
HiFlow3 – A Flexible and Hardware-

Aware Parallel Finite Element Package

H. Anzt, W. Augustin, M. Baumann, H. Bockelmann,

T. Gengenbach, T. Hahn, V. Heuveline, E. Ketelaer, D.

Lukarski, A. Otzen, S. Ritterbusch, B. Rocker, S. Ronn̊as,

M. Schick, C. Subramanian, J.-P. Weiss, F. Wilhelm

No. 2010-06

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)



Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2010-06

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu



HiFlow3 – A Flexible and Hardware-Aware

Parallel Finite Element Package

Hartwig Anzt, Werner Augustin, Martin Baumann, Hendryk Bockelmann,
Thomas Gengenbach, Tobias Hahn, Vincent Heuveline, Eva Ketelaer,

Dimitar Lukarski, Andrea Otzen, Sebastian Ritterbusch, Björn Rocker,
Staffan Ronn̊as, Michael Schick, Chandramowli Subramanian,

Jan-Philipp Weiss, Florian Wilhelm

Engineering Mathematics and Computing Lab (EMCL)
Karlsruhe Institute of Technology, Germany

{Hartwig.Anzt,Werner.Augustin,Martin.Baumann,Hendryk.Bockelmann,
Thomas.Gengenbach,Tobias.Hahn,Vincent.Heuveline,Eva.Ketelaer,

Dimitar.Lukarski,Andrea.Otzen,Sebastian.Ritterbusch,Bjoern.Rocker,

Staffan.Ronnas,Michael.Schick,Chandramowli.Subramanian,

Jan-Philipp.Weiss,Florian.Wilhelm}@kit.edu

Abstract. This paper details the concept and implementation of the
parallel finite element software package HiFlow3. HiFlow3 is driven by
application requirements and aims at the solution of large-scale problems
obtained by means of the finite element method for partial differential
equations. By utilizing object-oriented concepts and the full capabilities
of C++ the HiFlow3 project follows a modular and generic approach
for building efficient parallel numerical solvers. It provides highly ca-
pable modules dealing with the mesh setup, finite element spaces, de-
grees of freedom, linear algebra routines, numerical solvers, and out-
put data for visualization. Parallelism – as the basis for high perfor-
mance simulations on modern computing systems – is introduced on
two levels: coarse-grained parallelism by means of distributed grids and
distributed data structures, and fine-grained parallelism by means of
platform-optimized linear algebra back-ends. Modern numerical schemes
in HiFlow3 are built on top of both levels of parallelism. This paper
describes the project, its concept, and application scenarios in detail
and outlines our hardware-aware cross-platform portable approach that
benefits from various emerging technologies like GPU acceleration in a
unified and user-friendly manner.

Keywords: Parallel Finite Element Software, High Performance Com-
puting, Numerical Simulation, Hardware-aware Computing, Multi-core,
GPGPU, hp-adaptive FEM

1 Introduction

Numerical simulation based on finite element discretizations of partial differential
equations describing physical processes is a powerful means for gaining deeper



2

scientific insight. It aims at delivering accurate simulation results, allowing to
replace costly experimentation, enabling comprehensive parameter studies, and
allowing for optimization of production processes and development cycles. Com-
plexity of geometries and models and the demands for high accuracy typically
result in a huge number of modeled degrees of freedom (DoF) with complex cou-
plings. In this setting short solving run times require both powerful hardware
and efficient parallel numerical methods compliant with multi-level parallelism
and hierarchical memory systems of modern computing platforms. Due to the
shift towards the multi- and many-core era both aspects need to be considered in
the big picture following the approach of hardware-aware computing. The wide
variety of available platforms and the associated challenges of software porta-
bility result in a strong need for portable and self-adaptable concepts providing
high performance and moderate programming effort for domain specialists and
software users.

Scientific computing and numerical simulations are very important tasks in
research, engineering and development. Mathematics combined with new soft-
ware design dedicated to state-of-the-art hardware technologies result in high
complexity but also break new grounds in the area of scientific computing.
HiFlow3 is a multi-purpose finite element software providing powerful tools for
efficient and accurate solution of a wide range of problems modeled by par-
tial differential equations (PDEs). HiFlow3 is based on finite element methods
(FEM). Its implementation utilizes objected-oriented and template concepts in
C++. It is actively developed by a team of seventeen people at the Engineering

Mathematics and Computing Lab (EMCL) at Karlsruhe Institute of Technology
(KIT). HiFlow3 is based on ten years of experience and development and com-
bines state-of-the-art programming techniques with aspects of high performance
computing and modern hardware platforms. Due to multi-core-shift and new
paradigms in parallel computing the whole project is currently re-engineered and
re-structured in order to fully utilize recent hardware technologies, the associated
potential of hybrid computing platforms, but also to account for bottlenecks in
the communication infrastructure.

The vision of HiFlow3 is to synergize numerical simulation, numerical opti-
mization, and high performance computing (HPC) for the solution of complex
problems with high relevance in science and impact on society for instance in
the fields of meteorology, climate prediction, energy research, medical engineer-
ing, and bioinformatics. All these problems have in common a high complexity
in interaction of physical and chemical effects in the system under study, a
mathematical model with strong couplings, and large requirements of computer
resources such as memory and CPU speed. Due to the wide variety of models, as-
sumptions, requirements, and purposes of the problem settings usually different
aspects need to be considered in the simulation cycles. To handle this, HiFlow3

aims at maximal flexibility by its modular approach.

The paper is structured as follows. First, the design of HiFlow3 is outlined
and the modules and their respective challenges are introduced. Then the main
modules Mesh, DoF/FEM and Linear Algebra are described in details and the



3

concept for assembly of the system matrices is presented. Finally, a show case
demonstrates the capabilities and the workflow of the HiFlow3 parallel finite
element package.

2 Motivation, Concepts and Structure of HiFlow3

2.1 Fields of Application

A typical application incorporating the full complexity of physical and mathe-
matical modeling is the United Airways project [28]. Within an interdisciplinary
framework its objective is the simulation of the full human respiratory tract
including complex and time-dependent geometries with different length scales,
turbulence, fluid-structure interaction (e.g. fine hairs and mucus), and effects
due to temperature and moisture variations. Due to the complex interaction of
all effects it is a great challenge to construct robust numerical methods giving
accurate simulation results within a moderate time. As a further vision, interac-
tive and real time simulations should give medical advice on personalized data
during examination and surgery. Another example is the project Goal Oriented

Adaptivity for Tropical Cyclones (see 8.1). Many weather phenomena such as
the development and motion of Tropical Cyclones are influenced by processes on
scales that may range from hundreds of meters to thousands of kilometers. Due
to computational requirements and memory limitations it is often impossible to
resolve all relevant scales on globally refined meshes. Application dependent re-
quirements and varying demands with respect to the quantity which is of interest
lead to specific treatment of modern adaptive numerical methods that need to
be adapted to the associated problem settings.

2.2 Flexibility

The conceptual goal of HiFlow3 is to be a flexible multi-purpose software package
that can be adapted to most user scenarios. To this end, the core of HiFlow3

is divided into three main modules: Mesh, DoF/FEM and Linear Algebra; see
Figure 1. These three core modules – further extended by a suite of other modules
– are essential for the solution procedure based on finite element methods for
partial differential equations. They offer the main functionality for mapping
mathematical problem scenarios into parallel software.

Other building blocks for HiFlow3 are routines for numerical integration of
element integrals, assembling of system matrices, inclusion of boundary condi-
tions, setting up nonlinear and linear solvers, providing output data for visu-
alization of solutions, error estimators, and others. These routines are added
to the core modules. This modular structure ensures the flexibility to employ
the library to solve a wide variety of problems. Another aspect of modularity
is to enable extensibility of the HiFlow3 package. There exist two basic ways to
extend HiFlow3. Firstly further modules and methods for user-defined applica-
tions such as modules for stochastic finite elements or chemical reactions can



4

Fig. 1. Structure of the HiFlow3 core divided into modules and methods.

be added to the HiFlow3 core. Secondly existing modules and methods can be
augmented by adding further functionality. The possibility to extend HiFlow3

by static or dynamic polymorphism provides a basis for future development. For
instance in the mesh module a new implementation inherited from the abstract
mesh base class can be implemented, the DoF/FEM module can be extended
by further finite elements spaces such as H(div) or H(curl), and in the Linear
Algebra module more data structures for matrices could be added – all in the
sense of dynamic polymorphism. Available linear algebra data structure can be
extended through the use of templates. The basic principle of HiFlow3 is the
aim for a generic implementation in order to be able to use different modules
and methods for a variety of problems following the approach of a multi-purpose
software. Of course there is a trade-off when dealing with problems that need
particular implementation and highly-specialized methods for efficient, robust
and accurate simulations.

2.3 Performance, Parallelism, Emerging Technologies

Another object of HiFlow3 is the full utilization of all available resources on
any platform – from large HPC systems to any stand-alone workstation or
coprocessor-accelerated machine. To achieve this goal all three modules (Mesh,
DoF/FEM, Linear Algebra) provide distributed data structures. The communi-
cation between different nodes and processors is realized by means of an MPI-
layer. On the linear algebra level we use concepts of hardware-aware computing
for acceleration of basic routines like local matrix-vector and vector-vector op-



5

erations. Here, the main challenge is to fully utilize the available computing
power of emerging technologies like multi-core CPUs, graphics processing units
(GPUs), multi-GPUs, and any other coprocessor-accelerated or heterogeneous
platform. The advantage of the structure provided by the Linear Algebra mod-
ule is the potential to build solvers without having detailed information on the
underlying platform. All methods are layed out with respect to scalability in a
generic sense. Of course, best performance conflicts with flexibility. In that case
HiFlow3 favors performance over flexibility – which could mean to offer a solver
which is only efficient for a special problem. Another important issue is the us-
ability and convenience. HiFlow3 provides the user with a transparent structure
enabling him to set up and get a simulation for his application running with
minimal effort.

