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Abstract. Multigrid methods are efficient and fast solvers for problems
typically modeled by partial differential equations of elliptic type. For
problems with complex geometries and local singularities stencil-type
discrete operators on equidistant Cartesian grids need to be replaced
by more flexible concepts for unstructured meshes in order to properly
resolve all problem-inherent specifics and for maintaining a moderate
number of unknowns. However, flexibility in the meshes goes along with
severe drawbacks with respect to parallel execution – especially with
respect to the definition of adequate smoothers. This point becomes in
particular pronounced in the framework of fine-grained parallelism on
GPUs with hundreds of execution units. We use the approach of matrix-
based multigrid that has high flexibility and adapts well to the exigences
of modern computing platforms.

In this work we investigate multi-colored Gauß-Seidel type smoothers,
the power(q)-pattern enhanced multi-colored ILU(p) smoothers with fill-
ins, and factorized sparse approximate inverse (FSAI) smoothers. These
approaches provide efficient smoothers with a high degree of parallelism.
In combination with matrix-based multigrid methods on unstructured
meshes our smoothers provide powerful solvers that are applicable across
a wide range of parallel computing platforms and almost arbitrary ge-
ometries. We describe the configuration of our smoothers in the context
of the portable lmpLAtoolbox and the HiFlow3 parallel finite element
package. In our approach, a single source code can be used across di-
verse platforms including multicore CPUs and GPUs. Highly optimized
implementations are hidden behind a unified user interface. Efficiency
and scalability of our multigrid solvers are demonstrated by means of a
comprehensive performance analysis on multicore CPUs and GPUs.

Keywords: Parallel smoothers, unstructured meshes, matrix-based multi-
grid, multi-coloring, power(q)-pattern method, FSAI, multi-core, GPUs
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1 Introduction

The need for high accuracy and short simulation times relies both on efficient
numerical schemes and appropriate scalable parallel implementations. The lat-
ter point is crucial in the context of fine-grained parallelism in the prospect of
the manycore era. In particular, graphics processing units (GPUs) open new
potentials in terms of computing power and internal bandwidth values. These
architectures have a significant impact on the design and implementation of par-
allel algorithms in numerical simulation. The algorithms need to be laid out such
that thousands of fine-grained threads can run in parallel in order to feed hun-
dreds of computing units. Portability of solver concepts, codes and performance
across several platforms is further a major issue in the era of highly capable
multicore and accelerator platforms.

Multigrid methods rely on the decomposition of the error in low- and high-
frequency contributions. The so-called smoothers damp out the high frequency
contributions of the error at a given level. Adequate prolongation and restric-
tion operators allow to address the considered problem on a hierarchy of dis-
cretizations and by this means cover the full spectral range of error contribu-
tions only on the basis of these smoothers (see [20] and references therein for
further details). For full flexibility of the solvers in the context of complex ge-
ometries, stencil-based multigrid methods need to be replaced by more flexible
concepts. We use the approach of matrix-based multigrid where all operations
– i.e. smoothers, grid transfers and residual computation – are represented by
sparse matrix-vector multiplications (SpMV). This approach is shown to work
well on modern multicore platforms and GPUs [3]. Moreover, the restriction
to basic algorithmic building blocks is the key technique for building portable
solvers. The major challenge with respect to parallelism is related to the defini-
tion and implementation of adequate parallel smoothers.

Flexible multigrid methods on emerging multicore technologies are subject
of recent research. Parallel multigrid smoothers and preconditioners on regu-
larly structured tensor-product meshes (with a fixed number of neighbors but
arbitrary displacements) are considered in [7]. The author discusses parallel im-
plementation aspects for several platforms and shows integration of accelerators
into a finite element software package. In [6], geometric multigrid on unstruc-
tured meshes for higher order finite element methods is investigated. A parallel
Jacobi smoother and grid transfer operators are assembled into sparse matrix
representation leading to efficient solvers on multicore CPUs and GPUs. In [5]
performance results for multigrid solvers based on the sparse approximate inverse
(SPAI) technique are presented. An alternative approach without the need for
mesh hierarchies are algebraic multigrid methods (AMG) [10]. An implementa-
tion and performance results of an AMG on GPUs are discussed in [8].

In this work we propose a new parallel smoother based on the power(q)-
pattern enhanced multi-colored ILU(p) factorization [14]. We compare it to multi-
colored splitting-type smoothers and FSAI smoothers. These approaches provide
efficient smoothers with scalable parallelism across multicore CPUs and GPUs.
Various hardware platforms can be easily used in the context of these solvers by
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means of the portable implementation based on the lmpLAtoolbox in the paral-
lel finite element software package HiFlow3 [2]. The capability of the proposed
approach is demonstrated in a comprehensive performance analysis.

This paper is organized as follows. In Section 2 we describe the context
of matrix-based multigrid methods. Section 3 describes the parallel concepts
for efficient and scalable smoothers. Implementation aspects and the approach
taken in the HiFlow3 finite element method (FEM) package are presented in
Section 4. The numerical test problem is the Poisson problem on an L-shaped
domain. The impact of the choice and the configuration of the smoothers on
the MG convergence is investigated in Section 5. A performance analysis with
respect to solver times and parallel speedups on multicore CPUs and GPUs is
the central theme in Section 6. After an outlook on future work in Section 7 we
conclude in Section 8.

2 Matrix-based Multigrid Methods

Multigrid (MG) methods are usually used to solve large sparse linear systems
of equations arising from finite element discretizations (or related techniques)
of partial differential equations (PDEs) – typically of elliptic type. Due to the
ability to achieve asymptotically optimal complexity, MG has been proven to be
one of the most efficient solvers for this type of problems. In contrast to Krylov
subspace solvers, the number of needed iterations in the MG method in order to
achieve a prescribed accuracy does not depend on the number of unknowns N

or the grid spacing h. Hence, the costs on finer grids only increase linearly in N

due to the complexity of the applied operators. In this sense, MG is superior to
other iterative methods (see e.g. [20, 9]).

