SXIT

Karlsruhe Institute of Technology

Enhanced Parallel ILU(p)-based
Preconditioners for Multi-core

CPUs and GPUs -
The Power(q)-pattern Method

Vincent Heuveline
Dimitar Lukarski
Jan-Philipp Weiss

No. 2011-08

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

ISSN 2191-0693
No. 2011-08

L Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Impressum

Karlsruhe Institute of Technology (KIT)
Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86
76133 Karlsruhe
Germany

KIT — University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de .

©I0Ie)

Enhanced Parallel ILU(p)-based Preconditioners
for Multi-core CPUs and GPUs —
The Power(q)-pattern Method

Vincent Heuveline!, Dimitar Lukarski'*?* and Jan-Philipp Weiss!2

! Engineering Mathematics and Computing Lab (EMCL)
2 SRG New Frontiers in High Performance Computing
Karlsruhe Institute of Technology, Germany
{vincent.heuveline, dimitar.lukarski, jan-philipp.weiss}@kit.edu

Abstract. Application demands and grand challenges in numerical sim-
ulation require for both highly capable computing platforms and efficient
numerical solution schemes. Power constraints and further miniaturiza-
tion of modern and future hardware give way for multi- and manycore
processors with increasing fine-grained parallelism and deeply nested hi-
erarchical memory systems — as already exemplified by recent graphics
processing units. Accordingly, numerical schemes need to be adapted
and re-engineered in order to deliver scalable solutions across diverse
processor configurations. Portability of parallel software solutions across
emerging hardware platforms is another challenge.

This work investigates multi-coloring and re-ordering schemes for block
GauB-Seidel methods and, in particular, for incomplete LU factorizations
with and without fill-ins. We consider two matrix re-ordering schemes
that deliver flexible and efficient parallel preconditioners. The general
idea is to generate block decompositions of the system matrix such that
the diagonal blocks are diagonal itself. In such a way, parallelism can be
exploited on the block-level in a scalable manner. Our goal is to provide
widely applicable, out-of-the-box preconditioners that can be used in the
context of finite element solvers.

We propose a new method for anticipating the fill-in pattern of ILU(p)
schemes which we call the power(q)-pattern method. This method is based
on an incomplete factorization of the system matrix A subject to a pre-
determined pattern given by the matrix power \A|erl and its associated
multi-coloring permutation 7. We prove that the obtained sparsity pat-
tern is a superset of our modified ILU(p) factorization applied to wAmw 1.
As a result, this modified ILU(p) applied to multi-colored system matrix
has no fill-ins in its diagonal blocks. This leads to an inherently parallel
execution of triangular ILU(p) sweeps.

In addition, we describe the integration of the preconditioners into the
HiFlow® open-source finite element package that provides a portable soft-
ware solution across diverse hardware platforms. On this basis, we con-
duct performance analysis across a variety of test problems on multi-core
CPUs and GPUs that proves efficiency, scalability and flexibility of our
approach. Our preconditioners achieve a solver acceleration by a factor
of up to 1.5, 8 and 85 for three different test problems. The GPU ver-
sions of the preconditioned solver are by a factor of up to 4 faster than
an OpenMP parallel version on eight cores.

Keywords: Parallel preconditioners, fine-grained parallelism, multi-coloring,
ILU with fill-ins, power(g)-pattern method, multi-core CPUs, GPU

* Corresponding author: dimitar.lukarski@kit.edu

1 Introduction

Numerical simulation and its huge computational demands require a close cou-
pling between efficient mathematical methods and their hardware-aware imple-
mentation on emerging and highly parallel computing platforms. The paradigm
shift towards manycore parallelism not only offers a high potential of comput-
ing capabilities but also comes up with urgent challenges in designing scalable,
portable, flexible and numerical software solutions. The latter point is closely
related to adaptation, variation, and re-structuring of algorithms and numerical
schemes in order to be compliant with coarse- and fine-grained parallelism, hier-
archical memory subsystems, heterogeneous platforms, and communication bot-
tlenecks. Numerical codes should not only be efficient and robust, but also future-
proof with respect to the current dynamic landscape of hardware platforms and
parallel programming environments. Locality of computations and strategies for
avoiding communication are the major building blocks for platform-optimized
implementations. On the mathematical side, preconditioning techniques are a vi-
tal building block for linear system solvers for sparse problems arising e.g. finite
element methods (FEM) or related techniques for the solution of partial differen-
tial equations (PDEs). The motivation of our work is to address highly complex
problems occurring in areas such as meteorology, medical engineering and en-
ergy research, with the goal of using in an optimal way the existing multi-core
CPU and GPU technology. These problems have in common that the resulting
linear systems which need to be solved are usually highly coupled, very large and
badly conditioned. With the claim of solving such problems with strong impact
on science and society, the proposed preconditioning techniques should allow to
push further beyond the capabilities of the modern computing platforms.