2.4 Hardware-aware Computing

The huge demand on fast and accurate simulation results for large-scale prob-
lems poses considerable challenges on the implementation on modern hardware.
Supercomputers and emerging parallel hardware like GPUs offer impressive com-
puting power in the range of Teraflop/s for desktop supercomputing up to
Petaflop/s for cutting edge HPC machines. The major difficulty is the devel-
opment of efficient parallel code that is scalable with respect to exponentially
increasing core counts and portable across a wide range of computing platforms.
With the advent of the many-core era new platforms like the GPUs, the Cell
BE, FPGA-based systems like Convey’s Hybrid Core Computer or Intel’s tiled
architectures (Polaris, Rock Creek) or the Larrabee incarnation Knight Ferry
have emerged [21, 37, 40, 44, 49, 54, 55]. These technologies come along with im-
pressive capabilities but different programming approaches, different processing
models, and different tool chains. Moreover, all numerical methods need to be
compliant with multiple levels of parallelism within hybrid systems and with
hierarchical memory subsystems. Typically, manual tuning and parameter vari-
ation is necessary for optimal performance on a dedicated system. In this context,
hardware-aware computing is a multi-disciplinary approach to identify the best
combination of applications, physical models, numerical schemes, parallel algo-
rithms, and platform-specific implementations that is giving the fastest and most
accurate results on a particular platform [17]. Design goals are maximal flexibil-
ity with respect to software capabilities, mathematical quality, efficient resource
utilization, performance, and portability of concepts. Hardware-aware comput-
ing not only comprises highly-optimized platform-specific implementations, de-
sign of communication-optimized data structures, and maximizing data reuse
by temporal and spatial blocking techniques it also relies on the choice and de-
velopment of adequate mathematical models that express multilevel-parallelism
and scalability up to a huge number of cores. The models need to be adapted to
a wide range of platforms and programming environments. Data and problem
decomposition on heterogeneous platforms is a further objective. Memory trans-
fer reduction strategies are an important concept for facing the bottlenecks of
current platforms. Since hardware reality and mathematical cognition give rise



6

to different implementation concepts, hardware-aware computing means also to
find a balance between the associated opponent guiding lines while keeping the
best mathematical quality (e.g. optimal work complexity, convergence order, er-
ror reduction and control, accuracy, robustness, efficiency). All solutions need
to be designed in a reliable, robust and future-proof context. The goal is not to
design isolated solutions for particular configurations but to develop methodolo-
gies and concepts that preferably apply to a wide range of problem classes and
architectures or that can be easily extended or adapted. The HiFlow3 project
has implemented related concepts in the framework of the local multi-platform
LAtoolbox [33, 35] within the Linear Algebra module.

2.5 Object-oriented Programming Approach

In order to be able to handle the complexity of solving such a great variety
of problems HiFlow3 is implemented in C++. The object-oriented paradigm
of C++ with its support for polymorphism and inheritance allows all involved
developers to contribute with their individual specialized knowledge. End-user
and researcher can handle opaque and problem-oriented objects, computer sci-
entists and hardware specialists produce optimized low-level implementations,
while mathematicians provide new numerical solver algorithms. Furthermore,
the intensive use of the template features of C++ gives the compiler a lot of
opportunities for compile-time optimizations. Our modular approach with uti-
lization of the object-oriented concepts of C++ is the best way to handle the
complexity of such a sophisticated software project with many contributors. The
approaches of data abstraction, encapsulation and clear interfaces between vari-
ous modules not only ease maintainability of the code but also enable reusability
of specific parts for the extension of functionalities and features. An additional
benefit of this approach is the possibility to use parts of the software as stand-
alone libraries or modules for other projects like e.g. the LAtoolbox. In such a
way, our project provides building blocks for the development of new solvers and
the extension to new problem domains.

2.6 Modeling and Workflow

Many physical problems are modeled by means of partial differential equations.
Typical examples are the Poisson equation (e.g. for electric or gravity fields),
stationary or time-dependent convection diffusion equations (e.g. transfer of par-
ticles or energy), and the Navier-Stokes equation (e.g. fluid flow around an ob-
stacle, simulation of a tropical storm, air flow in the lung). A classical approach
for solving associated problems relies on discretization of the equations in the do-
main of interest by means of finite element methods [14, 15, 19] on spatial grids.
Searching for approximations in finite dimensional function spaces by means of
weak formulations results in linear or nonlinear systems of equations that are
typically solved by Newton-type methods, time-stepping schemes and iterative
solvers. Coupling between degrees of freedom is mainly expressed by nearest
neighbor interaction with a high degree of locality. Due to the required accuracy



7

of the discrete approximations large numbers of degrees of freedom are required
resulting in huge and sparse matrices with bad condition numbers in general.

For the finite element solution procedure the following steps have to be per-
formed for mapping a problem modeled by PDEs to HiFlow3. First, the physical
problem has to be expressed in terms of PDEs in an adequate way. The next
theoretical step is to derive a weak formulation in a variational sense. In a pre-
processing step the domain of interest is discretized by means of a finite element
triangulation and converted to a format readable by the mesh module. Once the
spatial grid is read in it can be adjusted e.g. by means of a refinement procedure.
Then, a problem-adapted finite element space with appropriate ansatz functions
has to be chosen. For the Navier-Stokes equations Taylor-Hood elements are an
appropriate choice. Once these two informations are provided the degrees of free-
dom can be determined first locally (this corresponds to the FEM part) on each
cell, and then globally for the whole mesh (this corresponds to the DoF part). In
the case of distributed memory platforms the DoF-partitioner is used to create a
global degree of freedom (DoF) numbering throughout the whole computational
domain by only using its local information and MPI communication across the
nodes. Once all DoFs are identified the matrix can be assembled by local inte-
gration over all elements within the triangulation. Data structures for matrices
and vectors are provided by the Linear Algebra module. In case of nonlinear
problems a Newton method is combined with a linear solver for the problem
solution. Finally, output in either sequential or parallel format is provided for
the visualization. This is an important aspect of the simulation cycle for an as-
sessment and exploration of simulation data. There exist several visualization
tools which can be used for this postprocessing step. Within HiFlow3 there are
e.g. back ends for HiVision [36] and Paraview [31].

2.7 Modules in HiFlow3

The implementation of a parallel and flexible finite element software package
aiming at general purpose deployment and portability across a wide range of
platforms comes along with various challenges in the respective modules.

The mesh module is responsible for the interaction with the discretized
computational domain. It is designed primarily for unstructured meshes, and
can handle several different cell types in different dimensions. In order to sup-
port adaptive algorithms, the Mesh module can work with both nonconforming
meshes and meshes containing cells of mixed types. Additionally, it provides
functionality to refine and coarsen a mesh, both globally and locally, and to
retrieve the history of these modifications. Furthermore, the use of meshes dis-
tributed over several processors is supported, in order to reduce the memory
requirements for large-scale simulations running on a high-performance cluster.
For this purpose, the module also contains functionality for dealing with parti-
tioning and communication of the mesh data. The link between the local mesh
and its neighbors is a layer of ghost cells that are shared between each pair of
processors.



8

The DoF/FEM module treats the problem of numbering and interpolating
the degrees of freedom. In the first step the local DoFs of each cell for a chosen
finite element space need to be determined. Then the local DoFs of each cell
have to be numbered globally. We are using a generic approach handling all
cell types and finite element spaces. In the case of distributed data structure
the DoF module further handles the neighborhood relations between cells which
are distributed on different processors. To this end, the module takes advantage
of ghost cells created by the mesh module. Another task is to distribute the
DoFs in a balanced way such that each processor is responsible for almost the
same number of degrees of freedom. Here, different complexities and work load
contributions need to be considered since each cell might use different ansatz
functions.

The Linear Algebra module provides distributed and platform-optimized
data structures for vectors and matrices as well as implementations for cor-
responding matrix-vector and vector-vector operations. Due to localized inter-
actions between finite element basis functions resulting matrices are typically
sparse. For that purpose, adequate sparse matrix formats are provided. The
structure of the Linear Algebra module is based on two levels: the inter-node level
communication layer utilizes MPI and the intra-node communication and com-
putation model is based on platform-specific programming environments that
are accessed by generic and unified interfaces. In order to reduce the cost of
communication on the upper layer the Linear Algebra module takes advantage
of ghost cells provided by the Mesh module (and also used in the DoF mod-
ule). On the local intra-node layer the focus is set to methods of hardware-aware
computing aiming at best choice of platform-specific implementations. The con-
cept of the Linear Algebra module allows to compute local matrix vector op-
erations on hybrid systems and accelerators such as multi-core-CPUs, GPUs,
and OpenCL-enabled devices. By providing unified interfaces with back ends to
different platforms and accelerators the module allows seamless integration of
various numerical libraries and devices. The user is freed from any particular
hardware knowledge – the final decision on platform and chosen implementa-
tion is taken at run time. Naturally, scalability plays an important role in this
module.

2.8 Short Survey on Existing FEM-Software

There exist reams of other non-commercial and commercial parallel finite ele-
ment software packages beside HiFlow3. We do not want to give an complete and
exhaustive overview on state-of-the art finite element software but we want to
mention in alphabetical order at least a few of them. Alberta [48] is an adaptive
hierarchical finite element toolbox. Only simplices are used for the triangulation.
Refinement and coarsening is restricted to bisection. The main focus lies on adap-
tivity which is achieved by different mesh modification algorithms and a data
structure which stores the mesh in a binary tree. COMSOL Multiphysics [20] is
a commercial simulation software environment. It includes the definition of the
geometry, meshing, specifying the physics, solving as well as the visualization.



