
Numerical Defect Correction as an

Algorithm-Based Fault Tolerance

Technique for Iterative Solvers

V. Heuveline, D. Lukarski, F. Oboril, M. B. Tahoori,

J.-P. Weiss

No. 2011-10

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)



Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2011-10

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu



Numerical Defect Correction as an Algorithm-Based

Fault Tolerance Technique for Iterative Solvers

Fabian Oboril, Mehdi B. Tahoori

Chair of Dependable Nano Computing (CDNC)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Email: {fabian.oboril, mehdi.tahoori}@kit.edu

Vincent Heuveline, Dimitar Lukarski∗, Jan-Philipp Weiss∗

Engineering Mathematics and Computing Lab (EMCL)
∗Shared Research Group on New Frontiers in High Performance

Computing Exploiting Multicore and Coprocessor Technology

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Email: {vincent.heuveline, dimitar.lukarski, jan-philipp.weiss}@kit.edu

Abstract—As hardware devices like processor cores and mem-
ory sub-systems based on nano-scale technologies nodes become
more unreliable, the need for fault tolerant numerical computing
engines, as used in many critical applications with long com-
putation/mission times, is becoming pronounced. In this paper,
we present an algorithm-based fault tolerant (ABFT) scheme
for an iterative linear solver engine based on the Conjugated
Gradient method (CG) by taking the advantage of numerical
defect correction. This method is “pay as you go”, meaning that
there is only a runtime overhead if errors occur and a correction
is performed. Our experimental comparison with software-based
triple modular redundancy (TMR) clearly shows the runtime
benefit of the proposed approach, better fault tolerance and no
occurrence of silent data corruption.

Index Terms—algorithm-based fault tolerance, defect correc-
tion, conjugated gradient, triple modular redundancy, check-
pointing
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I. INTRODUCTION

Nowadays, everyone expects that the computation result of

a microprocessor is correct as long as the program, which

is executed is correct. However, this attitude is wrong and

can be fatal. Even if the underlying hardware is fault free and

working in its specified parameter range, malfunctions can still

happen. These are induced by transient or intermittent errors

(so-called Soft Errors) due to cosmic radiation, temperatures,

signal noises as well as imperfect design. The susceptibility

of memories or microprocessors to such errors is thereby

increasing with shrinking CMOS feature sizes [16].

The failures can manifest themselves in bit flips in memory

or during computation. Thereby, a recent study, that investi-

gated the error rate in the main memory of servers discovered

a much higher error rate than expected. Thereby, up to 10 bit

flips per day for each memory module were detected [22].

Hence, modern servers use ECC-protected memory [9] to de-

tect and correct single bit upsets and by this means increase the

reliability. However, not only the main memory is susceptible

to errors but also the microprocessors including their caches,

registers and execution units. While some microprocessors also

use ECC protection for some caches [17], the execution units

and registers are more or less unprotected. In fact, research has

also developed solutions for these domains to increase their

fault tolerance (e.g. hardware-based TMR [23]), but these are

still far away from an adoption in mass production. Hence, it is

extremely important that also software developers are aware of

the problem of unreliable hardware and adjust their programs

accordingly to ensure correct results even if the computation

is not fault free.

This is particularly important in the field of numerical

methods and scientific computing, which includes the domain

of Computational Fluid Dynamics (CFD) simulations, that are

for instance used to calculate the air flow around cars or

to forecast the weather. Due to the high complexity of the

modeled problems the amount of processed data is extremely

large and simulation runtime can easily exceed several days.

Hence, the modeled problems in this field put extremely high

demands on computing power as well as memory capacity.

Furthermore, in order to ensure correct calculation through

out the entire runtime, also the reliability requirements are

very high. However, due to the performance demands in this

field, always the latest hardware technologies are used, which

are more susceptible to various failures such as Soft Errors.

Hence, it is very important to not only optimize the software

algorithms for a faster runtime, but also for a higher reliability

in order to ensure correct results, even if some errors occur

during the calculation.