The main idea of MG methods is based on coarse grid corrections and the
smoothing properties of classical iterative schemes. High frequency error compo-
nents can be eliminated efficiently by using elementary iterative solvers – such as
Jacobi or Gauß-Seidel. On the other hand, smooth error components cannot be
reduced efficiently on fine grids. This effect can be mitigated by performing a se-
quence of coarsening steps and transferring the smooth errors by restricting the
defect to coarser mesh levels. On each coarser mesh, pre-smoothing is applied to
reduce error components inherited by the grid transfer. Moreover, on this coarser
level the smooth components can be damped much faster. When the coarsest
level is reached, the so-called coarse grid problem has to be solved exactly or
by an iterative method with sufficient accuracy. By applying the prolongation
operator to the corrected defect the next finer level can be reached again. Any re-
maining high frequency error components can be eliminated by post-smoothing.
This recursive execution of inter-grid transfer operators and smoothers is called
the MG cycle. Details on the basic properties of the MG method as well as error
analysis and programming remarks can be found in [20, 9, 18, 4] and in references
provided therein. Aspects of parallel MG are e.g. discussed in [16].

The MG cycle is an iterative and recursive method, shown in Algorithm 1.
Here, Lhuh = fh is the discrete version of the underlying PDE on the refinement
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level with mesh size h. On each level, pre- and post-smoothing is applied in the

form u
(n)
h = RELAXν(ũ

(n)
h , Lh, fh). The parameter ν denotes the number of

smoothing iterations. Grid transfer operators are denoted by IH
h (restriction)

and Ih
H (prolongation) where h is representing the fine grid size and H is the

coarse grid size. The transferred residual rH is the input to the MG iteration
on the coarser level where the initial value for the error is taken by zero. The
parameter γ specifies the number of two-grid cycle iterations on each level and
thus specifies how often the coarsest level is visited. For γ = 1 we obtain so
called V-cycles whereas γ = 2 results in W-cycles. The obtained solution after
each cycle serves as the input for the successive cycle.

Algorithm 1: Multigrid cycle: u
(n)
h = MG(u

(n−1)
h , Lh, fh, ν1, ν2, γ)

(1) ū
(n)
h

:= RELAXν1(u
(n−1)
h

, Lh, fh) pre-smoothing

(2) r
(n)
h

:= fh − Lhū
(n)
h

compute residual

(3) r
(n)
H

:= IH

h r
(n)
h

restriction
(4) if (H == h0) then

LHe
(n)
H

= r
(n)
H

exact solution on the coarse grid
(5) else

e
(n)
H

= MG(0, LH , r
(n)
H

, ν1, ν2, γ) recursion
end if

(6) e
(n)
h

:= Ih

He
(n)
H

prolongation

(7) ũ
(n)
h

:= ū
(n)
h

+ e
(n)
h

correction

(8) u
(n)
h

= RELAXν2(ũ
(n)
h

, Lh, fh) post-smoothing

In this work, we consider matrix-based geometric MG methods [19]. In con-
trast to stencil-based geometric MG methods, all differential operators and grid
transfer operators are not expressed by fixed stencils on equidistant grids but
have the full flexibility of sparse matrix representations. On the one hand, this
approach gives us flexibility with respect to complex geometries, non-uniform
grids resulting from local mesh refinements, and space-dependent coefficients in
the underlying PDE. On the other hand, the solvers can be built upon standard
building blocks of numerical libraries.

The convergence and robustness of MG methods strongly depend on the ap-
plied smoothers. While classical MG performs very well with additive smoothers
such as Gauß-Seidel or Jacobi, strong anisotropies require more advanced smoothers
in order to achieve full MG efficiency. In the latter case, incomplete LU decom-
positions have demonstrated convincing results, e.g. for 2D cases in [21].

3 Parallel Smoothers for Matrix-Based Multigrid

Stencil-based geometric MG methods can be efficiently performed in parallel
by domain sub-structuring and halo exchange for the stencils [16]. In contrast,
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the parallel implementation of a matrix-based MG requires more work. While
the grid transfer operators are explicit updates with sufficient locality, parallel
smoothers rely on implicit steps where typically triangular systems need to be
solved. And as we are working on unstructured meshes, straightforward par-
allelization strategies like wave-front or red-black-coloring cannot be applied.
Therefore, the focus of our work is directed to fine-grained parallelism for the
smoothing step. We consider additive and multiplicative matrix splittings used
for designing efficient parallel smoothers considering the following two restric-
tions: first, the proposed smoothers should rely on a high degree of parallelism
and should show significant speedups on multicore CPUs and GPUs. Second, the
parallel versions of the smoothers should maintain smoothing properties com-
parable to their sequential version. The considered smoothers are based on the
block-wise decomposition into small sub-matrices. In the additive and multi-
plicative splittings, typically a large amount of forward and backward sweeps in
triangular solvers needs to be processed.