A classical choice for iterative solvers are Krylov subspace methods like con-
jJugate gradient (CG) for symmetric and positive definite systems, the generalized
minimal residual method (GMRES), or the biconjugate gradient stabilized method
(BiCGstab) [31]. In all cases, the number of iterations depends on the condition
number and grows polynomially in the problem size. While direct solvers of-
fer very fast solutions for moderate problem sizes their applicability is limited
for very large problems and their efficient parallelization is complex or limited.
Krylow space-based iterative solvers can only reach acceptable performance if
paired with efficient preconditioning schemes. Good preconditioners should ful-
fill several properties. First, they should mitigate the costs in terms of necessary
iterations by restructuring the problem matrix and affecting its spectrum and
condition number. Second, since in each iteration step an additional linear sys-
tem has to be solved, the additional effort should not outweigh achieved benefits.
Third — and this point is becoming much more important due to the development
towards manycore computing platforms — the preconditioner has to comprise a
high degree of parallelism. Fourth, the preconditioner should be applicable to a
large class of problems where only minimal additional information is available
on specific matrix properties. The latter point is particularly important for the
inclusion of preconditioners into widely applicable solver suites. As experience
shows, parallelism for preconditioners based on reduced couplings comes at the
expense of reduced preconditioning efficiency. So preconditioning also means to
find a trade-off between several aspects.

The main goal of our work is to provide parallel preconditioners with a
speedup in two dimensions: first, there should be a parallel speedup and scala-
bility properties when running on additional cores. Second, the preconditioner
should yield reduced total solver time compared to the unpreconditioned parallel
solver. By means of the multi-platform approach in the context of the HiFlow®

project [21], the solver and preconditioner suite is maximally flexible, integrates
with the full FEM solver stack, and runs on diverse hardware platforms. Further-
more, the preconditioner suite should be an out-of-the-box approach applicable
to large classes of problems and matrices and should not be restricted to specific
cases. The considered techniques in this work only analyze the matrix structure
and do not rely on additional information (e.g. the matrix spectrum, underly-
ing discretization or grid). As flexibility of solution techniques and software is
a decisive factor in the current computing landscape, we have incorporated our
preconditioners into the multi-platform parallel finite element software package
HiFlow?, that is portable across diverse computing platforms. HiFlow?® tackles
productivity and performance issues by its conceptual approach. Efficient nu-
merical solvers are built on the basis of unified interfaces to different hardware
platforms and parallel programming approaches in order to obtain modular and
portable software solutions on emerging systems with heterogeneous configura-
tion. With the concept of object-orientation in C++, the HiFlow? finite element
software provides a flexible, generic and modular framework for building efficient
parallel solvers and preconditioners for partial differential equations of various
types.

In this work we propose a new preconditioning approach which relies on an
enhanced multi-colored ILU(p) factorization with predetermined fill-ins. This
numerical method has been successfully developed and tested in the framework
of the freely available software package HiFlow?. It should be emphasized that
the realization of the proposed approach is a key and non-trivial in order to be
able to objectively evaluate the quality of the method. This is especially due
to the fact that the derivation of the this technique involves arguments related
to numerical analysis, algorithmic and computer architecture, which need to be
taken into account in a holistic way.

Our main intention is to construct preconditioners with a high degree of
parallelism. Structure and organization of the HiFlow? software into several
modules and communication layers with unified interfaces for the programmer
allows to write a single code base that can be run across a wide range of par-
allel platforms including multi-core CPUs, graphics processing units (GPUs),
and OpenCL-capable accelerators. Since GPU code should be scalable to thou-
sands of threads, our idea is to identify parallelism on the level of blocks within
block-decompositions and not only on the level of non-scalable parallel execution
of blocks. We consider preconditioners in block form based on additive matrix
splittings, like e.g. Gauf}-Seidel and SOR, and multiplicative decompositions like
incomplete LU (ILU). All our considered preconditioners are based on the block-
wise decomposition into small sub-matrices. In both scenarios, typically a large
amount of forward and backward sweeps in triangular solvers need to be per-
formed. In order to harness parallelism within each block of the decomposition
we use matrix re-ordering techniques like multi-coloring and level scheduling.
For splitting-based methods (GauB-Seidel, SOR) and ILU(0) without fill-ins the
original matrix occupancy pattern of additive or multiplicative decompositions
is preserved in the sense, that only subsets of the original occupancy pattern
are populated and no additional matrix elements are inserted. Before solving
the preconditioned system, the matrix is reorganized such that diagonal blocks
in the block decomposition are diagonal itself. Then, inversion of the diagonal
blocks is just an easy vector operation [22]. Furthermore, we allow fill-ins (i.e. ad-
ditional matrix elements) in the ILU(p) method for achieving a higher level of
coupling with increased efficiency. Here, we consider two algorithms for paral-
lelism: level-scheduling method [31] and our power(q)-pattern method combined
with multi-coloring. The level scheduling method [31] is used as a postprocessing

method following the factorization. The level of parallelism for the elimination
processes in the forward and backward sweeps is determined and utilized. How-
ever, this method produces very small blocks for many problem classes, i.e. the
degree of parallelism is low.

In this work, we present a new parallel algorithm for performing ILU(p)
with fill-ins by means of the power(q)-pattern method. The major advantage is
that multi-coloring can be applied to this new structure before performing the
ILU(p) with additional fill-ins. The diagonal structure of the block diagonals
is then preserved — fill-ins only occur outside the blocks on the diagonal. By
precomputing a superset of the data distribution pattern we eliminate costly
insertion of new matrix elements into dynamic data structures. We restrict our
work to node-level preconditioners either executed on shared memory based
multi-core system with several sockets and to GPU-enhanced systems with highly
competitive raw performance. Other accelerators can easily be included by means
of our OpenCL backends. We are currently working on hybrid solvers running
on several node-level devices in parallel.