Researchers have already proposed some Algorithm-based

Fault Tolerance (ABFT) techniques to overcome the problem

of unreliable hardware by means of software/algorithm level

techniques as discussed in detail in Section II. Roughly

speaking, most of the work focuses thereby on basic kernels

like matrix-matrix or matrix-vector multiplications and tries to

detect errors by adding special checksum techniques. However,

such techniques are often not applicable to real world problems

due to their calculation or data overhead. Furthermore, many

(iterative) solvers1 have intrinsic smoothing properties, that

can correct errors without any assistance by (external) error

detection and correction schemes, so that there is no need to

make every operation step fault tolerant. Hence, to keep the

1Real world problems modeled by linear partial differential equations are
typically transformed into linear systems of equations Ax = b. The problem
solution x is then calculated with the help of software algorithms, called
solvers.



overhead, to ensure a reliable operation, as low as possible,

the entire solver as one holistic entity has to be taken into

account.

For this reason, we present an approach that uses the nu-

merical defect correction method [3], [7] extended by dynamic

checkpointing, which can correct errors (also named defects)

independent of any (external) error detection and correction

scheme. The defect correction method is an iterative solving

algorithm for a system of linear equations Ax = b, that

converts the original problem into a defect problem Ad = r :=
b−Ax, which is then solved by another method (inner solver).

As inner solver we use in this work the Conjugated Gradient

method (CG), due to its favorable convergence properties.

The great advantage of this approach over others is, that it

combines the intrinsic error correction properties of the defect

correction method with the fast convergence of the CG, which

as a standalone solver is very vulnerable towards errors (it

possibly calculates wrong solution, or does not converge at

all). Hence, the result is a very fast solver with a high fault

tolerance, that can implicitly correct errors without the need

of any explicit error detection technique.

The results of our fault injection experiments clearly show

that our defect correction approach with dynamic checkpoint-

ing can ensure a correct solution even for a 1000 times higher

fault rate than the standalone CG solver. Thereby, the runtime

overhead for low fault rates is negligible. Hence, this approach

is much better suited than a CG solver extended with software-

based TMR, that has a higher runtime overhead for low fault

rates and is further not competitive for high fault rates.

The rest of the work is organized as follows. In Sec-

tion II some related work is presented. Our model problem

is introduced in Section III and the Conjugated Gradient

method is explained in the following Section IV. Afterwards,

our methodologies including the numerical defect correction

method and the dynamic checkpointing approach to achieve

fault tolerance are introduced in Section V. Finally, the empir-

ical results for these techniques can be found in Section VI.

II. RELATED WORK

Algorithm-based Fault Tolerance (ABFT) techniques have

been proposed as a means of low-cost error protection in

numerical computations by incorporating error protection in

the data representation as well as in the algorithm at the

software level. With the prevalence of many- and multi-

processor systems (such as multi-core, multi-socket, computer

clusters, etc.), researchers have taken benefit of excessive (and

at that time mostly unused) computation power to hide the

performance overhead associated with ABFT.

Checkpointing is one fault tolerance scheme that can be

combined with ABFT, in which all process states of the

application are saved into a stable storage periodically [18].

In case an error occurs during calculation, the actual state

is thrown away and instead the last backup is used. Such

techniques have been further improved to deal with many-

processor systems in which the failure of one processor

may result in unnecessary restart of other processors [10].

Checkpointing techniques in massive parallel systems have

also been investigated [12]. However, saving checkpoints still

means a high storage overhead and can only indirectly correct

errors but cannot detect them, so that additional techniques for

error detection are necessary. Moreover, in applications that are

memory bandwidth bound, as it often happens in the field of

numerical simulation and scientific computing, checkpointing

can dramatically increase the application runtime. In order

to minimize the overhead associated with checkpointing, an

algorithm-based checkpoint-free fault tolerance method for

parallel matrix computations has been presented in [10].

To detect errors during calculation Result Checking (RC)

can be used. Thereby, the results are checked without knowl-

edge of the particular algorithm used to calculate them. An RC

for matrix-matrix multiplication C = AB with input matrices

A and B works based on the observation that if the product of

C with a random vector r is equal to the product of matrix A
with vector Br, i.e. Cr =?A(Br) [20]. However, also RC can

only detect errors happened during the calculation but cannot

correct them.

Another ABFT error detection method is a checksum

scheme for matrix operations, which was introduced in [15].

The input matrices are augmented with an additional checksum

row and an additional checksum column. Each element of

the checksum column/row is the sum of the elements of

the original matrix that are in the same column/row. The

augmented matrices are then multiplied using an unmodified

multiplication algorithm – in the end, the additional row and

column of the result matrix should still be the sum of the

elements of the same row or column. If that is not the case,

an error has occurred. A linear algebraic model for checksum-

based ABFT has been developed in [2]. ABFT for matrix

inversion with maximum pivoting using checksum methods

was proposed in [24]. A series of row and column operations

were defined in this work which satisfy the checksum property.