9

For good usability many common problem types are predefined as templates.
The C++ programming library deal.II [8, 9] is an Open Source project and uses
adaptive finite elements for solving partial differential equations. It supports
one, two, and three space dimensions, and is restricted to intervals, quadrilat-
erals and hexahedrons. DUNE [24] is a modular toolbox for solving PDEs with
grid based methods. It is not restricted to Finite Elements but also discretizes
with Finite Volumes and Finite Differences. The main principles are abstract
interfaces, generic programming techniques and reuse of existing finite element
packages. FEAST [26] is a software package designed to solve FE problems. For
better floating point performance and memory utilization it can use different co-
processors platforms like GPU and Cell BE. It is based on a specific structure
grid which lead to sparse banded matrices. Fluent [4] is a commercial Compu-
tation Fluid Dynamics (CFD) software package provided from Ansys Inc. It is
one of the most mature software on the CFD market. NASTRAN is a program
for general Finite Element Analysis which was originally developed in the late
1960s for the NASA. The whole software package is quite large and powerful but
due to its age it is written in old legacy languages. UG [51] stands for unstruc-
tured grids and is a software tool for numerical solutions of partial differential
equations. To achieve numerical efficiency UG uses adaptivity on the grid level,
multi-grid methods and parallelism in form of distributed dynamic data. In most
cases based on the FE discretization, useful packages for solving the obtained
linear system are PETSc [5–7] and Trilinos [32] which are highly scalable linear
algebra libraries providing data structures and routines for large-scale scientific
applications modeled by partial differential equations. Their mechanisms are
optimized for parallel application codes, such as parallel matrix and vector as-
sembly routines and linear solving routines, and allows the user to have detailed
control over the solution process.

3 Mesh Module

In the finite element method, the computational domain is approximated by a
mesh, which allows it to be represented in a discrete form on a computer. The
Mesh module provides support for input and output from files, iteration over
the entities in the mesh, refinement and coarsening of cells, and communication
between meshes existing on different processors.

This section first describes some basic mathematical ideas concerning the
geometry and topology of meshes. This is followed by an explanation of the
abstract interfaces that the module provides for interacting with meshes and
mesh entities, as well as the first implementation of these interfaces, which is
provided in the module. The three last sub-sections deal with three aspects of
the Mesh module in more detail: the generic description of cell types, the support
for refinement and coarsening, and the functionality for managing distributed
meshes.



10

3.1 Geometry and Topology

In the context of HiFlow3, we consider a mesh as being a partitioning of a
domain into cells of a limited number of predefined shapes. The list of possible
cell types is extensible, and there are already implementations for triangles and
quadrilaterals in 2d, and tetrahedrons and hexahedrons in 3d. These shapes
and the vertices are referred to as entities in the following. The cells are non-
overlapping in the sense that their mutual intersections are lower-dimensional
shapes, but the mesh does not need to be conforming, which means that the
intersection of two neighboring cells does not have to be a sub-entity of both
cells.

The geometry of the mesh is considered separately from its topology, in
order to simplify the development of simulations involving for instance moving
meshes. Currently, the geometry representation in the Mesh module is simply
an assignment of some coordinates to each vertex. This is the natural choice, as
the vertex coordinates is the basic information provided by all mesh generators.

The topology of the mesh is described via the incidence relations (also called
connectivities by some authors) between its entities. For the computation and
representation of incidence relations, we closely follow the approach described
in [39]. As in that paper, the incidence relation between entities of dimension
d1 and those of dimension d2 in a mesh is denoted by (d1 → d2). What this
incidence relation means depends on whether d1 is larger than, smaller than, or
equal to, d2.

– d1 > d2: the d2-entities contained in each d1-entity (e.g. 3 → 1 the edges of
a 3d-cell).

– d1 < d2: the d2-entities containing each d1-entity (e.g. 1 → 3 the cells sharing
an edge).

– d1 = d2, d1, d2 > 0: the d2-entities sharing at least one vertex with each
d1-entity

Starting from the input connectivity D → 0, where D is the topological
dimension of the cells of the mesh, all connectivities can be computed through
the combination of three basic algorithms:

– build: computes d → 0 and D → d from D → D and D → 0, for 0 < d < D.
– transpose: computes d1 → d2 from d2 → d1, for d1 < d2

– intersect: computes d1 → d2 from d1 → d3 and d3 → d2, for d1 ≥ d2.
d3 = 0 if d1,d2 > 0

These algorithms, together with the algorithm that combines them to com-
pute a given connectivity is described in [39]. The special case 0 → 0 has been
omitted since it has not been implemented in HiFlow3).

3.2 Abstract Interface Classes

The use of abstract interfaces is the cornerstone of modular programming, which
enables a decoupling between different parts of a program, allowing each to vary



11

separately. The Mesh module provides an abstract interface to its services via a
collection of classes with separate responsibilities.

The Mesh class represents a computational mesh. It is an abstract base class,
and hence cannot be instantiated. Instead, different concrete mesh implemen-
tations can be created, possibly with different performance characteristics, and
different levels of generality. The use of dynamic polymorphism instead of static
polymorphism based on templates, which is the current trend in scientific C++
programming, is motivated through the higher degree of flexibility (the imple-
mentation can be chosen at runtime), and the simpler code that results. The
price to pay is the overhead of virtual function calls, which the authors believe
to be small for typical use cases. As a comparison, an example of the use of static
polymorphism for mesh handling can be found in the dune-grid module of the
DUNE project [24].

An important characteristic of the Mesh class is that its public interface con-
tains almost exclusively const functions, meaning that a Mesh can be considered
to be an immutable object. This design choice was based on the considerable
simplifications that it allows when reasoning about the validity of the state of
the Mesh objects. The only time at which a Mesh can be modified is when it is
constructed. This responsibility is given to implementations of the MeshBuilder
interface, which in accordance to the Builder design pattern [27], lets the user
build the mesh by providing its vertices and entities incrementally, before ob-
taining the finished Mesh object via the build() method.

An exception to the immutability of the Mesh object is the attributes mech-
anism. Similar to the MeshFunction class described in [39], the Attribute class
provides a way for the user to associate named data of different types to the
entities of the Mesh. This concept is also used to store results associated with
different mesh operations, such as refinement.

The Mesh abstract base class represents an entire mesh. In many algorithms,
however, it is useful to work with a local view of individual entities. This is
provided through the Entity class, which uses the Mesh interface to obtain the
data associated with a single entity of the mesh. Even though it is a concrete
class and can be instantiated, it only depends on the Mesh interface, and can
thus be used with all possible Mesh implementations.

Random access to the entities of a Mesh is provided through the function
Mesh::get entity(), but it is also possible to iterate over entities in two ways.
Forward iteration over all entities of a given dimension in the Mesh is pro-
vided through the class EntityIterator and the functions Mesh::begin() and
Mesh::end(). Iteration over the entities incident to a given entity is provided
through the class IncidentEntityIterator, which is obtained from the pair
of functions Entity::begin incident() / Entity::end incident() . Like the
Entity class, the iterator classes are independent of the concrete Mesh imple-
mentation used. More complex types of iteration can be implemented through
the use of the boost::Iterator framework [1], which these iterator classes support.



12

3.3 Mesh Implementation

There is at the moment one implementation of the interface defined by the
Mesh class, which is provided by the MeshDbView and RefinedMeshDbView sub-
classes. The second class is derived from the first, and represents a mesh that
is a refinement of another mesh. In addition to the data stored in MeshDbView,
RefinedMeshDbView also has the refinement history associated to it, and over-
loads some of the functions to use this refinement history.

Most of the functionality is however provided by the MeshDbView class,
which heavily depends on a third class, MeshDatabase. The MeshDatabase class
manages a unique numbering for all entities over a set of meshes. A single
MeshDatabase object is shared between all meshes in a refinement hierarchy,
and between a mesh and its boundary mesh. In accordance with its name, a
MeshDbView object represents a limited view of the MeshDatabase: either a level
in the refinement hierarchy, or the boundary of a mesh.

The MeshDatabase class manages the entity-vertex and vertex-entity connec-
tivities (d → 0) and (0 → d) for all existing entities. On demand, the MeshDbView
class can compute and cache the restriction of these connectivities to the enti-
ties belonging to a particular mesh. It can also compute the other connectivities
upon request.

The MeshDatabase class provides set semantics for its entities, meaning that
if an entity is added several times, it only exists once and always receives the
same id. This is implemented with the help of an additional structure, the
VertexSearchTable, which makes it possible to search for a vertex by its co-
ordinates. The underlying data structure is simply an array of the vertex id:s
sorted by their distance to the origin. The search for a given vertex consists of
first finding all vertices which are at the same distance from the origin (within
a small tolerance), and then performing a linear search over these vertices. Al-
though the worst-case efficiency of this structure is not optimal, it has proven
to be quite fast when used together with typical simulation data.

The VertexSearchTable makes it easy and efficient to enforce set semantics
for vertices. When a vertex is added to the MeshDatabase, a search is performed
first to see whether it already exists. If so, the id of the existing vertex is returned
instead of creating a new vertex. For the entities of dimension larger than 0, the
corresponding search is performed using the 0 → d connectivities, which, unlike
the other connectivities, are sorted. Looking up an entity, specified by its vertex
ids, consists in computing the intersection of the sets of entities connected to
each of its vertices. If the entity does not exist, this intersection will be empty,
and otherwise it will be simply the set containing the id of the sought entity.

Building new MeshDbView objects is done through the MeshDbViewBuilder

class, which implements the interface defined by the MeshBuilder class. The
MeshDbViewBuilder holds a reference to the MeshDatabase to which new en-
tities should be added. The fact that the MeshDatabase provides set semantics
for adding vertices and entities, makes the implementation of the MeshDbView-

Builder extremely simple: the same vertex or entity can be added several times,



13

but will always receive the same id, which saves the MeshDbViewBuilder class
from having to keep track of which entities have already been added.

3.4 Cell Types

The description of the different types of cells (lines, triangles, quadrilaterals,
tetrahedrons and hexahedrons) is done through the CellType class hierarchy. The
base class, CellType, stores information about the local D → d connectivities
and the possible refinements of a cell type. By combining these two pieces of
information, the connectivities of the refined sub-cells are also derived, which is
the basis for the handling of non-conforming meshes. Each subclass of CellType
simply implements some callback functions that return the specific information
for that cell type, and it is only used for initialization.