This paper is structured as follows. Section 2 gives a short overview of related
work on parallel and cross-platform software implementations of sparse solvers
and preconditioners. In Section 3 we describe the basic methodology of the block-
level parallel preconditioners. We give an outline of the level scheduling and
multi-coloring methods. Moreover, we propose our power(g)-pattern enhanced
multi-colored ILU(p,q) scheme. We prove that for our modified incomplete fac-
torization the sparsity pattern of the multi-colored matrix power |[A[P*! is a
superset for the sparsity pattern of the permuted system matrix A. In such a
way, we obtain full control on the fill-in elements that do not disturb the diago-
nal structure of the re-arranged diagonal blocks. This observation is the basis for
parallelism and efficiency of our presented preconditioner. Section 4 details the
concept of the ImpLAtoolbox that provides a flexible and user-friendly framework
for building widely applicable and portable numerical software. The impact of
re-ordering schemes and our preconditioners on the sparsity patterns of small
test matrices is investigated in Section 5. In Section 6 we present a detailed
performance analysis on an 8-core shared memory machine and a single GPU
platform for realistic scenarios — proving viability and benefit of our solution.
In combination with HiFlow®’s cross-platform portable concept we provide flexi-
ble and scalable iterative solvers combined with efficient parallel preconditioners
based on splitting methods and ILU. Some remarks on our intended future work
are summarized in Section 7. Our work concludes in the final Section 8.

2 Related Work on Parallel Implementations of Sparse
Solvers and Preconditioners

There exist a whole bunch of parallel solvers and solution libraries such as PETSc
[4], Trilinos [20], MKL [24], or CUSP [8]. Most of them are limited to specific
platforms (cluster of CPUs or single GPU) and are hence not fully portable,
or they are limited in their functionality and only simple preconditioners are
implemented. Many algorithms are still designed for fat cores where data is
partitioned into large blocks that are processed sequentially on the cores with
minimal communication across the cores. This concept does not apply to fine-
grained parallelism as required on GPUs

The CUSP library [8] provides a high-level interface for functions for sparse
linear algebra and graph computations on CUDA-enabled GPUs. Several pre-
conditioners are under development — with currently only diagonal scaling by

Jacobi implemented. PETSc-dev [4] has some support for running parts of com-
putations on NVIDIA GPUs on top of MPI by means of the VECCUSP and
MATCUSP classes, but preconditioners are limited to the simple block-Jacobi
case. Preconditioners in Trilinos comprise ILU-type preconditioners (Ifpack),
multi-level (ML) preconditioners and block-type preconditioners (Meros, Teko)
— with all of them restricted to CPU platforms. ViennaCL [30] is a suite of solvers
and software package based on OpenCL implementations. It also contains some
preconditioners and runs on single GPUs as well as on multi-core CPUs but the
ILU preconditioners are only for the CPU backend.

Highly parallel preconditioners can be obtained by directly approximating
the inverse matrix. One can obtain the approximate matrix by the matrix-valued
Chebyshev polynomials but in this case an approximation of spectrum is needed,
a GPU implementation is presented in [2]. The Factorized Sparse Approximate
Inverse (FSAI) [26] technique is a promising approach to build generic and paral-
lel preconditioners but to our knowledge so far there is no GPU implementation
of this algorithm. There are few works on multi-grid methods which are used as
preconditioner schemes. In [17] the multi-grid method is used as highly paral-
lel preconditioner of the outer loop iterative method. However, this approach is
limited to topological structured meshes and does not allow arbitrary order of
finite elements.

In our previous work we have presented a performance evaluation of the block
Jacobi and multi-colored symmetric Gauss-Seidel preconditioner on multi-core
CPU and GPU configurations [22]. A performance investigation of the precon-
ditioned solution scheme for a convection-diffusion problem solved by Q1 and
Q2 elements in two and three dimensions is presented in [32] where Gauss-Seidel
and ILU preconditioners without fill-ins are considered. A multi-level linear al-
gebra library design and a performance analysis on hybrid-parallel linear solver
on a GPU cluster with eight nodes and sixteen GPUs can be found in in [23].
These results underline good scalability properties of our solver libraries across
different devices.

3 Parallel Preconditioners

Preconditioners are used in the context of iterative solvers for decreasing the
number of necessary iterations for reaching a prescribed error tolerance. This
kind of techniques can be successfully used to affect the condition number of the
system matrix. There are several classes of preconditioners used in numerical
simulation based on sparse matrices.

Splitting-type preconditioners are based on additive splittings of the system
matrix. Classical schemes are Jacobi, Gaufl-Seidel, their block versions, and re-
laxed variants, e.g. SOR. Multiplicative factorizations like incomplete LU factor-
ization maintain certain sparsity patterns or allow fill-ins into designated matrix
elements increasing the number of non-zero elements. In the case of approximate
inverse techniques the inverse of the system matrix is approximated on the basis
of prescribed non-zero patterns. Some detailed descriptions on preconditioners
can be found in the books [31,16, 13]. Unfortunately, there is no fundamental
theory on mathematical mechanisms like convergence or efficiency. There is only
some insight with respect to special matrices related to some well studied equa-
tions on simple domains [3].