ABFT for floating point matrix operations using backward

error assertions has been presented [8]. The use of the floating-

point arithmetic coding approach to build fault survivable high

performance computing applications has been explored in [11].

ABFT techniques have also benefited from many-processor

systems to hide the overhead in high performance numerical

systems [4]–[6], [14].

An ABFT approach for iterative solvers for partial differen-

tial equations has been presented in [19]. The used technique is

based on checksums, that are added to a red-black successive

over-relaxation (RB-SOR) solver. However, this approach does

not take any advantage out of the intrinsic error correcting

properties of this solver. In addition RB-SOR is very inefficient

in terms of convergence speed, which makes it uninteresting

for many real world problems.

In summary, all existing ABFT techniques for matrix op-

erations are somehow based on adding checksum rows and

columns, and performing extra computations for computing

and checking them. This requires additional memory and

runtime overhead even if no error occurs. In contrast, our

proposed approach does not add any memory overhead, in



the form of checksums, to the matrices and vectors, and takes

advantage of inherent numerical defect correction to achieve

fault tolerance. Therefore, almost no computation overhead is

incurred when there are no errors. Moreover, our approach can

correct errors without any explicit detection scheme, which

makes it very efficient.

III. MODEL PROBLEM

For the sake of simplicity the model problem under con-

sideration in this work is a two-dimensional Poisson problem

−∆u = f for an unknown function u in the 2D unit square

with Dirichlet boundary conditions set to zero (homogeneous)

and a given right hand side f [13]. A typical discretization

by means of finite difference or finite element methods on

equidistant grids with grid size h = 1/(n + 1) for a large

integer n results in a linear system of equations (LSE) Au = b,
where A is a matrix of size n2-by-n2 and the vector b with

length N := n2 represents the discrete values of the right

hand side. This system is characterized by the classical 5-point

Laplacian stencil, depicted in Figure 1. Beside this particular

model problem our proposed fault tolerant solver can handle

many other and much more complex problems as well. The

only property that the problem has to fulfill is a symmetric

and positive definite discretization matrix A. This is due to

the requirements of the applied Conjugated Gradient method,

that is introduced in the following Section IV.
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Fig. 1. 5-point Laplacian stencil describing the matrix A in Au = b.

IV. CONJUGATED GRADIENT METHOD

A. Basics

One of the most powerful methods for solving symmetric

and positive definite linear systems Ax = b is the Conjugated

Gradient method (CG) [21]. There are two main advantages of

this algorithm. First, it provides a favorable convergence rate

for most problems and second, it can be used as an out-of-

the-box solver without any information of the spectrum of the

matrix A or the right hand side b. The idea of the algorithm

is to update the current approximation of the solution by a

new vector with respect to the A-orthogonal projection of

the residual. With respect to the memory consumption this

algorithm is optimal due to the fact that we need to store only

three vectors.

A pseudo code of the CG method is presented in Algo-

rithm 1, where A is the input matrix and b is the right hand

side of the system, the initial guess is given by vector x0 and

Algorithm 1 Conjugated Gradient Method

x = x0 initial guess vector

R = r = b−Ax, ρ = (r, r), β = 0, p = 0
for k = 1 to MAXiter and ‖r‖L2

< ǫ‖R‖L2
do

p = r + βp
q = Ap
α = ρ/(p, q)
x = x+ αp
r = r − αq
ρold = ρ, ρ = (r, r)
β = ρ/ρold

end for

the residual is denoted by r. Here, (p, q) is the scalar product

of two vectors p and q and the discrete L2-norm of a vector

r is given by ‖r‖L2
:=

√

h(r, r).
Each iteration of the Conjugate Gradient method gives

a new approximate solution xk where the stopping crite-

rion is evaluated by means of the corresponding residual

rk = b − Axk which is implicitly calculated in the step

r = r−αq. Hence, in the fault free case and without floating

point rounding errors the exact residual in step k is given

by the recursion for r in Algorithm 1. The convergence of the

method, i.e. xk → x∗ with the exact solution x∗, is determined

by the condition number of the matrix A given by

κ(A) =
λmax

λmin

where λmax and λmin are the maximal and minimal (positive)

eigenvalues of the matrix A. For our model problem we find

κ(A) = 4n2/π2 = 4N/π.

