory allocation strategies

on smaller grids. But unfortunately because of its lack of

caching, neighboring values of the stencil have to be reloaded

every time they are needed – wasting a large portion of the

much higher total memory bandwidth. On the Convey HC-

1, the difference between single and double precision stencil

performance becomes apparent only for large grid size.

VIII. CONCLUSION

Convey’s HC-1 Hybrid Core Computer offers seamless

integration of a highly capable FPGA platform with an easy

coprocessor programming model, a coherent memory space

shared by the host and the accelerator, and remarkable band-

width values on the coprocessor. Moreover, Convey’s scatter-

gather memory configuration offers advantages for codes with



void spmv(int nrows, float val[],

int coli[], int rowp[],

float vin[], float vout[]){

#pragma cny no_loop_dep(val, vin, vout)

#pragma cny no_loop_dep(coli, rowp)

for( int row = 0; row < nrows; row++ ) {

int start = rowp[row];

int end = rowp[row+1];

float sum = 0.0;

for( int i = start; i < end; i++ ) {

sum += val[i] * vin[coli[i]];

}

vout[row] = sum;

}

}

Fig. 16. Sparse matrix-vector multiplication (SpMV) routine for CSR data
format
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Fig. 17. Performance of a 3-dim. 7-point Laplace stencil (one grid update
is counted as 8 Flop) on the Convey HC-1 and on a 2-way Intel Nehalem
processor with 2.53 GHz using 8 cores

irregular memory access patterns. With Convey’s personalities

the actual hardware configuration can be adapted to, and opti-

mized for specific application needs. With its HC-1 platform,

Convey brings FPGAs closer to high performance computing.

However, we have failed to port more complex applications

originating in numerical simulation due to the failure to obtain

acceptable speed for sparse matrix-vector multiplication.

The HC-1 has the potential to be used for general purpose

applications. Although the HC-1 falls behind the impressive

performance numbers of GPU systems and the latest multicore

CPUs, it provides an innovative approach to asymmetric

processing, to compiler-based parallelization, and in particular

to portable programming solutions. Only a single code base

is necessary for x86-64 and FPGA platforms which facilitates

maintainability of complex codes. In contrast to GPUs, mem-

ory capacity is not limited by a few GB and FPGAs connected

by direct networks come in reach. A great opportunity lies

in the possibility to develop custom personalities – if time,

knowledge and costs permit.

Convey’s approach represents emerging technology with

some deficiencies but also with a high level of maturity. Major

drawbacks arise from limitations for floating point arithmetics

on FPGAs, compiler capabilities for automatic vectorization,

and the usage of Intel’s obsolete FSB communication infras-

tructure. In our experience, typical code bases still show room

for code and compiler improvements. While major benefits

have been reported for specific workloads in bioinformatics,

the HC-1 also provides a viable means for floating point-

dominated and bandwidth-limited numerical applications. De-

spite its high acquisition costs, this breakthrough technology

needs further attention.
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