A refinement is specified in three steps. Firstly, so-called “refined vertices”
are added to the cell type. A refined vertex is simply the barycenter of a set of
existing vertices. In a second step, one can then define the “sub-cells” by speci-
fying the set of vertices (regular or refined) that it contains. Finally a refinement
is defined as the set of sub-cells that should be produced by the refinement.

The connectivities for the sub-cells and its sub-entities are computed auto-
matically using the CellType definitions of the sub-cells. The central idea is that
“refined” entities are numbered consecutively, starting after the corresponding
“regular” entities. In each cell type, cell 0 is the cell itself, and cells (1,. . . ) are
the sub-cells that can be included in a refinement. Similarly if vertices (0,. . . ,N)
are the vertices of cell 0 (i.e. the regular vertices), one can add refined vertices
(N+1,. . . ), which can be used to define the sub-cells.

In this way, it is possible to compute the local connectivities between sub-
cells, and extract all information necessary both for refinement and for dealing
with non-conforming meshes. Numbering the entities consecutively makes it eas-
ier to deal with entities and sub-entities in a uniform way.

3.5 Refinement and Coarsening

Refinement and coarsening of a mesh is provided through the Mesh::refine()

function. It takes as input an array indicating for each cell if it should be coars-
ened, refined (and if so, how), or left as it is. The function builds the refined
mesh, and returns it to the caller.

In the MeshDbView implementation, RefinedMeshDbView, a specialized sub-
class, is used to represent refined meshes. This class keeps track of the refinement
history, by storing an array of pointers to all ancestor meshes, as well as two
attributes that indicate for each cell in which ancestor mesh the parent cell lives,
and what its index is local to that mesh. This makes it possible to access the
parent of a cell, even if one only has access to the refined mesh.

In addition to these two attributes, we have also found it useful to store
the “sub-cell number”, i.e. the index of the sub-cell in the parent’s cell type.
This information is used both for boundary extraction and handling of non-
conforming meshes.



14

Fig. 2. Refinement of a cube with the parent cell index attribute.

Fig. 3. Refinement of a tetrahedron with the parent cell index attribute.

During refinement, some cells can also be coarsened. This means that they
are replaced by their parents. There is some ambiguity about what to do when
one cell is marked to be coarsened, while another cell sharing the same parent
(a sibling) is not marked to be coarsened. One could for instance either force
a coarsening of all sibling cells, or require all sibling cells to be marked for
coarsening, before it can take place. We follow the second path, by searching
for “permitted ancestor” cells for all cells that are marked to be coarsened. A
“permitted ancestor” is a cell in an ancestor mesh such that all its children in the
current mesh are marked to be coarsened. If no “permitted ancestor” is found,
the coarsening mark on the cell is removed, and it is left untouched. If one or
several “permitted ancestors” are found, all their children are coarsened. This
means that coarsening of large areas can be performed during one refinement
step.

3.6 Distributed Meshes

The Mesh module provides the possibility to work with distributed meshes. In
the current implementation, a distributed mesh is a set of Mesh objects, one on
each process in the communicator group. The communication is handled by func-
tionality external to the Mesh classes, which themselves are not aware that they
are part of a larger, global mesh. The advantage of this is that all Mesh functions
are local to a process and do not require communication, which facilitates their
implementation and use. Code reuse is also possible, since the communication
code works with the Mesh interface, and not the individual implementations.

In order to communicate between processes, it is necessary to know how the
parts of the global mesh are connected. This is done via the SharedVertexTable



15

Fig. 4. A mesh of a human nose distributed in 16 stripes. One stripe plus one layer of
ghost cells exists on each process.

class, which contains the information about which of the local vertices are shared
with what other processes, and what the remote id is of each shared vertex.
Having this information for vertices, it is possible to also identify shared entities
of higher dimension.

If the mesh has been read in from a parallel VTK file [53], the information pro-
vided by the SharedVertexTable is not available, and thus has to be computed
in a global communication. This is done by the update shared vertex table()

function which exchanges the coordinates of all vertices of a mesh with all other
processes, looks up the id:s of the received vertex coordinates locally via the
MeshDatabase, and communicates this information back to all other processes.
This is a potentially expensive operation, but necessary in the case that no other
information is available.

The communication of mesh entities is performed via a simple serializa-
tion procedure. A set of entities defined as an EntityIterator range can be
packed into an EntityPackage object, which is then communicated. Two modes
of communication, scatter and non-blocking point-to-point, have been imple-
mented in the MpiScatter and MpiNonBlockingPointToPoint classes, respec-



16

tively. On the receiving end, the EntityPackage object is rebuilt, and can then
be used together with a MeshBuilder to reconstruct the mesh on the remote
process. Again, for the MeshDbView implementation, the set semantics of the
MeshDatabase greatly simplify this procedure.

The computation and communication of ghost cells has been built on top
of this framework. A higher-level function takes a local mesh on each process,
and creates a new mesh containing one level of ghost cells from the neighboring
processes. All cells are marked with attributes that indicate the owning process
and the index of the cell on that process.

There is also support for computing the partitioning of a mesh, i.e. deciding
how it is to be distributed over the processes. The GraphPartitioner abstract base
class provides an interface, for which there are currently two implementations.
One is provided through an interface to the well-known library METIS, and the
second is a “naive” implementation which partitions based on the numbering of
the cells. At the moment, these partitioners work on the local mesh only, and in
practice one reads in the mesh on one process, computes the partition, and then
distributes the parts to the other processes.

4 DoF/FEM Module

In the context of the finite element method solutions are expressed in terms of
linear combinations of some chosen shape functions defined on mesh cells. The
degrees of freedom (DoF) represent the finite number of parameters that define
such a discrete function. The number of DoFs can easily count up for millions of
unknowns and can typically be associated with locations which are distributed
over the mesh. In the following, the DoF/FEM module will be described, repre-
senting the finite element ansatz (submodule FEM) and the challenging treat-
ment of the degrees of freedom (submodule DoF).

4.1 FEM Submodule

This submodule is dedicated to represent a finite element ansatz in a generic
way to ensure extensibility at low memory costs, but still to enable high perfor-
mance assembly. The basic concept lies in defining three major classes FEType,
FEManager and FEInstance. The first one, FEType, is an interface class and deals
with representing a specific continuous or discontinuous finite element ansatz on
a defined reference cell. For instance a Lagrangian element FELagrange:FEType
is a specialized implementation and defines the necessary parameters, such as the
polynomial degree. Also, since each ansatz has a specific number of degrees of
freedom, these are initially defined on this cell and stored in a lexicographically
order (see figure 5). Further, interfaces to compute the values of the shape func-
tions, which indices correspond to the local cell numbering, etc. are provided. To
add a new finite element ansatz, a new class needs to be derived from FEType

and the few needed functions must be implemented. It is guaranteed that the
new elements can be used all over the library, which makes extensibility easy.



17

Fig. 5. Lexicographical numbering of the DoFs on the reference cell.

On every mesh cell and for every variable a specific finite element ansatz is
prescribed. Therefore, a design pattern from software engineering known as ”sin-
gleton” is implemented, which means that every ansatz which occurs more than
once is represented and stored in only one element, managed by FEInstance. For
establishing the mapping between a tuple of a mesh cell and a variable to their
corresponding singleton, only references are stored. This mapping and all inter-
faces to out-of-module classes are managed by the FEManager. Especially, each
mesh cell has a mapping from physical space to the reference cell, depending on
its geometry and finite element ansatz, which is also stored within FEManager.
To give an example, for Lagrangian elements on hexahedrons, this results in a
trilinear transformation. Since for a new ansatz a new mapping is needed, it also
can be implemented as a derived class from CellTransformation.

This separation of tasks leads to a generic and efficient way of representing
a finite element ansatz. At this stage of HiFlow3 not only arbitrary degrees of
Lagrangian elements can be incorporated, but also their usage in an assembly
routine is with high performance, since each shape function can be evaluated
and stored for each singleton and therefore does not need to be computed on
the fly.

4.2 DoF Submodule

Considering as an example typical fluid problems in three dimensions, one needs
to deal with a finite element ansatz for four scalar variables (three velocities and
one pressure). For a complex unstructured geometry, this easily can lead to a very
high number of unknowns (≫ 10.000.000) alias degrees of freedom. These DoFs
need to be numbered and interpolated in an unique way depending on arbitrary
combinations of finite element ansatz on neighboring cells. For a continuous
ansatz, given the local numbering strategy provided by the submodule FEM on
each cell, one major task is to create a mapping between a local DoF Id and
a global (mesh wide) DoF Id. The second major task is to interpolate those
DoFs, which are restricted due to conditions provided by FEM and cannot be
identified. Such cases can occur for example in the case of h-refinements (hanging
nodes), p-refinements or hp-refinements (see figure 6).

As mentioned in the previous subsection, the DoFs in any cell of the consid-
ered mesh are determined by a transformation that maps the reference cell to



18

Fig. 6. Degrees of freedom in h-refined (left), p-refined (middle) and hp-refined (right)
setting. Green marked DoFs are interpolated due to continuity constrains.

the chosen physical cell and thereby defines the location of the DoF points (see
figure 7). At that state the DoF Ids can be defined and numbered consecutively
in the order of a given iteration through the mesh cells and the local FEM nu-
meration scheme. Further a mapping that maps a cell index of the mesh and a
local DoF index (key) to the corresponding DoF Id (value) is created. This is
done for each variable of the underlying problem. If no continuity constraints
are set for the global DoF numbering procedure, the resulting numeration is
appropriate for discontinuous finite element methods.