Then it can be shown that the error xk − x∗ in iteration k
can be estimated by

||xk − x∗||A ≤ 2

[

√

κ(A)− 1
√

κ(A) + 1

]k

||x∗ − x0||A, (1)

where ||x||A :=
√

(x,Ax) is the energy norm, x∗ is the true

solution, x0 is the initial guess, xk is the k-th approximation

of the solution.

B. Computation and Storage Costs

From (1) one can conclude that the error in the energy norm

always decreases from one iteration to another. Furthermore,

an upper bound for the maximum number of iterations k such

that ‖x∗ − xk‖A ≤ ǫ‖x∗ − x0‖ can be derived by

k ≤
1

2

√

κ(A) ln

(

2

ǫ

)

+ 1

For our model problem, which is presented in Section III with

N = n2 unknowns, it follows that

k = O(N1/2). (2)

Due to the sparsity of the matrix A in this scenario, we have

5N additions and 5N multiplications in the matrix-vector



multiplication, 2N operations per scalar product, and 2N
operations per scaled vector update. In total, in each iteration

step 20N floating point computations are necessary, such that

the overall computational costs equals O(N3/2).
The storage costs can easily be derived by looking at the

Algorithm 1 of the CG method. As one can see, five vectors

(x, b, r, q, p) and the matrix A have to be stored. Since A
is sparse (most of the elements are zero), it is stored in a

special format consuming less space than storing each element

of the matrix (here, e.g. compressed sparse row format). That

means that for a problem with N unknowns a storage capacity

for 12N elements, each with a size of 64 bit (due to double

precision), is necessary.

C. Fault Tolerance Behavior

Without explicit control of the behavior of the solution

procedure the algorithm itself cannot “recognize” errors occur-

ring during the computation. This can lead to an unacceptable

accuracy loss for the solution. In addition, the CG method uses

a 3-term short recursion and has an intrinsic memory effect

with respect to the A-conjugated search directions [13], [21].

Once this memory is disturbed, e.g. by induced Soft Errors, the

solution possibly cannot be found and the iteration does not

complete with success. If the error appears as data corruption

in the solution vector, this error cannot be determined, leading

to a crucial reliability problem called silent data corruption.

In order to avoid this, an explicit computation of the residual

vector in the CG algorithm can be introduced. To this end,

the residual update r = r − αp needs to be replaced by

r = b − Ax. However, this step would significantly (more

than 50%) increase the computational costs in each iteration by

additional 11N calculations. Since this overhead also exists, if

no errors occur during runtime, this approach is not applicable

for real world problems. As a remedy, one can explicitly

calculate the exact residual only once after the solver has

computed the final solution, in order to detect a faulty solution,

which does not satisfy the accuracy requirements.

V. FAULT TOLERANCE METHODOLOGIES

In the following section we will explain our approaches to

maintain reliability for numerical computations. As mentioned

in the introduction, modern servers and processors use ECC

protected memory and caches [9], [17]. Hence, we use the

reasonable assumption that all data, which is read-only and

belongs to the control flow is always correct. Especially this

means, that conditional branches, loops and the executed

operations (e.g. Ra=Ra+Rb) are always correct. Only the

operands and results of calculations can be faulty. For the

CG method presented in Algorithm 1 this means that the

stopping criterion is always evaluated correctly and also the

loop indices, which are often used as array indices as well,

are assumed to be correct. Hence, it is only the computation

part, which has to be protected.

A naive approach to make calculations less vulnerable is

the usage of Software Implemented Hardware Fault Tolerance

(SIHFT) techniques in the form of Triple Modular Redundancy

(TMR). TMR triplicates the data, executes the operation once

on each of the three data sets and afterwards chooses the

correct result by majority voting. Hence, this approach not

only detects errors but also has the ability to correct them.

However, TMR is a brute force technique, that does not take

specific properties of the algorithm into account. Furthermore,

the triplication of data and operations leads to a high overhead

in terms of data but also in terms of computing time (if not run

fully parallel). Thereby, the overhead with respect to runtime

is that huge for low fault rates, that this technique is in the

most cases not usable (see the results in Section VI).

A. Numerical Defect Correction Method

We propose to use a solver with good intrinsic error

correction properties. Our goal is to obtain the correct solution

without huge additional costs in performance and data storage.