For the description of the proposed parallel smoothers we point out the link
between smoothers and preconditioning techniques. Iterative solvers can gen-
erally be interpreted in fixed point form by xk+1 = Gxk + f where the linear
system of the type Ax = b is transformed by the additive splitting A = M + N

and taking G = M−1N = M−1(M − A) = I − M−1A and f = M−1b. This
version can be reformulated as a preconditioned defect correction scheme given
by

xk+1 = xk + M−1(b − Axk). (1)

In this context, we apply preconditioners M as smoothers for the linear system
Ax = b. Additive preconditioners are standard splitting schemes typically based
on the block-wise decomposition A = D + L + R where L is a strictly lower
triangular matrix, R is a strictly upper triangular matrix, and D is the matrix
containing the diagonal blocks of A. We choose M = D (Jacobi), M = D + L

(Gauß-Seidel) or M = (D + L)D−1(D + R) (symmetric Gauß-Seidel). For mul-
tiplicative splittings we choose M = LU in (1) where L is a lower triangular
and U is an upper triangular matrix. For incomplete LU (ILU) factorizations
with or without fill-ins we decompose the system matrix A into the product
A = LU + R with a remainder matrix R that absorbs unwanted fill-in elements.
Typically, diagonal entries of L are taken to be one and both matrices L and
U are stored in the same data structure (omitting the ones). The quality of the
approximation in this case depends on the number of fill-in elements. The third
class of considered parallel smoothers are the approximate inverse precondition-
ers. Here, we are focusing on the factorized sparse approximate inverse (FSAI)
algorithms [17] that compute a direct approximation of A−1. These schemes are
based on the minimization of the Frobenius norm |I −GA|F where one looks for
a symmetric preconditioner in the form G := GT

LGL. In other words – one di-
rectly builds an approximation of the Cholesky decomposition based on a given
sparse matrix structure. FSAI(1) uses the sparsity pattern of A, FSAI(q), q ≥ 2,
uses the sparsity pattern of |A|q respectively.
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In order to harness parallelism within each block of the decomposition we
apply multi-coloring techniques [14]. For splitting-based methods (like Gauß-
Seidel and SOR) and ILU(0) decompositions without fill-ins the original spar-
sity pattern of the system matrix is preserved in the additive or multiplicative
decompositions. Here, only subsets of the original sparsity pattern are populated
and no additional matrix elements are inserted. Before applying the smoother,
the matrix is re-organized such that diagonal blocks in the block decomposition
are diagonal itself. Then, inversion of the diagonal blocks is just an easy vector
operation [13].

Furthermore, we allow fill-ins (i.e. additional matrix elements) in the ILU(p)
factorization for achieving a higher level of coupling with increased efficiency.
The power(q)-pattern method is applied to ILU(p) factorizations with fill-ins
[14]. This method is based on an incomplete factorization of the system matrix
A subject to a predetermined non-zero pattern derived from a multi-coloring
analysis of the matrix power |A|q and its associated multi-coloring permutation
π. It has been proven in [14] that the obtained sparsity pattern is a superset of
the modified ILU(p) factorization applied to πAπ−1. As a result, for q = p + 1
this modified ILU(p,q) scheme applied to the multi-colored system matrix has
no fill-ins into its diagonal blocks. This leads to an inherently parallel execution
of triangular ILU(p,q) sweeps and hence to a parallel and efficient smoother.
The degree of parallelism can be increased by taking q < p + 1 at the expense
of some fill-ins into the diagonal blocks. In this scenario (e.g. for the ILU(1,1)
smoother in our experiments) we use a drop-off technique that erases fill-ins into
the diagonal blocks. These techniques have already been successfully tested in
the context of parallel preconditioners [14]. The major advantage is that multi-
coloring can be applied before performing the ILU(p) with additional fill-ins –
where fill-ins only occur outside the blocks on the diagonal. By precomputing
the superset of the data distribution pattern we also eliminate costly insertion
of new matrix elements into dynamic data structures and obtain compact loops
[14].

4 Implementation Aspects

Flexibility of solution techniques and software is a decisive factor in the current
computing landscape. We have incorporated the described multigrid solvers and
parallel smoothers into the multi-platform and multi-purpose parallel finite ele-
ment software package HiFlow3 [11, 2]. With the concept of object-oriented pro-
gramming in C++, HiFlow3 provides a flexible, generic and modular framework
for building efficient parallel solvers and preconditioners for PDEs of various
types. HiFlow3 tackles productivity and performance issues by its conceptual
approach. It is structured in several modules. Its linear algebra operations are
based on two communication and computation layers, the LAtoolbox for inter-
node operations and the lmpLAtoolbox for intra-node operations in a parallel
system. The lmpLAtoolbox has backends for multiple platforms with highly
optimized implementations – hiding all hardware details from the user while
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maintaining optimal usage of resources. Numerical solvers in HiFlow3 are built
on the basis of unified interfaces to the different hardware backends and parallel
programming approaches – where only a single code base is required for all plat-
forms. By this means, HiFlow3 is portable across diverse computing systems in-
cluding multicore CPUs, CUDA-enabled GPUs and OpenCL-capable platforms.
The modular approach also allows an easy extension to emerging systems with
heterogeneous configuration. The main modules of HiFlow3 are described in the
following: Mesh, DoF/FEM and Linear Algebra. See Figure 1 for an abstraction.

Mesh - This module provides a set of classes and functions for handling gen-
eral types of meshes. This library deals with complex unstructured distributed
meshes with different types of cells via a uniform interface. The data structures
provided can be used to represent meshes of arbitrary topological and geometri-
cal dimension, and even with different cell types in one and the same mesh. It is
possible to create hierarchies of meshes through refinement and also to coarsen
cells given such a hierarchy.

DoF/FEM (Degrees of Freedom / Finite Element Methods) - Treat-
ment of the FEM and DoF is highly interdependent and therefore, the major
idea of this module is to capture both sub-modules and unify them within a sin-
gle scope. The DoF sub-module deals with the numbering of all DoF resulting
from the finite element ansatz on each mesh cell. It can handle discontinuous
and continuous finite element ansantz functions. This data is passed to the FEM
sub-module. This part of the library handles the task of representing the chosen
finite element ansatz on the reference cell and transforming it into the physical
space depending on its geometry.