From a practical point of view it is important to decrease the total amount of
time for the iterative solver and not only the number of iterations. Therefore, it
is a key point to perform the preconditioning step as fast and as cheap as possible
while maintaining the iteration reduction property. The LU-type preconditioners

based on multiplicative factorization are very popular due to the fact that no
information on matrix properties (e.g. eigenvalue spectrum) is needed. It is based
on a Gaufl elimination process. In the solution phase the forward and backward
steps are typically processed in sequential order with linear complexity O(N)
or O(nnz) (where N x N is the matrix dimension and nnz is the number of
non-zero matrix elements). But with increasing need for parallelism the main
question arising is how to efficiently solve the forward and backward steps in
parallel.

Our goal is to provide flexible, scalable and generic fine-grained parallel tech-
niques for performing the forward and backward sweeps in parallel on any parallel
computing platform by means of incomplete LU-factorization with or without
fill-in elements.

3.1 Properties of sparse matrices arising from finite element
methods

Finite elements methods (FEM) are a common technique for solving linear and
non-linear partial differential equations (PDEs), see e.g. [14, 10]. In our work we
are focusing on Galerkin-FEM for stationary PDEs with identical ansatz and test
spaces on conforming and non-conforming (hanging nodes allowed with respect
to h- or p-non-conformity) polyhedral meshes with arbitrary polynomial order
of finite element ansatz functions. Meshes may be refined locally by h-, p, hp- or
r-refinement. By assembling the local element contributions the global system
matrix A (stiffness matrix plus mass matrix plus non-symmetric contributions)
is obtained — representing a linear system of equations. Boundary conditions
include Dirichlet, Neumann or Robin type. In the non-linear case typically a lin-
earization is paired with a Newton-type approach. Since localized finite elements
with finite support result in near neighbor interaction, the system matrix A is
typically sparse. We denote the non-zero matrix pattern (sparsity or occupancy
pattern) of an N-by-N matrix A = (a;j)i j=1,...n by

N(A) :{(7’;.7) | aij#O, Z,]:1,7N}

If the square matrix A is symmetric or does not depend on the underlying
differential operators (discretized by means of a variational formulation with bi-
linear forms in the FE-context) where the non-symmetric part is often related to
a convection or transport term. For coercive bilinear forms the diagonal elements
of the system matrix are positive [11,10, 18]. In the sequel we assume that all
diagonal elements are non-zero.

3.2 Blockwise preconditioners

The basic idea of the considered preconditioners is to decompose the matrix into
an agglomerate of smaller blocks with a lower bound in size. In our context, the
level of parallelism is not determined by the number of blocks but by the number
of elements per block. In the parallel preconditioner, we are iterating over the
blocks on the diagonal in a sequential sense where each block or block row is
processed in parallel. The number and size of the blocks in the decomposition
can be given by user choice (like for block Jacobi methods) or can be derived
by analyzing the matrix structure. We use matrix re-ordering schemes in order
to identify maximal independent sets of nodes and to eliminate dependencies
by multi-coloring or level-scheduling. Matrix decompositions are either additive
(splitting-type methods) or multiplicative (ILU-type methods). In the latter case,

there is a preprocessing step for producing the matrix factorization. Moreover,
matrix re-orderings are performed in the preprocessing phase as well.

The main idea of the matrix re-ordering schemes — i.e. permutations of the
node numberings — is to preserve and exploit the sparse structure of the system
matrix. In some cases, additional fill-ins are permitted and are a necessary build-
ing block for maintaining problem-inherent couplings. Special measures will be
taken to anticipate the fill-in-pattern and to prevent fill-ins into the diagonal
blocks. On modern hardware platforms performance for many kernels is mostly
limited by bandwidth. Bandwidth-bound kernels should exploit as much local-
ity as possible. And as all matrix re-ordering techniques may have a significant
impact on locality of computations and cache performance, specific care has to
be taken on this issue.

3.3 Preconditioners based on splitting methods

For splitting-type preconditioners we choose a block decomposition A = D +
L + R with D := diag(D1,...,Dp) with square matrices D; of size b; X b;,
i=1,...,B, and a strict lower tridiagonal matrix L and a strict upper diagonal
matrix R. The decomposition of the system matrix A into blocks is shown in
Figure 1 (left).

1

D
L21
L

31

o =
r O @ =X

-

'y
g

L41

Fig. 1. Example of 4-by-4 block-decomposed matrix for B = 4; additive splitting for
GauB-Seidel-type (GS) methods (left) and multiplicative splitting for ILU-type meth-
ods (right)

In the block-Jacobi (BJ) case — the simplest version of a parallel precondi-
tioner — block sizes can be chosen arbitrarily. Here, we take M := D and solve the
preconditioning equation Mz = r by local inversion of D;z; = r;,i.e. z; = D, Ly,
for block vectors r; and z; of length b;. As a local solver (inversion of D;) GauB-
Seidel (GS), LU-decomposition, or any direct method can be used. The degree of
parallelism is given by the (artificial) number of blocks. Although arbitrarily par-
allel (at the expense of reduced inter-block couplings), mathematical efficiency

of the block-Jacobi preconditioner is mostly disappointing.