Therefore, we have chosen the defect correction method. As

one can see in the pseudo code illustrated in Algorithm 2 the

defect correction method consists of two steps. First of all,

there is an outer iterative loop in which the original problem

Ax = b is transformed into a defect problem Ad = r := b−Ax
( 6= 0 for an approximate solution x). This new problem is

then solved in a second step by an inner solver. Afterwards,

the solution x is updated by the computed defect x = x+ d.

In case the solution does not satisfy a certain accuracy, these

steps are repeated. By this means the defect correction method

ensures convergence to the correct solution even if (hardware)

computation faults during the computation happened. This is in

contrast to the standalone CG solver, where the convergence

cannot be ensured if computation faults occur (see Section

IV-C). However, multiple iterations of the outer loop of the

defect correction method can be necessary. Hence, the defect

correction method can correct (hardware) computation faults

without the usage of any explicit error detection technique

(i.e. hardware failures are treated as numerical defects). Fur-

thermore, the defect correction method is also “immune”

against silent data corruption, which is a big advantage of

this approach. As inner solver we use the already introduced

CG method due to its high convergence speed.

Algorithm 2 Defect Correction Scheme

x = x0 initial guess vector

R = r = b−Ax
while ‖r‖L2

> ǫ‖R‖L2
do

Solve (e.g. with CG) Ad = r
x = x+ d
r = b−Ax

end while

B. Computation and Storage Costs

Since we use the CG method as inner solver, the consid-

erations on the computation and storage costs for the inner

solver of our model problem (see Section III) can be found in

Section IV-B. For the calculation of the norm and the two other

operations in the outer loop of the defect correction method



only 15N floating point computations are necessary. The outer

loop is typically performed only a single or a few times. This

means that the additional computation overhead of the defect

correction method is negligible compared to the standalone CG

solver or the inner CG loop. In terms of storage an additional

capacity of N elements (64N bits) is necessary compared to

a normal CG solver, since the defect vector d has to be stored

additionally.

C. Flexible Checkpointing

A further improvement can be achieved by adding a flexible

checkpointing technique to the inner solver. In case of high

fault rates, it is very probable that the inner solver is stopped

because faults lead to nan- or inf-values. In that case, the

intermediate results for the defect vector are thrown away,

which means that the inner solver is restarted another time

for exactly the same problem. In case the fault rate is too

high, there will be too many restarts which can adversely

affect runtime (and also convergence). For this reason, we

have developed a special flexible checkpointing technique

to overcome this problem. After every m-th iteration the

computed approximation (in that case the defect) is stored

in a backup vector. In case the inner solver stops due to

nan- or inf-values, the defect vector is restored from the

backup (checkpoint). Afterwards, the defect correction method

continues as normal. Since it can happen that the inner solver

is stopped before m iterations are done, m can be decreased

dynamically according to the fault rate. In other words, the

checkpointing rate is adjusted based on the history of the

restart rate for the inner solver.

However, this feature takes another 64N bits of storage

space for saving the backup vector. If m is large enough

(compared to the number of iterations of the inner solver), the

additional runtime overhead for backup storage and loading is

negligible. For a better overview and comparison, the costs

for all methods is put side-by-side in Table I for the 2D

Poisson problem with homogeneous boundary conditions (see

Section III).

Method Computation Costs Storage Costs

Pure CG CG-Iterations × 20N 768N bits

CG with TMR CG-Iterations × 60N 1408N bits

Defect Correction
CG-Iterations × 20N 832N bits

(inner CG solver only)

Defect Correction & Checkp.
CG-Iterations × 20N 896N bits

(inner CG solver only)

TABLE I
ESTIMATION OF THE COMPUTATION AND STORAGE COSTS FOR DIFFERENT

SOLVERS WITH DIFFERENT FAULT TOLERANCE FOR THE 2D POISSON

PROBLEM WITH N UNKNOWNS.

VI. RESULTS

In this section we analyze the proposed techniques for

“fault-tolerant” iterative solvers based on the CG method in

a practical situation. We compare the results of our approach

with those of the original CG method and those of a version of

the CG method combined with software-based Triple Modular

Redundancy (TMR). We perform a comprehensive analysis

with different fault rates, where faults are induced by fault

injection during runtime.