Linear Algebra - This module handles the basic linear algebra operations and
offers (non-)linear solvers and preconditioners. It is implemented as a two-level
library: the global level is an MPI-layer which handles the distribution of data
among the nodes and performs cross-node computations. The local level (local
multi-platform LAtoolbox) takes care of the on-node routines offering a unified
interface to several platforms by providing different platform backends, e.g. to
multicore CPUs (OpenMP, MKL) and GPUs (CUDA, OpenCL).

In this work we are only focusing on single node parallelism. Therefore, we
do not consider the global MPI level. Based on the matrix and vector classes
HiFlow3 offers several Krylov subspace solvers and local additive and multi-
plicative preconditioners. Further information about this library, solvers and
preconditioners can be found in [14, 12, 13, 15].

Implementation of Matrix-based Multigrid in HiFlow3

The proposed multigrid solvers and smoothers have been implemented in the con-
text of HiFlow3. Starting on an initial mesh, the HiFlow3 mesh module refines
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Fig. 1. Modular configuration of the parallel FEM package HiFlow3.

the grid in order to reach the requested number of cells according to the demands
for accuracy. The current version supports quadrilateral elements as well as tri-
angles for two dimensional problems. In the three-dimensional case tetrahedrons
and hexahedrons are used. For our two-dimensional test case, an unstructured
mixed mesh containing both types of elements with local refinements has been
used. On each refinement level, the corresponding stiffness matrix and the right
hand side are assembled for the given equation. Our implementation performs a
bi-linear interpolation to ascend to a finer level and a full weighting restriction
to descend to a coarser level respectively. With the relation Ih

2h = 2dim(I2h
h )T

for the intergrid transfer operators for the standard coarsening procedure, it is
sufficient to assemble the prolongation matrix only.

Due to the modular approach of the lmpLAtoolbox, the matrix-based MG
solver is based on a single source code for all different platforms (CPUs, GPUs,
etc). The grid transformations and the defect computation are based on matrix-
vector and vector-vector routines which can be efficiently performed in parallel
on the considered devices. Moreover, a similar approach is taken for the smooth-
ing steps based on the preconditioned defect correction (1). In this context, our
smoothers make use of parallel preconditioners of additive and multiplicative
type. See also [14] for a detailed description of the parallel concepts for pre-
conditioners, the power(q)-pattern enhanced multi-colored ILU(p) schemes and
a comprehensive performance analysis with respect to solver acceleration and
parallel speedups on multicore CPUs and GPUs.
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5 Numerical Experiments and Smoother Efficiency

As a numerical test problem we are solving the Poisson problem with homoge-
neous Dirichlet boundary conditions

−∆u = f in Ω, (2)

u = 0 on ∂Ω

in the two-dimensional L-shaped domain Ω := (0, 1)2 \ (0, 0.5)2 with a reentrant
corner. For our test case we choose the right hand side f = 8π2 cos(2πx) cos(2πy).
We solve (2) by means of bilinear Q1 elements on quadrilaterals and linear P1
elements on triangles [11, 2]. A uniform discretization of the L-shaped domain is
depicted in Figure 2 (left). The numerical solution of (2) with boundary layers is
detailed in Figure 2 (right). Due to the steep gradients at the reentrant corner we

Fig. 2. Discretization of locally refined L-shaped domain (left) and discrete solution of
the Poisson problem (2) (right).

are using a locally refined mesh in order to obtain a proper problem resolution.
Figure 3 (left) shows a zoom-in into a uniformly refined coarse mesh. In the mesh
in Figure 3 (right) we are using additional triangular and quadrilateral elements
for local refinement and avoiding hanging nodes and deformed elements [1].

Our coarsest mesh in the multigrid hierarchy is a locally refined mesh based
on triangular and quadrilateral cells with Q1 and P1 elements summing up to
3,266 degrees of freedom (DoF). By applying six global refinement steps to this
coarse mesh we obtain the hierarchy of nested grids where the finest mesh has
3,211,425 DoF. Details of the mesh hierarchy are listed in Table 1. None of
our grids is a uniform grid with equidistant mesh spacings. For the inter-grid
operations we are using full weighting restrictions and bi-linear interpolations.
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Fig. 3. Zoom-in to a uniform mesh with 3,201 DoF (left) and a locally refined mesh
with 3,266 DoF (right) of the L-shaped domain around the reentrant corner – our
coarsest MG mesh with level 1.

level #cells #DoF hmax hmin at (0.5, 0.5)

1 3,177 3,266 0.015625 0.000488
2 12,708 12,795 0.0078125 0.000244
3 50,832 50,645 0.00390625 0.000122
4 203,328 201,513 0.001953125 0.0000610
5 813,312 803,921 0.000976563 0.0000305
6 3,253,248 3,211,425 0.000488281 0.00001525

Table 1. Characteristics of the six refinement levels of the MG hierarchy.

For the motivation of our locally refined grids we consider the following ex-
ample. The gradient of the solution on a fine uniform mesh with 3,149,825 DoF
shows a low resolution as can be seen in Figure 4 (left). The gradient of the
solution on the locally refined mesh with 3,211,425 DoF (our finest grid in the
multigrid hierarchy) is approximated much more accurately as depicted in Fig-
ure 4 (right). Clearly, with the same amount of unknowns we can solve the
problem with higher accuracy only on locally refined meshes. There is a signif-
icant improvement of approximation quality with less than 2 % additional grid
points.

Fig. 4. Zoom-in plots of the gradient of the solution of (2)on a uniform mesh with
3,149,825 DoF (left) and on a locally refined mesh with 3,211,425 DoF (right) – our
finest MG mesh with level 6.