For the symmetric block-Gauf3-Seidel (SGS) preconditioner we choose M :=
(D + L)D7Y(D + R) and solve the preconditioning equation Mz = r by the

sequence (D + L)z =7, D'y =z, and (D + R)z = y. This translates to

i—1

l'z:DZ_l(TZ—ZL”Z‘j) fOI'Z:L,B, (1)
j=1

y; = Dix; fori=1,..., B, (2)
B—i

zi:Dzl(yi_ZRijzi+j) forz':B,...,l, (3)
j=1

with block vectors ri, xk, yr and z of length by, k=1,..., B.

The bracket expressions in the right hand sides of (1) and (3) now consist of
i — 1 and B — i matrix-vector products with vector length b; and b;y;. In total
B? sparse matrix-vector products and 2B sparse matrix inversions are necessary
to compute (1)-(3). The degree of parallelism in each step is b; for block row-
wise execution (assuming parallel inversion of D;). The value of b; is N/B for
uniform block size and is typically much larger than B. The major difficulty in
computing (1)-(3) arises from parallel solution for the diagonal blocks D; which
are non-diagonal itself in general.

Other splitting type preconditioning schemes based on the original matrix
structure are relaxed schemes like successive overrelazation (SOR) and symmet-
ric SOR (SSOR) [31,3]. The following list summarizes various splitting-type
decompositions based on additive decomposition A = D+ L+ R (interpretation
of block and non-block variants is straightforward):

Mjae := D,
Mgs := D+ L, D + R (forward /backward version),
Msas := (D+ L)YD™Y(D + R),

1 1

= — w -1 wR).
= =P HeLDTH (D +wR)

3.4 Preconditioners based on ILU decompositions

A similar idea applies to incomplete LU (ILU) decompositions. Here, the matrix
is decomposed into a product A = LU 4 R of a lower triangular matrix L and
an upper triangular matrix U, and a remainder matrix R. Typically, diagonal
entries of L are taken to be one and both matrices are stored in the same data
structure (omitting the ones). As before, the matrix is further decomposed into
blocks as illustrated in Figure 1 (right). In the sparse case, the sparsity pattern
of A is preserved by ensuring N (L) UN(U) C N(A) (not equal since some
elements might be deleted due to cancellation). Additional fill-in elements are
put into the remainder matrix.

In the preconditioning step, i.e. solving Mz = r with M := LU, we have
to perform two triangular sweeps — the forward step for the L-part and the
backward step for the U-part. We can re-write these classical LU sweeps in
block matrix-vector form by

i—1

xi:DZil(ri*ZLijxj) forizl,...,B, (4)
j=1
B—i

Zi :D}_zil(xi_ZRijzi—&-j) fOI"iZB,...,l. (5)

Jj=1

Here again, each block row 7,7 = 1,..., B, has i—1 left blocks L;;, j = 1,...,i—1,
and B — i right blocks R;;, j = 1,..., B —i. The diagonal blocks Dy; and Dg;,
i =1,...,B, are lower and upper diagonal square matrices with size b; x b;,
but b; may be different for all . The vectors x, and z,, k = 1,..., B, are block
vectors of length by. The bracket expressions in the right hand sides of (4) and
(5) now consist of ¢ — 1 and B — ¢ matrix-vector products with vector length b,
and b;4;. In total B? — B sparse matrix-vector products and 2B sparse matrix-
inversions are necessary to compute (4) and (5). The degree of parallelism is b;
(assuming parallel inversion of Dy,;, Dg;). The major difficulty in computing (4)
and (5) arises again from solving for the diagonal blocks Dr; and Dg,; which are
non-diagonal itself in general.

Using data parallel BLAS 1 and BLAS 2 routines on the level of blocks per
row, i.e. block-wise execution and not block row-wise execution, decreases the
degree of parallelism by 1/B — resulting in a degree of parallelism of b /B, which
is N/B? for equal block sizes. Usage of standard routines is a key point exploited
by our software package which is described later in Section 4. As an alternative,
problem-specific kernels could be used.

One of the drawbacks of the ILU decomposition is the possible breakdown
of the procedure when pivoting is not applied. For some matrix types (e.g. di-
agonally dominant matrices) proper processing of the decomposition is ensured
without pivoting. Pivoting is difficult for our proposed power(g)-pattern en-
hanced multi-colored ILU(p, q) scheme (see following sections). In this case a
permutation based on the multi-coloring classification of the matrix could be
performed. These variations are subject of current investigation.

3.5 Multi-coloring and parallel sparse triangular solvers

Inversion of the diagonal blocks D; (and Dy;, Dg; resp.) can be easily handled
by applying multi-coloring as a preprocessing step. Triangular solvers are then
reduced to inversion of diagonal matrices and matrix vector products — both of
which can be performed in parallel on each block level with a high degree of
parallelism. The basic idea of the multi-coloring approach is to resolve neighbor
dependencies by introducing neighbor-ship classes (colors) such that for non-zero
matrix elements a;; € N(A) with A = (a;;)i j=1,...,~ both indices i and j are
not members of the same class (color). A straightforward greedy algorithm for
determining the colored index sets is Algorithm 1, see [31].