In case of constraints (i.e. continuity constraints) an interface approach is
realized for the calculation of the interpolation and identification of DoFs on
neighboring cells. In this context interface denotes the common cell boundary
between two neighboring cells. By this, it is possible to handle all types of neigh-
boring finite elements in a generic way, and as expensive local calculations are
made only once for each occurring type of interface, the overall performance is
still very good. Through an iteration over all interfaces of the mesh, a so-called
interface pattern is determined that includes the geometrical information (ori-
entation of cells, h-refinement status, etc.) as well as the finite element ansatz
of the participating cells such that all information needed to characterize the
interface is included. With the information contained in the pattern the corre-
sponding DoF interpolation and identification in terms of the local DoFs are
calculated. Therefore the general transfer operator of Schieweck [47] is used that
allows interpolation between different finite element spaces. An important step
within this phase is the transformation of DoFs of a neighboring cell next to the
reference cell (see figure 7). Once this local evaluation is done, the tuple of the
pattern description (key) and the interpolation and identification information
(value) are stored in a map structure that allows for fast access given a pattern
description. Using this map the interpolation and identification of DoF Ids can
be realized efficiently even in the complex hp-refined context using an equiva-
lence class generator. Later on the numbering of the DoF Ids can be changed
easily by applying some user defined permutation.

4.3 Partitioning

In a domain decomposition setup, i.e. several processes are used for the solu-
tion of one single domain, each part of the domain (subdomain) is dedicated



19

Fig. 7. Transformation of DoF points to a cell in mesh (left). Transformation of DoFs
of neighboring cell next to the reference cell (right).

to one process using MPI. Again a unique DoF numeration of all DoFs in the
global domain must be determined. For good scaling properties, a parallel and
distributed handling of the DoFs is needed, i.e. each process manages the DoFs
that are connected to the cells lying in its domain and the class DofPartition is
used to create the correspondence with other subdomains from other processors
via MPI communication. Each subdomain has information of the neighboring
domains by the ghost cells (one ghost layer), which are represented by the red
cells in figure 8. To create a DoF numbering with (domain-) global Ids, each
process determines in a first step a consecutive numbering of the DoFs within
its subdomain, whereas also the ghost layer is treated as if it would belong to
the subdomain. Next, the antiquated information stored in this layer needs to
be updated via communication. Hereby, a decision needs to be made, whether
a DoF lying on the skeleton of the domain belongs to a subdomain or not, i.e.
this DoF is lying on two subdomains, which are sharing it. The implemented
procedure states, that the subdomain represented by a unique lower subdomain
Id will own the DoF. Hence, identification and interpolation is possible. At the
final stage, every subdomain has a unique numbering, containing the correct
DoF Ids in its ghost layer.

Fig. 8. Two domains with ghost cells



20

Algorithm 1 Distributed matrix vector multiplication y = Ax

function distr mvmult(A, x, y)
Start asynchronous communication: exchange ghost values;
yint = Adiag xint;
Synchronize communication;
yint = yint + Aoffdiag xghost;

end function

5 Linear Algebra Module

The HiFlow3 finite element toolbox is based on a modular and generic framework
in C++. The module LAtoolbox handles the basic linear algebra operations
and offers linear solvers and preconditioners. It is implemented as a two-level
library. The upper (or global) level is an MPI-layer which is responsible for the
distribution of data among the nodes and performs cross-node computations, e.g.
scalar products and sparse matrix-vector multiplications. The lower (or local)
level takes care of the on-node routines offering an interface independent of the
given platform.

5.1 The Global Inter-Node MPI-level

The MPI-layer of the LAtoolbox takes care of communication and computations
in the context of finite element methods. Given a partitioning of the underlying
domain (handed over by the mesh module, see Section 3) the DoF module (see
Section 4) distributes the degrees of freedom (DoF) according to the chosen
finite element approach. This results in a row-wise distribution of the assembled
matrices and vectors. Each local sub-matrix is divided into two blocks: a diagonal
block representing all couplings and interactions within the subdomain, and an
off-diagonal block representing the couplings across subdomain interfaces.

In Figure 9 we find a domain partitioning into four subdomains. In order
to determine the structure of the global system matrices, first, each subdomain
has to be associated with a single process on a node. Then, each process not
only detects couplings within its own subdomain, but also couplings to the so-
called ghost DoF, i.e. neighboring DoF which are owned by a different process.
These identifications are performed simultaneously and independently on each
node since the mesh module offers a layer of ghost DoF and hence no further
communication is necessary. DoF i and j interact if the matrix has a non-zero
element in row i and column j.

The distributed (sparse) matrix vector multiplication is given in Algorithm 1.
While every process is computing its local contribution of the matrix vector mul-
tiplication an asynchronous communication for exchanging the ghost values is
initiated. After this communication phase has been completed, the local contri-
butions from coupled ghost DoF are added accordingly.



21

P0

P1

P2

P3

Fig. 9. Domain partitioning: DoF of process P0 are marked in green (interior DoF in
the diagonal block); the remaining DoF represent inter-process couplings for process
P0 (ghost DoF in the off-diagonal block)

0

B

B

B

B

@

P0

1

C

C

C

C

A

| {z }

diagonal block

0

B

B

B

B

@

•
•
•
•
•

1

C

C

C

C

A

| {z }

interior

+

0

B

B

B

B

@

P1 P2 P3

1

C

C

C

C

A

| {z }

offdiagonal block

0

B

B

@

•
•
•
•

1

C

C

A

| {z }

ghost

Fig. 10. Distributed matrix vector multiplication

5.2 Local On-Node Level

The highly optimized BLAS 1 and 2 routines are implemented in the local multi-
platform linear algebra toolbox (lmpLAtoolbox) which is acting on each of the
subdomains. After the discretization of the PDE by means of finite element or
finite volume methods typically a large sparse linear system with very low num-
ber of non-zeros is obtained. Therefore, the Compressed Sparse Row (CSR) data
structure [11] is the favorable sparse matrix data format. On the NVIDIA GPU
platforms we use a CUDA implementation with CSR matrix-vector multiplica-
tion based on a scalar version as it is described in [12, 13]. Our library supports
several back-ends including multi-core CPUs and NVIDIA GPUs. Currently, we
are developing OpenCL [45] modules for further back-ends like IBM Cell BE,
ATI GPUs and x86 multi-core CPUs.

The LAtoolbox provides unified interfaces as an abstraction of the hardware
and gives easy-to-use access to the underlying heterogeneous platforms. In this
respect the application developer can utilize the LAtoolbox without any knowl-
edge of the hardware and the system configuration. The final decision on which
specific platform the application will be executed can be taken at run time. A
data parallel model is used for the parallelization of the basic BLAS 1 and 2 rou-
tines which by their nature provide fine-grained parallelism. From a theoretical
point of view the data parallel model results in good load balancing and scala-



22

bility across several computing units. These expectations have been confirmed
by our practical experiments across a variety of platforms and systems.

Fig. 11. Structure of the lmpLAtoolbox and LAtoolbox for distributed computation
and node-level computation across several devices in a homogeneous and heterogeneous
environment.

The layered structure and organization of both the LAtoolbox and the lm-
pLAtoolbox is depicted in Figure 11. It shows a high-level view of distributed
communication and computation across nodes and the node-level computation
across several devices in a heterogeneous environment.

A cross-platform makefile generator (cmake) identifies all software libraries
(i.e. OpenMP, CUDA, MKL, and etc) available on the underlying computing
platform. After compilation the decision of final platform can be taken at run-
time e.g. by providing information in a configuration file or from user input. All
data structures (matrices and vectors) are distributed or offloaded accordingly.
On a lean platform like a netbook or even a smartphone the project and all
modules can be used in their sequential version. Within this setting there is
further room for autotuning mechanisms, e.g. when several devices are available.

The code fragment in listing 1.1 exemplifies handling of the lmpLAtoolbox.
It details declaration of two vectors and a matrix. The CPU performs all input
and output operations. To this end, the CPU matrix type is declared. Later
conversion between two different platforms is based on a copy-like function. For
avoiding unnecessary transfers to the same device a simple platform check is
typically used.

The PCIe bus between host and device is a known bottleneck for attached
accelerators. In particular, bandwidth limitations occur for updates of inter-
process couplings between subdomains kept on different devices. Advanced data
packaging and transfer techniques are utilized for mitigation of delays due to
these inevitable cross-device data transfers. The underlying idea for maximized



23

throughput is to manage and reorganize irregular data structures on the host
CPUs and to transfer repackaged data in huge and continuous buffers to the
accelerators. Moreover, sophisticated re-ordering techniques for the arrangement
and redistribution of DoF like e.g. (reverse) Cuthill-McKee ordering [22] and
graph-coloring algorithms [46] have been included for optimizing data access
patterns, matrix structure and cache reuse.

Due to the full abstraction within the libraries there is limited or no access to
the platform-specific data buffers. In certain cases – e.g. for nested loop iterations
or irregular data access patterns – there is the option for defining device-specific
data structures (vectors and matrices) with direct access to all data buffers.

CPU lMatrix<double> mat cpu ;
// Read matrix from a f i l e
mat cpu . ReadFile ( ’matrix.mtx’ ) ;

lVector<double> ∗x , ∗y ;
// i n i t a vec t o r f o r a s p e c i f i c p la t form and implementat ion
x = i n i t v e c t o r <double>( s i z e , "vec x" , p latform , impl ) ;
// c lone y as x
y = x−>CloneWithoutContent ( ) ;

lMatrix<double> ∗mat ;
// i n i t empty matrix on a s p e c i f i c p la t form
// (nnz , nrow , ncol , name , p lat form , implementation , format )
mat = in i t mat r i x <double>(0 ,0 ,0 , "A" , p latform , impl ,CSR) ;
// Copy the sparse s t r u c t u r e o f the matrix
mat−>CopyStructureFrom ( mat cpu ) ;
// Copy only the va l u e s o f the matrix
mat−>CopyFrom( mat cpu ) ;

. . .