In this work we study the behavior of parallel smoothers based on additive
splittings (Jacobi, multi-colored Gauß-Seidel and multi-colored symmetric Gauß-
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Seidel), incomplete factorizations (multi-colored ILU(0) and power(q)-pattern
enhanced multi-colored ILU(p) with fill-ins) and FSAI smoothers. We investigate
their properties with respect to high-frequency error reduction and convergence
behavior of the V- and W-cycle parallel MG. In particular, we consider the
multigrid behavior on different test platforms. Our numerical experiments are
performed on a hybrid platform, a dual-socket Intel Xeon (E5450) quad-core
system (with eight cores in total) that is accelerated by an NVIDIA Tesla S1070
GPU system with four GPUs attached pairwise by PCIe to one socket each. The
memory capacity of a single CPU and GPU device is 16GB and 4GB respectively.
We are only using double precision for the computations.

We perform several tests with different configurations for the pre- and post-
smoothing steps. We determine the number of cycles required to achieve a rel-
ative residual less than 10−6. In Table 2 the iteration counts are shown for the
V-cycle based MG. Note, that the iteration counts in this table do not reflect the
total amount of work. Some smoothing steps, e.g. ILU(p), need more work than
others. From a theoretical point of view, a Gauß-Seidel smoothing step is half as
costly as a symmetric Gauß-Seidel step; ILU(0) is cheaper than ILU(1,1) which
is cheaper than ILU(1,2). For the MG solver, ν1 +ν2 is the number of smoothing
steps on each level and should be kept low in order to reduce the total amount
of work (and hence the solver time). For estimation of the corresponding work
load, computing times are included for the MG solver on the GPU platform.

For Jacobi smoothers there is no convergence of the MG solver within 99 iter-
ations. Multi-colored symmetric Gauß-Seidel (SGS) is better than multi-colored
Gauß-Seidel (GS) in terms of iteration count. Multi-colored ILU smoothers are
better than additive factorizations (GS, SGS). The quality of the ILU(p) schemes
in terms of iteration counts gets better with increasing p. The drop-off technique
for ILU(1,1) is providing only little improvements compared to ILU(0). Iteration
counts for the FSAI smoothers are in the same range as the ILU smoothers. Best
candidates with respect to reduced iteration counts are ILU(1,2) and FSAI(2).
Minima with respect to the iteration count can be found for configurations where
ν1 + ν2 = 3 or 4. For larger values there are no more significant improvements.

The run time results show that the benefits for the SGS smoother in terms
of smoothing properties and reduced iteration count are eaten up in terms of
run time due to the additional overhead in each smoothing step and an addi-
tional V-cycle. For the ILU smoothers the additional work complexity still yields
improvements in run time. The best performance is obtained for the ILU(1,2)
smoother. The drop-off technique for ILU(1,1) has some diminishment in per-
formance. The FSAI smoothers give no particular improvements in run time
compared to the other smoothers.

Table 3 shows iteration counts and run times for the W-cycle based MG
solver. The iteration counts are reduced compared to the V-cycle based MG
solver. However, the run times show that the W-cycle based MG solver is by a
factor of 2 to 3 slower than the V-cycle based MG solver. The W-cycle based MG
solver is slower because more smoothing steps are performed on coarser grids.
This involves a larger number of calls to SpMV routines for small matrices with



12

(ν1, ν2) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2)

Jacobi [#its] >99 >99 >99 >99 >99 >99 >99 >99 >99 >99 >99 >99

GS [#its] 30 14 10 8 35 16 10 8 7 20 12 9
time [sec] 5.75 3.89 3.62 3.58 6.44 4.43 3.63 3.59 3.73 5.33 4.34 4.03

SGS [#its] 23 13 9 8 28 14 10 8 7 17 11 9
time[sec] 4.89 4.17 3.88 4.28 5.71 4.49 4.28 4.28 4.51 5.29 4.69 4.80

ILU(0) [#its] 18 11 8 6 25 11 8 7 6 15 8 7
time [sec] 3.80 3.49 3.40 3.19 5.00 3.50 3.40 3.72 3.82 4.59 3.42 3.72

ILU(1,1) [#its] 18 10 7 6 23 11 8 7 6 14 8 7
time [sec] 4.30 3.73 3.56 3.85 5.26 4.10 4.06 4.49 4.66 5.06 4.06 4.49

ILU(1,2) [#its] 10 6 5 5 12 7 5 5 5 9 6 5
time [sec] 2.93 2.75 3.08 3.86 3.36 3.20 3.10 3.87 4.65 3.98 3.69 3.87

FSAI(1) [#its] 17 9 7 6 22 10 7 6 6 14 8 7
time [sec] 4.14 3.35 3.46 3.69 5.41 3.72 3.47 3.70 4.39 5.18 3.94 4.27

FSAI(2) [#its] 14 7 6 5 15 8 6 5 5 10 6 6
time [sec] 4.54 4.08 4.96 5.36 5.71 4.64 4.96 5.38 6.59 6.30 4.96 6.42

FSAI(3) [#its] 9 6 5 5 12 6 5 5 5 8 6 5
time [sec] 4.04 5.15 6.40 8.42 6.58 5.20 6.39 8.45 10.50 7.77 7.63 8.44

(ν1, ν2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4) (4,0) (4,1) (4,2) (4,3) (4,4)

Jacobi [#its] >99 >99 >99 >99 >99 >99 >99 >99 >99 >99 >99 >99

GS [#its] 7 7 15 10 8 7 6 12 9 8 7 7
time [sec] 3.74 4.31 5.27 4.45 4.25 4.34 4.21 5.24 4.76 4.91 4.90 4.70

SGS [#its] 7 7 13 9 8 7 6 11 9 7 7 6
time [sec] 4.49 5.22 5.43 4.82 5.12 5.23 5.12 5.78 5.76 5.23 5.96 5.75