Algorithm 1 Multi-coloring
fori=1to N do
Set color(i)=0
end for
fori=1to N do
Set color(i)=min(k > 0 : k #color(j) for j € Adj(7));
end for

Here, Adj(i) = {j # i|a;; # 0} are the adjacent nodes to node i. By
renumbering the mesh nodes by colors the diagonal blocks D; become diagonal
itself. Then B is the number of colors, and by is the number of elements for color
k. Inversion of the diagonal matrix then is only a component-wise scaling of the
source vector. Due to the data parallelism of the associated matrix-vector and
vector routines there is no load imbalance even for varying block sizes (unless the
number of elements per block is too small compared to the number of parallel

10

units). The output of the multi-coloring algorithm is the color classification of the
nodes — a vector containing the color ID of each node. Defining a 2-column vector
with original index and color ID and sorting it by colors defines the requested
permutation.

3.6 Parallel LU sweeps

Let a matrix decomposition A = LU + R be given with some sparse remainder
matrix R. The occupancy pattern of L and U in the ILU(0) decomposition is
chosen such that no additional elements are inserted into originally unpopulated
positions. Additional elements are offloaded to the remainder matrix R. We are
looking for a symmetric permutation 7 that rearranges A in such a way that we
obtain only diagonal elements in its diagonal blocks Dy; and Dg; (cf. Figure 1
(right)) with w(A) = LU + R. This problem can be solved by using the multi-
coloring Algorithm 1. Based on the index colors we can build 7 by re-ordering
the nodes by groups of colors. Due to the fact that all the nodes from the same
color have no adjacent nodes, the permuted matrix has only diagonal elements in
its diagonal blocks. Furthermore, we exploit that splitting-type preconditioners
and basic ILU(0) preconditioners preserve the matrix structure, i.e. diagonal
blocks with only diagonal elements are preserved. Based on the multi-coloring
permutation of the matrix we can perform all matrix inversions and matrix-
vector multiplications on the block-level in fully parallel manner. Due to their
diagonal structure the matrices D; in (1) and (3) and Dy, Dg, in (4) and (5)
can be inverted easily by a simple vector operation.

3.7 Incomplete LU preconditioners

An important class of preconditioners are based on incomplete LU (ILU) fac-
torization. In this context, we are looking for a lower-triangular matrix L and
an upper-triangular matrix U with A = LU + R, where the remainder R sat-
isfies some criteria and the preconditioner is chosen as M := LU. The ILU(0)
decomposition does not allow any fill-in, i.e. N (L) UN(U) € N (A). In order to
obtain the matrices L and U we perform Gaussian elimination. In the general
case, in this process the sparse matrices L and U suffer from fill-in and have
more non-zero elements than the input matrix A. In the sequel, we consider two
algorithms for producing an appropriate sparse structure for the resulting lower
and upper matrices.

3.8 ILU(0) with sparsity pattern based on the original matrix

Producing the ILU(0) factorization where N (L) UN (U) € N(A) can be done
by means of Algorithm 2. For easy matrix inversion in (4) and (5) we need to
obtain a block-decomposed matrix A where its diagonal blocks only have non-
zero diagonal elements. Therefore, we perform a multi-coloring permutation on
the original matrix A and after that we perform the ILU(0) factorization. The
latter factorization preserves the arranged matrix structure. The loop order is
arranged such that row-wise processing can be performed in the inner loop -
favoring sparse data structures like CSR [5, 31].

3.9 ILU(p) with fill-in elements

The quality of the ILU factorization depends on the sparsity pattern of the
resulting matrices L and U. Therefore, in order to increase the quality of the

11

Algorithm 2 Incomplete LU-factorization without fill-in elements - ILU(0)

for i =2 to N do
for k=1toi—1and (i,k) € N(A) do
ik = Qik/Akk
for j=k+1to N and (4,5) € N(A) do
Qij = Qij — QikAkj
end for
end for
end for

factorization we can allow further fill-in elements in the factorization matrices. A
common technique to control the fill-ins is to introduce levels. Each new element
of the factorization process is associated with a certain level p — see Algorithm 3.
Details on this ILU(p) technique with level-p fill-ins can be found in [31,13].

Algorithm 3 Incomplete LU-factorization with fill-in elements - ILU(p)

Set lev(a;;) = 0 for all non-zero elements a;; € N'(A), lev(a;j) = co otherwise
for i =2 to N do
for k=1 to i — 1 and lev(a;x) < p do
@ik = Qik/Akk
for j=k+1to N do
Qij = Gij — QikAkj
lev(ai;) = min(lev(asj), lev(aix) + lev(ak;) + 1)
end for
end for
for j =2 to N do
if lev(a;;) > p then
delete a;;
end if
end for
end for

One of the main difficulties of the algorithm is to predict the new non-zero
pattern of the resulting factorization matrices for p > 0. There should be no fill-
in into the diagonal blocks. Without preliminary information on the distribution
of the inserted elements the costs for allocating memory and updating the matrix
by means of dynamical data structures can be significant. Unfortunately, there
is no general answer how multi-coloring affects the locality structure of a specific
matrix. In Section 5 we show the influence of multi-coloring and level scheduling
on the sparsity patterns of two small test matrices.