// Usage o f BLAS 1 rou t i n e s
y−>CopyFrom(∗x ) ; // y = x
y−>Axpy(∗x , 2 . 3 ) ; // y = y + 2.3∗ x
x−>Sca l e ( 6 . 0 ) ; // x = x ∗ 6.0
// p r i n t the s c a l a r product o f x and y
cout << y−>dot (∗x ) ;

// Usage o f BLAS 2 rou t i n e s
mat−>VectorMult (∗y , x ) ; // x = mat∗y

. . .

delete x , y , mat ;

Listing 1.1. Example code for lmpLAtoolbox

Due to the modular setup and the consistent structure, the lmpLAtoolbox
can be used as a standalone library independently of HiFlow3. It offers a com-



24

plete and unified interface for many hardware platforms. Hence, the LAtoolbox
not only offers fined-grained parallelism but also flexible utilization and cross-
platform portability.

5.3 Linear and Nonlinear Solvers

The LAtoolbox offers a high-level of abstraction by providing unified inter-
faces for basic matrix and vector routines. Platform-specific implementations
are transparent to the user. Therefore, linear and non-linear solvers can be im-
plemented easily and generically without any information on the underlying
hardware platform while keeping platform-adapted and tuned code.

This module provides two Krylov subspace methods as iterative linear solvers,
namely CG and GMRES. Additionally, the module offers parallel precondition-
ers based on a blockwise multilevel incomplete LU factorization [41–43]. Fur-
thermore, advanced techniques for exploiting fine-grained parallelism based on
multi-coloring algorithm are deployed in the library. This kind of preconditioners
are applicable to a wide variety of problems and yield performance advantages
on most parallel platforms. Applied methodologies and a performance analysis
on multi-core x86 CPUs and NVIDIA GPUs are presented in [33].

Moreover, a nonlinear Newton solver is included in the framework of the LA-
toolbox. It utilizes the iterative solvers for the solution of the linearized problem
and features interfaces for damping and forcing strategies for generalization and
extension to Newton-like methods.

6 Assembly Tools

The assembly tools in HiFlow3 combine the functionality in the Mesh, DoF/FEM
and Linear Algebra modules, to provide a mechanism that efficiently produces
the global system matrix and right-hand-side vector. As is common in finite
element literature, the global assembly algorithm is element-oriented, with an
outer iteration over the cells in the mesh that performs a local assembly on each
cell separately. This section first describes the global assembly algorithm, which
is independent of the PDE, and then explains how the local assembly can be
implemented based on the variational formulation of the PDE.

6.1 Global Assembly

The global assembly algorithm is quite simple, consisting of a loop over all cells,
the computation of the element matrix or vector by the local assembly, and
finally an addition of the result into the global matrix or vector.

In order to enable optimizations in the local assembly, the order of iteration
of the cells is according to their type and the polynomial degree of the associated
element. This minimizes the number of times the local basis functions and their
gradients must be evaluated on the reference element.



25

The local assembly is defined through a user-defined class, on which the
global assembly functions are templated. Inside the loop over the cells, the
global assembly functions first call the function initialize for element, pass-
ing the element information and quadrature object as parameters. The local
matrix or vector is then computed with a call to assemble local matrix or
assemble local vector, respectively.

The addition of the local element matrix or vector into the corresponding
global object uses the DoF numbering established by the DoF/FEM module.
This numbering is also used to compute the graph of the global matrix, which is
needed for the initialization of the sparsity structure of this object. The function
which does this has the same structure as the global assembly, and is therefore
also a part of the assembly tools.

6.2 Local Assembly

The task of the local assembly is to compute the local element matrices and
vectors. The local assembly is where the variational formulation of the PDE
comes into play. In HiFlow3, a strategy similar to that of deal.II [9] is followed,
where the user of the library is responsible for choosing a variational formulation,
and implementing the corresponding local assembler functions in a class, which
we will hereafter call LocalAssembler, although the name can be freely chosen
in the code. This is in contrast to the approach described in [3], where a separate
language, UFC, is used to describe the variational formulation. The UFC code
is then compiled to a target language, e.g. C++, and can thereafter be included
in the finite element program. The advantage of such an approach is a simplified
syntax for users of the library, and a potential for interoperability between finite
element libraries. The drawback is, as with any abstraction layer, that the user
has less control over the code, which could lead to performance penalties.

HiFlow3 supports the user in the creation of the local assembler through
a helper class, which provides a large part of the necessary functionality. The
helper class computes and caches the values of the local shape functions and
their gradients on the reference element as well as transformed to the physical
element. It provides the information related to the current quadrature rule, and
the cell transformation. Furthermore, it aids in the evaluation of existing finite
element functions defined through coefficient vectors, which is useful for nonlin-
ear and time-dependent problems. Support for assembly over facets is also being
developed, which is needed e.g. for inhomogeneous Neumann boundary condi-
tions. The helper class works without user interference on meshes with mixed
cell types, varying polynomial degrees and hanging nodes.

In order to illustrate the construction of a local assembler, Listing 1.2 shows
C++ code for the Poisson equation

−∆u = x + y

with variational formulation∫
Ω

∇u · ∇vdx =

∫
Ω

(x + y)vdx



26

const int DIM = 2 ;
class LocalLaplaceAssembler : private AssemblyAssistant<DIM> {
public :

void i n i t i a l i z e f o r e l e m e n t ( const Element& el ,
const Quad<double>& quad ) {

AssemblyAssistant<DIM> : : i n i t i a l i z e f o r e l e m e n t ( e l , quad ) ;
}

void a s s emb l e l o c a l ma t r i x ( const Element& el ,
LocalMatrix& lm) const {

const int num q = num quadrature points ( ) ;
const int num loca l do f s = num dofs (0 ) ;

for ( int q = 0 ; q < num q ; ++q) {
const double wq = w(q ) ;
const double dJ = detJ (q ) ;

for ( int i = 0 ; i < num loca l do f s ; ++i ) {
for ( int j = 0 ; j < num loca l do f s ; ++j ) {

lm( do f index ( i , 0) , do f index ( j , 0) ) +=
wq ∗ dot ( grad ph i ( i , q ) , g rad ph i ( j , q ) ) ∗ dJ ;

}
}

}
}

void a s s emb l e l o c a l v e c t o r ( const Element& el ,
LocalVector& lv ) const {

const int num q = num quadrature points ( ) ;
const int num loca l do f s = num dofs (0 ) ;

for ( int q = 0 ; q < num q ; ++q) {
const double wq = w(q ) ;
const double dJ = detJ (q ) ;

for ( int i = 0 ; i < num loca l do f s ; ++i ) {
l v [ do f index ( i , 0) ] +=

wq ∗ ( my f ( x (q ) ) ∗ phi ( i , q ) ) ∗ dJ ;
}

}
}

double my f (Vec<DIM> pt ) const { return ( pt [ 0 ] + pt [ 1 ] ) ; }
} ;

Listing 1.2. Local assembler for the Poisson problem

As illustrated in this code, the helper class AssemblyAssistant provides
most of the functions needed for the assembly. The user implements the compu-



27

tation of the local matrix and vector in the functions assemble local matrix()

and assemble local vector(), respectively. In this case, the implementation
uses the AssemblyAssistant class to obtain the values of the local shape func-
tions and their gradients phi() and grad phi(), at the quadrature points of
the current quadrature rule transformed to the physical element. The function
dof index() provides the position in the matrix or index where the degrees
of freedom corresponding to a given variable (in this case variable 0) should
be inserted. w(q) gives the weight associated with quadrature point q in the
quadrature rule, and detJ(q) gives the Jacobian of the element transformation
at that point. The local vector assembly illustrates the use of a user-defined
function my f(), which is evaluated at the point x(q) on the physical cell that
corresponds to quadrature point q. More complex settings, with different models
coupled to each other, can be also be handled in this framework.

7 Numerical Simulation in Urban Environments

As an illustration of the methodology of applying mathematical modeling, nu-
merical simulation and scientific visualization for complex simulations made pos-
sible by HiFlow3, we present the Karlsruhe Geometry project which performs
numerical simulations in an urban environment in collaboration with the city
council of Karlsruhe, Germany. Using the increasing detail of three dimensional
city models, more reliable simulations are feasible, for example concerning air-
flow, fine-dust or noise distribution in the very environment that we live in.

This section describes an example of airflow around the Department of Math-
ematics of the Karlsruhe Institute of Technology, in order to illustrate how the
components of HiFlow3 are combined into a simulation.

Fig. 12. Geometry used for the simulation and a visualization of simulation results.

7.1 Problem Formulation

The instationary Navier-Stokes equations are solved in a box surrounding the
buildings of the Kronenplatz square. As boundary conditions, a simple Poiseuille
profile is used on one side Γin, and natural do-nothing boundary conditions are



28

used on the opposite side Γout. On the remaining boundaries, including the walls
of the buildings, the velocity is set to zero. The model is formulated as an initial
boundary value problem for the velocity u (x, t) and the pressure p (x, t) in
Equation 1.

∂tu − ν∆u + (u · ∇) u + ∇p = 0 (x, t) ∈ Ω × (0, T ) ,

∇ · u = 0 (x, t) ∈ Ω × (0, T ) ,

u = u
in (x, t) ∈ Γin × (0, T ) ,

(−Ip + ν∇u) · n = 0 (x, t) ∈ Γout × (0, T ) ,

u = 0 (x, t) ∈ Γ × (0, T ) ,

u (x, 0) = u0 (x) x ∈ Ω .

(1)

7.2 Implementation of the Navier-Stokes Solver

Equation 1 is discretized first in time, and then in space. For the time discretiza-
tion, the fractional step θ-scheme is used, and in space Q2−Q1 (“Taylor-Hood”)
finite elements [16]. Due to the nonlinearity (u · ∇) u each timestep is resolved
with the exact Newton algorithm. This involves solving a linearized problem iter-
atively, which is done using the GMRES method preconditioned by the ILU++
[41] preconditioner. Overall, the computation is structured as in Algorithm 2,
with the supporting modules indicated in parentheses.