ILU(0) [#its] 6 6 11 7 6 6 6 9 7 6 6 5
time [sec] 3.83 4.45 4.54 3.72 3.82 4.44 5.01 4.68 4.44 4.44 5.06 4.75

ILU(1,1) [#its] 6 5 10 7 6 6 5 9 6 6 5 5
time[sec] 4.65 4.54 4.96 4.49 4.65 5.43 5.20 5.66 4.65 5.43 5.19 5.87

ILU(1,2) [#its] 5 5 8 6 5 5 5 7 6 5 5 5
time [sec] 4.66 5.43 4.79 4.64 4.65 5.43 6.21 5.30 5.58 5.43 6.22 6.99

FSAI(1) [#its] 6 6 11 8 6 6 6 10 7 6 6 6
time [sec] 4.39 5.07 5.40 4.86 4.39 5.08 5.77 6.09 5.08 5.08 5.80 6.48

FSAI(2) [#its] 5 5 8 6 6 5 5 8 6 5 5 5
time [sec] 6.60 7.82 7.05 6.43 7.88 7.80 9.02 8.97 7.87 7.79 9.03 10.23

FSAI(3) [#its] 5 5 8 6 5 5 5 7 5 5 5 4
time [sec] 10.49 12.58 11.06 10.08 10.48 12.56 14.62 12.57 10.49 12.56 14.60 13.38

Table 2. Number of MG V-cycles for different smoothers and total run times of the
V-cycle based MG solver on the GPU for different smoother configurations; ν1 is the
number of pre-smoothing steps, ν2 is the post-smoothing step count.

significant overhead (in particular kernel call overheads on the GPU). The best
results for the W-cycle based MG are obtained for the ILU(0) smoother with
Gauß-Seidel following next. Except of the FSAI smoothers, all other smoothers
are on the same performance level.
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(ν1, ν2) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2)

GS [#its] 25 13 9 7 28 13 9 7 6 15 10 8
time [sec] 14.76 9.71 8.06 7.34 15.06 9.21 7.73 7.15 7.05 10.15 8.35 7.93

SGS [#its] 23 12 9 7 25 13 9 7 6 14 9 7
time [sec] 14.60 10.05 9.15 8.45 14.52 10.22 8.86 8.27 8.20 10.77 8.88 8.27

ILU(0) [#its] 19 11 8 6 21 11 8 6 5 12 8 6
time [sec] 11.33 8.61 7.80 7.09 11.31 8.32 7.61 7.02 6.85 8.79 7.58 7.00

ILU(1,1) [#its] 18 10 8 6 20 11 8 6 6 12 8 7
time [sec] 11.73 8.81 8.69 8.02 12.34 9.35 8.70 8.01 9.19 9.87 8.67 9.05

ILU(1,2) [#its] 10 6 5 4 11 7 5 4 4 7 5 4
time [sec] 10.30 8.34 8.43 8.17 10.80 9.33 8.40 8.18 9.23 9.17 8.39 8.15

FSAI(1) [#its] 18 9 6 5 19 10 7 5 5 10 7 6
time [sec] 20.32 13.05 10.30 9.59 20.43 13.41 11.08 9.39 10.10 13.52 11.05 10.57

FSAI(2) [#its] 14 7 5 4 15 8 5 4 4 8 6 5
time [sec] 19.03 12.83 11.26 10.68 20.64 14.00 11.23 10.64 11.81 14.33 12.71 12.55

FSAI(3) [#its] 9 5 4 4 10 6 4 4 4 6 5 4
time [sec] 14.64 11.73 11.95 14.15 16.95 13.37 11.82 14.01 16.02 14.05 14.00 13.98

(ν1, ν2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4) (4,0) (4,1) (4,2) (4,3) (4,4)

GS [#its] 6 6 10 8 7 6 5 9 7 6 5 5
time [sec] 7.01 7.77 8.33 7.91 7.94 7.75 7.25 8.51 7.94 7.75 7.22 7.87

SGS [#its] 6 6 10 8 7 6 5 8 7 6 6 5
time [sec] 8.20 9.16 9.60 9.22 9.35 9.18 8.67 9.22 9.34 9.16 10.14 9.50

ILU(0) [#its] 5 5 8 7 6 5 4 7 6 5 5 4
time [sec] 6.84 7.65 7.54 7.89 7.93 7.65 6.96 7.82 7.93 7.62 8.43 7.61

ILU(1,1) [#its] 6 5 9 7 6 5 5 7 6 5 5 4
time [sec] 9.16 8.88 9.37 9.04 9.14 8.87 9.86 8.97 9.12 8.86 9.86 8.94

ILU(1,2) [#its] 4 4 6 5 4 4 4 5 4 4 4 4
time [sec] 9.23 10.39 9.53 9.74 9.20 10.35 11.46 9.66 9.18 10.32 11.45 12.62

FSAI(1) [#its] 5 5 8 6 5 5 4 7 5 5 5 4
time [sec] 9.98 10.79 12.08 10.57 10.05 10.83 9.83 11.76 10.03 10.81 11.58 10.48

FSAI(2) [#its] 4 4 6 5 4 4 4 6 4 4 4 4
time [sec] 11.86 13.25 13.08 12.60 11.84 13.21 14.46 14.48 11.80 13.18 14.47 15.81

FSAI(3) [#its] 4 4 5 4 4 4 3 5 4 4 4 3
time [sec] 16.41 18.82 14.68 13.97 16.40 18.78 16.37 17.40 16.33 18.72 21.12 18.06

Table 3. Number of multigrid W-cycles for different smoothers and total run times of
the W-cycle based MG solver on the GPU for different smoother configurations; ν1 is
the number of pre-smoothing steps, ν2 is the post-smoothing step count.