3.10 Level-scheduling algorithm

As for the ILU(0) case, we want to perform the forward step (4) and the backward
step (5) for the ILU(p) factorization with fill-ins in parallel. Since the sparsity
pattern of L and U does not correspond to the sparsity pattern of A anymore
due to the fill-ins, direct inversion cannot be applied. Moreover, multi-coloring
on the level of the L and U matrices cannot be applied since this would destroy
their upper and lower diagonal structure (no exchange of elements allowed over
the diagonal). Therefore, we apply the idea of level-scheduling. Here, we need to
sort the unknowns in a way that the i-th equation only depends on the previous
7 — 1 unknowns. This algorithm is called topological sorting. An algorithm with

12

linear time complexity is the level scheduling method proposed in [31]. The
level scheduling algorithm for a lower triangular matrix given in Algorithm 4
defines levels of depth for all rows ¢ = 1,..., N corresponding to a node 7 in
the adjacency graph and to the variable i respectively. Then we can create a

Algorithm 4 Level scheduling algorithm

Let A = (as;) be a lower triangular matrix
for i =1to N do

depth(i) = 1 + max;{depth(j) for all j with a;; # 0}
end for

permutation matrix 7 that groups all the nodes with the same depth. The degree
of parallelism is then given by the number of elements per block, i.e. the number
of nodes with the same depth, where the matrix is processed block after block.

Simple tests on a suite of matrices show that the number of levels produced
by the level scheduling algorithm is quite high — see Section 5. Slightly better re-
sults can be obtained if the ILU(p) factorization is preceded by a multi-coloring
step, and level scheduling is applied afterwards. This additional step decreases
the number of levels in comparison to the version without multi-coloring permu-
tation. However, this improvement is not significant in many cases.

In our approach, the number of sparse matrix-vector multiplications in the
triangular ILU solver scheme is B2 — B, where B is the number of blocks (i.e. lev-
els) which can be processed in parallel. Therefore, the number of levels should
be kept as low as possible (e.g. for preventing function call overheads for small
sub-matrices). Furthermore, the number of elements per level should not be too
small.

3.11 The power(q)-pattern method

For the parallel solution of the ILU(p) sweeps with fill-ins we propose the power(q)-
pattern method. The main idea is to produce a block matrix structure with only
diagonal elements in the diagonal blocks. In this subsection we derive an upper
bound for the non-zero pattern of a modified matrix factorization.

The non-zero pattern of the ILU(p) factorization matrix looks very similar
to the matrix-matrix multiplication pattern. The sparsity pattern after the fac-
torization shows that the non-zero pattern of ILU(p) grows like |A[P*!. Inspired
by this fact we can restrict the non-zero pattern of the factorization by deter-
mining the pattern of |A[P*! in order to avoid dynamic memory allocation. In
addition, a multi-coloring step allows rearrangement of the diagonal blocks on
the basis of the pre-determined pattern. A modification of the original algorithm
is presented in Algorithm 5.

This variation of the original ILU(p) scheme (cf. Algorithm 3) ensures that
fill-ins up to level p only appear in positions determined by the sparsity pattern of
|A|PTL. Moreover, in comparison to the original ILU(p) algorithm the two inner
loops are restricted to a few values that are known in advance. Consequently,
building the ILU decomposition can be done much faster. There is no more need
to run the full inner loops and to insert elements in a dynamic data structure.
And not less important, by constructing the factorization in this way we have
full control over the sparsity patterns of the factor matrices L, and U,. More
precisely we find:

13

Algorithm 5 Power(q)-pattern enhanced ILU(p,q) with ¢ =p+1
Pt

Determine sparsity pattern N (|A[P*1) of matrix power |A
Set lev(ai;) = 0 for all non-zero elements a;; € N'(A), lev(a;;) = oo otherwise
for i =2 to N do
for k=1toi—1and (i,k) € N(JAP™") with lev(a;) < p do
Gik = Qik/akk
for j =k+1to N and (4,5) € N(JA|**!) do
Aij = Qij — QikQkj
lev(a;;) = min(lev(as;),lev(aix) + lev(ag;) + 1)
end for
end for
for j =2 to N do
if lev(ai;) > p then
CLij = O
end if
end for
end for
Delete all entries a;; where a;; = 0 (compress the matrix due to possible erasement)

Proposition 1. Let L, and R, be the output of the power(q)-pattern enhanced
ILU(p,q) decomposition of the matriz A with ¢ = p+1 as detailed in Algorithm 5.
Then we have N'(L,) UN(U,) C N(|APT1).

Proof. The assertion follows by construction. New elements in L, and U, can
only occur in positions already populated in |A[PT1.

There is no difference in the factorization results between Algorithm 5 and the
original ILU(p) Algorithm 3 in the cases p = 0 and p = 1. For p > 2 the original
algorithm might produce slightly larger non-zero patterns for general sparse
matrices. However, for all of our studied cases the power(g)-pattern enhanced
ILU(p,q) algorithm with ¢ = p 4+ 1 produces the same matrix factors as the
original ILU(p) algorithm.

By the next proposition we see that the matrix pattern can be further influ-
enced and controlled by a multi-coloring step.