A. Fault Injection

Fault injection is a widespread technique to test the re-

liability of different hardware or software. Since this work

is completely software-based, fault injection at algorithmic-

level is used to investigate the reliability improvements of the

different techniques presented in Section V. Every time an

error-vulnerable data item (see classification in Section V)

is written, a fault injection routine is called. This routine

will then introduce a fault into the data item with a given

probability. Therefore, the data is transfered from a decimal

number representation (floating point) to a binary representa-

tion according to the IEEE 754 specifications [1]. Afterwards,

the fault injection routine randomly flips bits and saves the

data again with a decimal representation (floating point). The

entire process is illustrated in Figure 2. Thereby, each bit has

the same probability to be faulty. By this means also multiple

bit faults per data element can be injected. The runtime for

the fault injection routine is not considered in our timing

measurements.

vector ....

random

1.345729... 0 0 0 1X
to binary

random

2.345729... 0 0 0 1X
to decimal

X

X

vector ....

inject fault

.... ....

.... ....

Fig. 2. Fault injection routine

In our experiments a fault rate (= probability that a bit is

faulty) between 10−12 and 10−6 has been used. The average

number of (injected) faults for each fault rate is illustrated in

Figure 3. Please note that these fault rates are extremely high

compared to those observed in current hardware. However,

they indicate what can happen with future hardware technolo-

gies or in special application areas (e.g. aerospace with high

radiation intensity).

B. Setup

In order to investigate the methodologies presented in Sec-

tion V, the standard test case for partial differential equations –

the 2D Poisson equation on the unit square with homogeneous
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boundary conditions discretized by the Laplacian matrix –

has been used (see Section III). The number of unknowns is

2 millions, which corresponds to a vector size of 128 · 106

bits using the double precision floating point format. All

experiments have been performed on a system with four 12-

core AMD Opteron-6174 processors with 2.2 GHz clock rate

and with a total system memory of 128 GByte of DDR3-RAM.

The operating system is RHEL 6 and for compilation of the

different solvers the build-in gcc-4.4.4 has been used.

A solution xcomp calculated by the iterative solvers is

considered a correct solution (within prescribed error tol-

erance), if the difference to the exact solution x∗ satisfies

‖x∗−xcomp‖ < 10−10. Since fault injection randomly selects

bits to be faulty, all experiments for different settings have

been performed 50 times in order to get reasonable results.

C. Vulnerability of CG, CG with TMR and Defect Correction

As a first aspect of the analysis, the study of the calculated

solutions by the three different methods (CG, CG with TMR,

Vector 1
(correct) 1 1 0

Vector 2
(faulty) 1 0 1

Vector 3
(faulty) 1 0 0

Result
(faulty)1 0 0

Fig. 5. Triple Modular Redundancy (TMR) can not correct always correct
faults

and CG with defect correction) is a good choice. Therefore, we

introduce three different categories for the computed solution:

1.) correct results, 2.) aborted runs with no valid solution

(i.e. error detection but no correction) and 3.) completed runs

with incorrect results. While the first two categories preserve

data integrity, the third one corresponds to a silent data corrup-

tion, which is a crucial reliability problem. This means, that

data is erroneous, but the application and thereby the user do

not recognize it. Hence, it is extremely important to verify the

calculated solution xcomp by checking if ‖A · xcomp − b‖ < ǫ
is satisfied for a given ǫ.

In Figure 4 the percentages of the three categories are de-

picted. As one can easily see, the original CG method without

any fault tolerance techniques is in our case inappropriate if

fault rates are higher than 10−10. For bigger problem sizes,

even lower fault rates are problematic, since the probability of

a faulty bit is increasing with increasing problem size. With

software-based TMR as fault tolerance technique the situation

is slightly better. However, also the fault protection of TMR is

very limited. Since TMR just triplicates the data, executes the

same operation on the three data sets, and afterwards chooses

the correct result by majority voting, high fault rates where

two out of three bits are faulty but both are 0 or 1 will lead

to wrong results as illustrated in Figure 5.

To overcome such a problem a higher redundancy may be

a solution. However, already TMR comes along with a high

overhead for detection – even for low fault rates leading to
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higher runtimes. Methods applying higher redundancy tech-

niques are hence even more time consuming. Another option

is the defect correction method, which we use here. Based on

the obtained results defect correction with CG as inner solver

delivers better fault tolerance than CG with TMR. In addition,

due to its mathematical properties the defect correction method

is ”immune” against silent data corruption (undetected errors).

In contrast the original CG and CG with TMR may result in

silent data corruption.