In Table 4 the run times and iteration counts for the best V-cycle and W-
cycle based smoother configurations for the parallel MG solvers on the GPU are
summarized. The first column in this table specifies the optimal values for the
parameters ν1 and ν2 that correspond to the number of pre- and post-smoothing
steps on each refinement level. The third column gives the number of necessary
MG cycle iterations.
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V-cycle based MG W-cycle based MG
Smoother (ν1, ν2) time [sec] #its (ν1, ν2) time [sec] #its

GS (0,4) 3.58 8 (2,3) 7.01 6
SGS (0,3) 3.88 9 (2,3) 8.20 6

ILU(0) (0,4) 3.19 6 (2,3) 6.84 5
ILU(1,1) (0,3) 3.56 7 (1,3) 8.01 6
ILU(1,2) (0,2) 2.75 6 (2,2) 8.15 4
FSAI(1) (0,2) 3.35 9 (1,3) 9.39 5
FSAI(2) (0,2) 4.08 7 (1,3) 10.64 4
FSAI(3) (0,1) 4.04 9 (0,2) 11.73 5

Table 4. Minimal run times and corresponding iteration counts for the V-cycle and
W-cycle based parallel MG solvers on the GPU for various smoothers and optimal
configurations of the corresponding number of pre- and post-smoothing steps (ν1, ν2).

Compared to the results of the Krylov subspace solvers, MG performance is
superior. In Table 5 the run times are listed for the preconditioned conjugate
gradient (CG) method on the CPU and GPU test platforms. The considered
smoothers are used as preconditioners in this context. The number of CG it-
erations is given in the first row. We find that all preconditioners significantly
reduce the number of iterations. Run times are presented for the sequential CPU
version, the eight-core OpenMP parallel version, and the GPU version. We see
that the MG solver on the GPU is faster by a factor of up to 60 than the pre-
conditioned CG solver on the GPU. The best preconditioner is ILU(1,2) on the
GPU.

Precond None Jacobi SGS ILU(0) ILU(1,1) ILU(1,2) FSAI(1) FSAI(2) FSAI(3)

# iter 5,650 4,167 2,323 2,451 2,066 1,387 2,198 1,493 1,139

Sequential 1492s 1134s 1433s 1472s 1347s 1498s 1271s 950.4s 1082.5s
OpenMP 604.4s 573.4s 662.6s 676.9s 630.0s 589.7s 435.5s 438.5s 500.302s

GPU 273s 218.3s 186.6s 195.1s 206.7s 158.0s 204.1s 280.0s 359.662s

Table 5. Run times in seconds and iteration counts for the preconditioned CG solver
for various preconditioners on the CPU (sequential and eight-core OpenMP parallel)
and on the GPU.

In the following we consider the smoothing properties in more details. In
Figure 5 the initial error with its high oscillatory parts is shown for a random
initial guess. In the following figures we present the reduction of the error (com-
pared to the final MG solution) after one and three smoothing steps with the
corresponding smoother. For this experiment we choose the locally refined mesh
of level 2 with 12,795 DoF (the second coarsest mesh in our MG hierarchy). We
see that the effect from Jacobi smoothing as shown in Figure 6 is worse than
that from Gauß-Seidel smoothing shown in Figure 7 which itself is worse than
the symmetric Gauß-Seidel smoother presented in Figure 8. Even more smooth
results are observed for ILU(0), ILU(1,1) and ILU(1,2) as shown in Figure 9,
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10 and 11. With the FSAI smoothers, some higher order oscillations are still
observed after the initial smoothing step as can bee seen in Figures 12, 13 and
14.
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Fig. 5. Initial error for the MG iteration with random initial guess.
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Fig. 6. Damped error after 1 (left) and 3 (right) Jacobi smoothing steps.
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Fig. 7. Damped error after 1 (left) and 3 (right) Gauß-Seidel smoothing steps.
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Fig. 8. Damped error after 1 (left) and 3 (right) symmetric Gauß-Seidel smoothing
steps.
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Fig. 9. Damped error after 1 (left) and 3 (right) ILU(0) smoothing steps.
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Fig. 10. Damped error after 1 (left) and 3 (right) ILU(1,1) smoothing steps.

6 Performance Analysis on Multicore CPUs and GPUs

In this section we conduct a performance analysis with respect to the differ-
ent test platforms. We assess the corresponding solver times and the parallel
speedups. In Figure 15 we compare run times of the V-cycle (left) and W-cycle
(right) MG solver with various smoothers for the Poisson problem on the L-
shaped domain. It shows the results for the sequential version and the OpenMP
parallel version on eight cores of the CPU as well as for the GPU version. For
this test problem, there are no significant differences in performance for the
tested smoothers on a specific platform. The multiplicative ILU-type smoothers