Algorithm 2 Overall structure of the instationary Navier-Stokes simulation

function solve instationary navier stokes(mesh filename)
Read mesh and distribute to all processors (Mesh).
Number the DoFs using a Q2-Q1 finite element space (DoF/FEM).
Create the system matrix, residual vector and solution vector (Linear Algebra).
Initialize the solution vector with initial solution 0.
Set the DoF values on the inflow boundary to the values prescribed by u

in.
while t < T do

for s = 1, 2, 3 do

Solve nonlinear problem for substep s to obtain (un,s, pn,s).
end for

t = t + ∆t

Visualize the solution at timestep t

end while

end function

The nonlinear solution algorithm is encapsulated in the class Newton which
implements an abstract interface NonlinearSolver. This has a reference to an
object which implements the functions EvalGrad and EvalFunc that compute
the system matrix and the residual vector, respectively. These two functions
use the assembly functionality described in Section 6. The NonlinearSolver



29

contains a reference to a linear solver of type GMRES, which is used in each step
to compute the update for the current linearization point.

The local assembly of the linearized variational formulation is implemented in
a class InstationaryFlowAssembler. The state of this class depends on the cur-
rent substep in the timestepping method, as well as the solutions corresponding
to the linearization point in the Newton method and the previous timestep. This
problem-specific code is relatively long, but easy to write once the corresponding
variational form has been derived analytically.

This example illustrates the interplay between reusable software compo-
nents, provided in the HiFlow3 library through the three core modules, and the
problem-specific code that must be implemented specifically for each individual
solver. In this case, the Mesh module provides the functionality for reading in and
distributing the computational mesh; the DoF/FEM module computes the DoF
numbering, and is also used in the assembly of the system matrix and residual;
and the Linear Algebra module provides management of matrices and vectors,
as well as an iterative method to solve the linear system. Abstract interfaces are
used in several places, both for implementing callbacks for the components in
the library, such as for the nonlinear solver; and for facilitating the exchange
of components, as with the concrete linear and nonlinear solvers (GMRES and
Newton).

8 Current Projects

The combination of the progress in high performance computing and modern
software developments for numerical simulation enables us to solve more complex
and relevant problems than ever before. By the increasing realism of simulation
results and accessibility of improved scientific visualization, scientific computing
is continuously raising its impact on our every-day lives. This is especially true,
for example, in the application fields of environmental sciences, meteorology,
medical engineering, energy research and computations fluid dynamics. In this
section we present current projects working with HiFlow3.

8.1 Goal Oriented Adaptivity for Tropical Cyclones

In this project adaptive numerical methods are developed in the context of me-
teorological multi-scale problems. Many meteorological and environmental phe-
nomena, such as the dynamics of Tropical Cyclones, are influenced by processes
on a large range of scales in space and time. For such problems the numeri-
cal modelling and solution is challenging since not all scales can be resolved
adequately due to memory or CPU time restrictions. Often a certain physical
quantity of the solution is of interest. In such cases goal-oriented adaptivity is
a promising approach as only features that are relevant for the determination
of the quantity of interest need to be considered. A major task is the solution
of the dual problem in higher-order accuracy, which contains information of the
sensitivity with respect to the quantity of interest. For the discretization space



30

time finite elements are used which allow for the estimation of local error con-
tributions by means of a class of a posteriori error estimators. The temporal
and spatial mesh and the finite element ansatz can be adapted appropriately to
improve the quality of the approximate solution with respect to the chosen goal.

8.2 United Airways

The goal of the United Airways project [28] is the full description of the flow
behavior in the human respiratory system by means of numerical simulations on
supercomputers. The considered approach relies on an integrative methodology
allowing to analyze the interaction of the nose, paranasal sinuses, larynx and
lungs in a coupled way. The interdisciplinary approach relies on the expertise of
principle investigations in the areas of medicine, biotechnology, numerical simu-
lation, numerical optimization, high performance computing and visualization.

HiFlow3 is used to numerically simulate the airflow and particle deposition in
the complex geometries of the nose and the lungs. It is possible to analyze airflow
patterns supporting physicians to diagnose and treat diseases of the human res-
piratory system with the help of models for the bronchioles [29]. Another, more
abstract, intention is gaining better insights in the functionality of the human
respiratory system. Particle depositions give evidence about the impact of res-
pirable dust on the lungs and can be used to optimize and control the dosage of
pharmaceutical drugs given through the respiration system. Studies are carried
out to decide whether particle simulations have to be done patient-specific or
statistical models can be used.

8.3 Stochastic Finite Elements

Dealing with finite elements, one often assumes that the underlying partial dif-
ferential equation has deterministic parameters, e.g. the kinematic viscosity of a
fluid, or certain specified boundary and initial conditions. In practice, however,
the exact knowledge of critical parameters might often not be known in an exact
manner, hence, a stochastic model could be used to represent the uncertainty
resulting in a stochastic partial differential equation, where the solution does
not only depend on space and time but also itself is a random process, which
probability distribution is not known a priori. The classical way of addressing
this problem is to use sampling techniques such as the popular Monte Carlo
method. Yet, this technique relies on a large number of realizations driving the
computational cost (even in the trivial parallelization case) into not feasible
dimensions. An alternative approach is to use a spectral expansion in stochas-
tic terms, whereas a decomposition of the solution in a random and a space /
time part is achieved. Utilizing a Galerkin projection onto the random space of
square integrable functions, a coupled system of deterministic partial differen-
tial equations is obtained, which is solved employing the finite element method.
The procedure is also known as the polynomial chaos expansion [30]. As a re-
sult one can calculate the stochastic moments of interest, which are usually the
expectation and variance of the solution.



31

8.4 hp-adaptive FEM

As the complexity of models being solved using FEM increases, the need for
adaptive algorithms that can construct accurate approximations using a small
number of degrees of freedom becomes apparent. hp-adaptivity is one of the
most powerful approaches to adaptive finite element discretization [23, 50, 52].
By combining local mesh refinements close to irregularities of the solution with
the use of higher-order elements where the solution is smooth, this technique
often yields very high convergence rates and reduces the computation time sig-
nificantly.

In order to support this type of adaptive methods, it is planned to extend
the library to be able to handle non-conforming meshes and local variations of
the polynomial degree of the elements. The central difficulty lies in being able
to treat degrees of freedom that are constrained due either to a non-conformity
in the mesh (a so-called “hanging node”) or a mismatch of element degrees
over an interface. These degrees of freedom should be detected, and the local
interpolation operator, which expresses the constraints that these DoF must
fulfill, computed. These extra constraints must then be incorporated in the global
system of equations, in order to reduce it to the constrained subspace where the
solution is to be sought. An overview of the necessary steps is presented in [10].

As support for controlling an adaptive algorithm, we also plan to imple-
ment functionality for a posteriori error estimation. There are several different
approaches in this domain that would be worth including in the library, for
instance the Element Residual Method [2] and the duality-based methods [34].

8.5 Science to Go: Numerical Simulation on the Spot

This project is dedicated to the development of new technologies in order to
allow and simplify access to scientific computation, to facilitate interaction with
numerical simulations, and to deliver the results to where they are needed by
support of mobile devices.

Scientific computing and numerical simulation is essential to all scientific
areas, but the use of software and exploitation of the results usually require
dedicated expertise. Simulations may give answers to real life problems, but are
not easily available at where they turn up. The vision to give simplified access
to high performance computing based on the versatility of HiFlow3 using mobile
devices is a key concept for decision makers. It aims to raise the public impact
of numerical simulations.

The concept for simplified access to numerical simulation and support of
mobile devices for visualization touches many aspects of scientific computing,
interactive visualization, infrastructure and human perception. The project plans
to develop a unified and automated simulation and visualization framework. It
aims at supporting interactive visualization over networks with low bandwidth
and high latency by model reduction with minimal visual impact and exploring
new visualization concepts for numerical simulation by augmented reality and
adapted data representations.



32

9 Future Work

Mesh Module In the future, extensions are planned for the mesh module
to support a more complete description of the geometry, e.g. for domains with
curved boundaries. Algorithms for parallel partitioning and re-distribution, which
is necessary to improve the scalability of the library, are also under considera-
tion. For this task, there are existing parallel graph partitioning libraries such
as ParMETIS [38] and PT-SCOTCH [18], whose services could be leveraged.
Support for moving meshes, which can be implemented using attributes, and
quality criterions for meshes are planned to be included in the module as well.

DoF/FEM Module The generic structure allows for the extension to further
finite element ansatz. Especially H(div) and H(curl) conforming vector valued
finite elements will be implemented [25]. Further transformations that map the
reference cell to arbitrary cells within the mesh are planned, which provide iso-
parametric elements [16].

Linear Algebra – Advanced Preconditioning Techniques As condition
numbers are increasing polynomially with problem size sophisticated precondi-
tioning techniques are essential building blocks. In the era of multi-core and
many-core processors like GPUs there is a strong need for scalable and fine-
grained parallel preconditioning approaches. Currently we are working on fine-
grained parallel preconditioners based on multi-coloring decomposition approach.
In our ongoing work we consider an extended set of preconditioners (e.g. Gauss-
Seidel, ILU(p), Chebyschev, non-symmetric cases with GMRES). Furthermore,
preconditioning techniques in a cluster of multi-core-CPU and GPU nodes with
parallelization across several devices will be investigated.