For the original CG and CG extended with TMR, silent

data corruption is not a major problem for high fault rates. In

this case the fault rate is that huge, that the CG method never

satisfies its stopping criterion. Hence no silent data corruption

occurs, no matter which solver is applied. However, if the

fault rate is in a medium range the stopping criterion of the

CG method is fulfilled in most of the cases, but the calculated

solutions can be faulty. If there is no additional check for

the solution as explained before, the result data can contain

unrecognized faults. Thereby, the measured peak value was

an occurrence rate of 84 % for silent data corruption for a

fault rate of 10−9 for the original CG method. With TMR

the vulnerability for silent data corruption is less, but still

noticeable.

However, also defect correction is not the “holy grail”. As

illustrated in Figure 4, for some intermediate fault rates CG

with TMR delivers more often a correct solution than the

defect correction method does (in our case for a fault rate of

10−8). This is due to the fact, that TMR can detect and correct

the occurring errors on-the-fly, while in the defect correction

method the faults are only implicitly corrected by updating

the solution and afterwards the residual rnew, and then start

the inner solver (here: CG) again to solve Ad = rnew (see

Algorithm 2). If bit flips lead to an abortion of the inner solver

the solution is not updated in the classical defect correction

method. By this means, the residual remains the same and

the following call of the inner solver tries to solve the same

problem as before. Hence, this can lead to endless loops, which

are counted as aborts in our categorization (runtime > 20×
runtime of pure CG).

One possible solution to reduce the number of aborts

due to endless loops is a dynamic backup of data (flexible

checkpointing) during the run of the inner solver as proposed

in Section V-C. While in the classic defect correction scheme,

an abort of the inner solver leads to the problem that the

computed data is thrown away, in the proposed enhanced

version only the data of the last iterations of the inner solver is

thrown away and an intermediate backup is used to update the

solution. As the results in Figure 4 clearly show, the advantage

compared to CG with TMR or the classic defect correction

scheme is huge. In our scenario the enhanced version could

still compute the correct solution in a reasonable amount of

time for a fault rate of 10−8, for which the classic version or

CG with TMR were struggling. Admittedly, also this approach

is not feasible for huge fault rates (here: more than 10−8).
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D. Runtime of CG, CG with TMR and Defect Correction

Beside the pure fault tolerance of the different solvers, their

practical runtime is a very important property. In Figure 6 the

average runtime for the three different approaches is depicted.

Due to the triplication of the data and the computations, the

TMR approach comes along with a huge and constant runtime

overhead, which proves the theoretical values in Table I.

Especially for low fault rates this technique is hence not the

best solution. Here, the defect correction method is clearly the

better choice. However, if the fault rates exceed a certain value,

the tide is turning. Since TMR can detect and correct faults

on-the-fly no additional iterations are necessary to compute

the correct solution. In contrast, the defect correction method

needs additional steps, which means that the inner solver is

called multiple times, and hence needs more time to calculate

the correct solution. In this case, checkpointing helps to further

reduce the average runtime. However, please note that TMR is

only better (in terms of runtime) than defect correction for ex-

tremely high fault rates, which might be unrealistic for current

technologies. Therefore, one can conclude that a combination

of the defect correction method with checkpointing and TMR

is optimal, whereby TMR is only activated when the fault rate

becomes extremely large.

VII. CONCLUSION

In this paper we presented an algorithm-based fault tolerant

(ABFT) scheme for an iterative linear solver based on the

Conjugated Gradient method (CG) by taking advantage of

numerical defect correction. In our proposed method, errors,

due to hardware failures or external disturbances, are treated as

numerical defects and by that means handled by the numerical

defect correction method, which uses CG as its solving engine

(inner solver).

Furthermore, we enhanced our method with dynamic check-

pointing when the range of numerical defects goes into infinity.

Thereby, the inner solver does not throw away its computed



results but instead just goes back to the previous checkpoint.

The checkpointing steps are set dynamically based on recent

history of retries.

Our experimental results based on fault injection on var-

ious fault rates and comparison with software implemented

hardware fault tolerance (SIHFT) using triple instruction re-

dundancy clearly shows the benefits of the proposed method

compared to such brute-force SIHFT-TMR method. The run-

time overhead of our proposed method is “pay as you go”,

meaning that there is only a runtime overhead when errors

have to be corrected with additional iterations, which is only

the case for very high fault rates. Furthermore, the runtime

overhead is proportional to fault rate. This is in contrast with

TMR in which there is a “prepaid cost” even if no errors

occur. Finally, our proposed approach provides also a better

error correction and, unlike SIHFT-TMR, always guarantees

data integrity (i.e. there is no silent data corruption).
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