17

-1
-0.5

 0
 0.5

 1

Error after 1 ILU(1,2) iteration

 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6

 0.8
 1 -1

-0.5
 0

 0.5
 1

Error after 3 ILU(1,2) iterations

 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6

 0.8
 1

Fig. 11. Damped error after 1 (left) and 3 (right) ILU(1,2) smoothing steps.
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Fig. 12. Damped error after 1 (left) and 3 (right) FSAI(1) smoothing steps
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Fig. 13. Damped error after 1 (left) and 3 (right) FSAI(2) smoothing steps
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Fig. 14. Damped error after 1 (left) and 3 (right) FSAI(3) smoothing steps
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are slightly faster than the additive splitting-type smoothers. The ILU-based
smoothers are more efficient in terms of smoothing properties and reduced iter-
ation counts, but they are more expensive to be executed. In total, both effects
interact such that the total execution time is only slightly better. Best perfor-
mance results are obtained for the ILU(1,2) smoother based MG solver on the
GPU. In this 2D Poisson test problem with unstructured grids based on Q1
and P1 elements, the resulting stiffness matrix has only six colors in the multi-
coloring decomposition. By increasing the sparsity pattern with respect to the
structure of |A|2 used for building the ILU(1,2) decomposition, we obtain 16 col-
ors. In this case the triangular sweeps can still be performed with a high degree
of parallelism. However, on the CPU the FSAI algorithms perform better due
to utilization of cache effects. The FSAI algorithms are performed by relying
on parallel matrix-vector multiplications only. This is in contrast to the multi-
coloring technique which re-orders the matrix by grouping the unknowns. This
distribution is performing better on the GPU due to the lack of bank conflicts
in the sparse matrix-vector multiplications. On the other hand, the FSAI algo-
rithms are performing better on the cache-based architecture due to the large
number of elements that can benefit from data reuse.
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Fig. 15. Run times of V-cycle (left) and W-cyle (right) MG solver with various
smoothers for the Poisson problem on the L-shaped domain: sequential version and
OpenMP parallel version on eight cores on the CPU and GPU version.

The parallel speedups of the V-cycle and W-cycle based MG solvers are de-
tailed in Figure 16. The OpenMP parallel speedup is slightly above two. In the
sequential run on a single CPU core, about less than one third of the eight
core peak bandwidth can be utilized (see measurements in [13]). Therefore, the
speedup of the eight-core OpenMP parallel version is technically limited by a
factor of less than three on this particular test platform. This performance expec-
tations are reflected by our measurements reported here. The GPU version is by
a factor of two to three faster than the OpenMP parallel version. These factors
are in good conformance with experience for GPU acceleration of bandwidth-
bound kernels. For the FSAI smoothers, the speedup on the GPU falls a little
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bit behind since it is better suited for CPU architectures. The presented par-
allel speedup results demonstrate the scalability of our parallel approach for
efficient multigrid smoothers. Parallel multigrid solvers are typically affected by
bad communication/computation ratios and load imbalance on coarser grids. As
we are working on shared memory type devices, these influences do not occur.
In contrast however, our matrix-based multigrid solver depends by construction
on the calls to SpMV kernels. On coarser grids, these kernels have a significant
call overhead at the expense of parallel efficiency. This has a direct impact on
the speedups of the W-cycle based MG solvers on the GPU – as can be seen in
Figure 16 (right).
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Fig. 16. Parallel speedup of the V-cycle (left) and W-cycle (right) based multigrid
solvers for various smoothers.

Similar results are obtained for the performance numbers and speedups of the
preconditioned CG solver. In the left part of Figure 17 run time results are listed
for various preconditioners. The right figure details corresponding speedups for
the OpenMP parallel version and the GPU implementation. Speedups for the
CG are larger than those for the MG solver. Although both solvers consist of
the same building blocks, CG is more efficient since it fully relies on the finest
grid of the MG hierarchy with huge sparse matrices. In contrast, the MG solver
is doing work on coarser grids where call overheads for SpMV kernels have a
significant influence on the results.

7 Outlook on Future Work

In our future work the proposed multigrid solvers will be extended with re-
spect to higher order finite element methods. This is basically a question of
inter-grid transfer operators since HiFlow3 allows finite elements of arbitrary
degree. Further performance results will be included for our OpenCL backends.
More importantly our solvers, smoothers and preconditioners will be extended
for parallelism on distributed memory systems. The LAtoolbox in HiFlow3 is
built on an MPI-communication and computation layer. The major work has
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Fig. 17. Run times and parallel speedups for the preconditioned CG solvers on the
CPU (sequential and eight-core OpenMP parallel version) and on the GPU.

to be done on the algorithmic side. Intensive research needs to be invested into
hybrid parallelization where MPI-based parallelism is coupled with node-level
parallelism (OpenMP, CUDA). MPI-parallel versions of efficient preconditioners
and smoothers on unstructured meshes are subject of current research. Moreover,
the hierarchical memory sub-systems and hybrid configurations of modern multi-
and manycore systems require new hardware-aware algorithmic approaches. Due
to the limited efficiency of SpMV kernels on GPUs with respect to coarse grids,
U-cycles for the MG solvers should be investigated that stop on finer grids.

8 Conclusion

Matrix-based multi-grid solvers on unstructured meshes are efficient numerical
schemes for solving complex and highly relevant problems. The paradigm shift
towards manycore devices brings up new challenges in two dimensions: first, the
algorithms need to express fine-grained parallelism and need to be designed with
respect to scalability to hundreds and thousands of cores. Secondly, software so-
lutions and implementations need to be designed flexible and portable in order
to exploit the potential of various platforms in a unified approach. The proposed
techniques for parallel smoothers and preconditioners provide both efficient and
scalable parallel schemes. We have demonstrated how sophisticated mathemati-
cal techniques can be extended with respect to scalable parallelism and how these
techniques can harness the computing power of modern manycore platforms. In
particular, with the formulation in terms of SpMV kernels the capabilities of
GPUs can be exploited. With the described solvers, solution times for realistic
problems can be kept at a moderate level. And with the concept of our generic
and portable software package, the numerical solvers can be used on a variety
of platforms on a single code base. The users are freed from specific hardware
knowledge and platform-oriented optimizations. We have reported speedups and
we have demonstrated that even complex algorithms can be successfully ported
to GPUs with additional performance gains. The proposed ILU(1,2) smoother
and the FSAI(2) smoother show convincing performance and scalability results
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for parallel matrix-based MG. The proposed V-cycle based MG solvers with par-
allel smoothers on the GPU are by a factor of 60 faster than the preconditioned
CG solvers on the GPU. But due to the absence of coarse grid operations, the
CG solvers have slightly better scalability properties on GPUs.
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