10 Conclusion

The creation of a multi-purpose finite element software package that is portable
across a wide variety of platforms including emerging technologies like hybrid
CPU and GPU platforms is a challenging and multi-facetted task. By our mod-
ular approach that utilizes the concepts of object-orientation, data abstraction,
dynamic polymorphism and inheritance we have created a highly capable piece
of software that provides a powerful means for gaining scientific cognition. By
utilizing several levels of parallelism by means of a two-level communication and
computation model and following the concepts of hardware-aware computing
HiFlow3 is a flexible numerical tool for solving bleeding-edge scientific problems
on the basis of finite element methods optimized for high performance com-
puters. Furthermore, the modules Mesh, DoF/FEM and Linear Algebra com-
plemented by auxiliary methods provide a broad suite of building blocks for
development of modern numerical solvers and application scenarios. The user is
freed from any detailed knowledge of the hardware – he only has to familiarize



33

with the provided interfaces and needs to customize the available modules in or-
der to adapt HiFlow3 to his domain-specific problem settings. As an open source
project HiFlow3 further supports extensibility of modules and methods. Within
large scale projects like e.g. the United Airways project HiFlow3 has already
proven its potential. In the next steps the efficiency of the methods considered
in the different modules especially related to the scalability will be evaluated.
Based on these results HiFlow3 will improve, following further the path of object
oriented techniques in software design for scientific computing.

Acknowledgements

The Shared Research Group 16-1 received financial support by the Concept for
the Future of Karlsruhe Institute of Technology in the framework of the German
Excellence Initiative and the industrial collaboration partner Hewlett-Packard.
The Karlsruhe Geometry project is a collaboration of the Liegenschaftsamt of
the city council of Karlsruhe with the Engineering Mathematics and Computing
Lab and was supported by the KIT Competence Area for Information, Com-
munication and Organisation. The Science to Go project is funded as part
of the Apple Research & Technology Support (ARTS) program. The project
Goal Oriented Adaptivity for Tropical Cyclones is funded by the German Re-
search Foundation DFG and is part of the priority program 1276 MetStröm
(http://metstroem.mi.fu-berlin.de/). It is a joint project with the Institute for
Meteorology and Climate Research - Troposphere Research at the Karlsruhe
Institute of Technology and the Max Planck Institute for Meteorology in Ham-
burg. The United Airways project thanks the Städtisches Klinikum Karlsruhe
for providing us with CT-data for the simulations.

References

1. D. Abrahams, J. Siek, and T. Witt. The Boost.Iterator Library.
http://www.boost.org/doc/libs/release/libs/iterator/.

2. M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Wiley and Sons, New York, 2000.

3. M. S. Alnaes, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen. Unified
Framework for Finite Element Assembly. International Journal of Computational
Science and Engineering, 4(4):231–244, 2009.

4. Ansys - Fluent. http://www.fluent.com/.
5. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.

6. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2009.
http://www.mcs.anl.gov/petsc.

7. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Com-
puting, pages 163–202. Birkhäuser Press, 1997.



34

8. W. Bangerth, R. Hartmann, and G. Kanschat. deal.II Differential Equations
Analysis Library, Technical Reference. http://www.dealii.org.

9. W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object
oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.

10. W. Bangerth and O. Kayser-Herold. Data Structures and Requirements for hp

Finite Element Software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.
11. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. V. der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

12. M. M. Baskaran and R. Bordawekar. Optimizing Sparse Matrix-Vector Multipli-
cation on GPUs. Technical report, IBM, 2009.

13. N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–11, New York,
NY, USA, 2009. ACM.

14. D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, M. Fortin, D. Boffi,
and L. Gastaldi. Mixed Finite Elements, Compatibility Conditions, and Applica-
tions, volume 1939. 2008.

15. D. Braess. Finite Elemente. Springer-Verlag GmbH; Auflage: 1, 2007.
16. S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods.

Texts in applied mathematics; 15. Springer, New York, 2. ed. edition, 2002.
17. R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss. A Survey on Hardware-aware

and Heterogeneous Computing on Multicore Processors and Accelerators. 2010.
18. C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph or-

dering. Parallel Computing, 34(6-8):318, 2008.
19. P. G. Ciarlet. The finite element method for elliptic problems. Classics in applied

mathematics; 40. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2002.

20. COMSOL Multiphysics. http://www.comsol.de/products/multiphysics/.
21. Convey Computer Corporation. http://www.conveycomputer.com/.
22. E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In ACM ’69: Proceedings of the 1969 24th national conference, pages 157–172, New
York, NY, USA, 1969. ACM.

23. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek.
Computing with hp-adaptive finite elements. Chapman and Hall applied mathe-
matics and nonlinear science series. Chapman and Hall, London, 2008.

24. DUNE: Distributed and Unified Numerics Environment. http://dune-project.org/.
25. A. Ern and J.-L. Guermond. Theory and practice of finite elements. Springer, NY,

USA, 2004.
26. FEAST: Finite Element Analysis and Solutions Tools. http://www.feast.uni-

dortmund.de/.
27. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
28. T. Gengenbach, T. Henn, W. Heppt, V. Heuveline, M. J. Krause, and S. Zimny.

United Airways: Numerical Simulation of the Human Respiratory System, 2010.
http://www.united-airways.eu.

29. T. Gengenbach, V. Heuveline, and M. Krause. Numerical Simulation of the Human
Lung: A Two-scale Approach. In BMT 2010 - Reguläre Beiträge (BMT 2010
Reguläre Beiträge), Rostock-Warnemünde, Germany, 2010.



35

30. R. Ghanem and P. Spanos. Stochastic finite elements: A spectral approach.
Springer-Verlag, New York, NY, USA, 1991.

31. A. Henderson Squillacote. The ParaView guide: a parallel visualization application.
Kitware, [Clifton Park, NY], 2007.

32. M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
and A. Williams. An Overview of Trilinos. Technical Report SAND2003-2927,
Sandia National Laboratories, 2003.

33. V. Heuveline, D. Lukarski, and J. P. Weiss. Scalable Multi-Coloring Precondition-
ing for Multi-core CPUs and GPUs .

34. V. Heuveline and R. Rannacher. Duality-Based Adaptivity in the hp-Finite Ele-
ment Method. Journal of Numerical Mathematics, 11(2):95–113, 2003.

35. V. Heuveline, C. Subramanian, D. Lukarski, and J. P. Weiss. A Multi-Platform
Linear Algebra Toolbox for Finite Element Solvers on Heterogeneous Clusters. In
PPAAC’10, IEEE Cluster 2010 Processing Workshops.

36. HiVision. http://www.hivision-project.org/.
37. S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and

explicit optimizations for stencil computations. In MSPC ’06: Proceedings of the
2006 workshop on Memory system performance and correctness, pages 51–60, New
York, NY, USA, 2006. ACM.

38. G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. J. Parallel Distrib. Comput., 48(1):71–95, 1998.

39. A. Logg. Efficient Representation of Computational Meshes. International Journal
of Computational Science and Engineering, 4(4):283–295, 2009.

40. D. Lukarski. Specific aspects of a parallel implementation of a 3D CFD solver on
the Cell architecture. Master’s thesis, University of Karlsruhe, Germany, 2008.

41. J. Mayer. ILU++ software package. http://www.iluplusplus.de/.
42. J. Mayer. A multilevel Crout ILU preconditioner with pivoting and row permuta-

tion. Numerical Linear Algebra with Applications, 14(10):771–789, 2007.
43. J. Mayer. Symmetric permutations for I-matrices to delay and avoid small pivots

during factorization. SIAM J. Sci. Comput., 30(2):982–996, 2008.
44. F. Oboril. Parallel Multigrid Methods on the Cell Broadband Engine. Master’s

thesis, Karlsruhe Institute of Technology, 2010.
45. OpenCL. http://www.khronos.org/opencl/.
46. Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2003.
47. F. Schieweck. A General Transfer Operator for Arbitrary Finite Element Spaces,

2000.
48. A. Schmidt and K. G. Siebert. Design of adaptive finite element software: the

finite element toolbox ALBERTA. Lecture notes in computational science and
engineering; 42. Springer, Berlin, 2005.

49. M. Schmidtobreick. Numerical Methods on Reconfigurable Hardware using High
Level Programming Paradigms. Master’s thesis, Karlsruhe Institute of Technology,
2010.

50. C. Schwab. P- and hp- finite element methods: theory and applications in solid and
fluid mechanics. Numerical mathematics and scientific computation. Clarendon
Press, Oxford, repr. edition, 2004.

51. UG - Unstructured Grids. http://atlas.gcsc.uni-frankfurt.de/ ug/index.html.
52. P. Šoĺın, K. Segeth, and I. Doležel. Higher order finite element methods. Studies

in advanced mathematics. Chapman and Hall, CRC, Boca Raton, Fla., 2004.



36

53. VTK - The Visualization Toolkit. http://www.vtk.org/.
54. S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The potential

of the cell processor for scientific computing. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers, pages 9–20, New York, NY, USA, 2006. ACM.

55. S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scientific
computing Kernels on the cell processor. Int. J. Parallel Program., 35(3):263–298,
2007.



Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2010-05 Martin Baumann, Vincent Heuveline: Evaluation of Different Strategies for

Goal Oriented Adaptivity in CFD – Part I: The Stationary Case

No. 2010-04 Hartwig Anzt, Tobias Hahn, Vincent Heuveline, Björn Rocker: GPU Accelerated

Scientific Computing: Evaluation of the NVIDIA Fermi Architecture; Elementary

Kernels and Linear Solvers

No. 2010-03 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Energy Efficiency of Mixed Precision

Iterative Refinement Methods using Hybrid Hardware Platforms: An Evaluation of

different Solver and Hardware Configurations

No. 2010-02 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Mixed Precision Error Correction

Methods for Linear Systems: Convergence Analysis based on Krylov Subspace Methods

No. 2010-01 Hartwig Anzt, Vincent Heuveline, Björn Rocker: An Error Correction Solver for Linear

Systems: Evaluation of Mixed Precision Implementations

No. 2009-02 Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weiß: A Survey on

Hardware-aware and Heterogeneous Computing on Multicore Processors and

Accelerators

No. 2009-01 Vincent Heuveline, Björn Rocker, Staffan Ronnas: Numerical Simulation on the

SiCortex Supercomputer Platform: a Preliminary Evaluation

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.