Proposition 2. Let A = (aij)ij=1,..,n be a matriz with all non-zero elements
on its diagonal, i.e. a; # 0 fori =1,...,N. Let w be the permutation matriz
based on the multi-coloring algorithm applied to the matriz |A|? for an integer
q > 1. Then, for every positive integer | < q the matriz transformation m|Al'x !
results in a block-decomposed matriz where the diagonal blocks have non-zero
elements on their diagonals only.

Proof. With 7 given by the multi-coloring permutation for input |A|?, we define
A := 7| A|27~! that is a block-decomposed matrix with only diagonal elements
in its diagonal blocks. With A := 7|A|x—! we find A = 7|A|'z~" for all [and
A7 = A. We also find |A| = A. If a positive matrix element by, of a non-negative
matrix B = (b;;) is given and the non-negative matrix C' = (¢;;) has positive di-
agonal elements, i.e. cg > 0 for all k, then the corresponding element (BC'),,,y, of
the matrix product BC is positive due to (BC)nm = Y bnkCrm = bpmCmm > 0.
By this we conclude NV (A) = N(JA]) C N(|A]') = N(AY) C N(|A]9) for all pos-
itive integers [< ¢. And so we find N (rAn~1) C N (r|A|l'r—1) C N (x| A|97~1)
for every positive integer | < ¢. Hence, tAr~! and 7|A|'r=!, 1 < [< g, are
block-decomposed matrices where the diagonal blocks only have diagonal ele-
ments.

14

Now, we combine Proposition 1 and Proposition 2 to formulate Proposition 3:

Proposition 3. Let A = (aij)ij=1,...n be a matriz with all non-zero elements
on its diagonal, i.e. a;; # 0 for i = 1,...,N. Let m denote the multi-coloring
permutation based on the matriz |A|PT! and A, := wAn=1 is the resulting block-
decomposed matrix with only diagonal elements in its diagonal blocks. Then the
power(q)-pattern enhanced ILU(p,q) factorization with ¢ =p+ 1 given by Algo-
rithm 5 applied to Ax is producing two block-decomposed factor matrices L, and
U, where the diagonal blocks only have diagonal elements. Fill-ins only occur
outside the diagonal blocks.

Proof. By Proposition 2 the matrix A, is a block-decomposed matrix with only
diagonal elements in its diagonal blocks. By applying Algorithm 5 to A, we
obtain matrix factors L, and U, with N'(L,) UN(U,) C N(|A|P™!) due to
Proposition 1. Since |A, [Tt = 7| A[PT17~! has off-diagonal elements equal to
zero in its diagonal blocks, both matrices L,, and U, have no fill-ins in its diagonal
blocks.

Application of Proposition 3 results in the following Algorithm 6, the power(q)-
pattern enhanced multi-colored ILU(p,q) method. In the general case ¢ will be
taken as ¢ = p + 1. Later, we will consider also the case ¢ < p.

Algorithm 6 Power(q)-pattern enhanced multi-colored ILU(p,q) method with
re-arranged fill-ins for parallel triangular sweeps

Building of power(g)-pattern enhanced multi-colored ILU (p,q)
Perform multi-coloring analysis for |A|? with ¢ = p 4+ 1 and obtain
— corresponding permutation m
— the number of colors B
— local block sizes b;
Permute A, := n A7t
Apply modified ILU(p,p + 1) factorization (cf. Algorithm 5) to A
Obtain factor matrices L, and U, with only diagonal elements in diagonal blocks
—no further fill-ins into diagonal blocks

Perform parallel forward/backward sweeps
Perform parallel triangular sweeps(4) and (5)
— use given number of colors B and local block sizes b;

This algorithm produces a block-decomposed system that reshapes the prob-
lem for parallel execution. Compared to the original multi-coloring scheme (ap-
plied to A instead of |A|PT1) further couplings are maintained by fill-in elements
(outside of diagonal blocks) and additional colors are used. But in practical ap-
plications, the number of colors is typically much lower than that obtained by
the level-scheduling algorithm.

The proposed power(q)-pattern enhanced multi-colored ILU scheme corre-
sponding to Algorithm 5 and Algorithm 6, denoted by ILU(p,q) in the following,
is faster than the original method given in Algorithm 3 (denoted by ILU(p)).
The main difference is that we have an upper bound for the sparsity pattern and
elements where fill-ins happen are known in advance. The computation based
on the predetermined sparsity pattern of |A|P*1! is faster due to several aspects.
First, we do not have to allocate large chunks of the data and compress the
matrix afterwards but we only have to add some new elements at the end of the
structure. Second, inner loops are much shorter and the length of the inner loops

15

is known in advance. Consequently, there is no need for dynamic data structures
and memory. Only at the end compression of the matrix is needed if new non-
zero elements are obtained. And third and most important, the original ILU
pattern (without multi-coloring and control of fill-ins) is not suited for parallel
execution of the triangular sweeps.

The cost for building the sparsity pattern of |A|P*! is not negligible. However,
the computation of this pattern is highly parallel and the complexity is much
lower than the computation of |A[PT! itself. We do not have to perform to the
whole inner loop of the matrix-matrix multiplication but only until the first non-
zero entry appears. Furthermore, some optimization techniques like half looping
for symmetric matrices can be applied.

Another difference in comparison to the original ILU algorithm is the permu-
tation of the matrix before the factorization. This kind of permutation is based
on the topology of the graph and not on the actual values. Additional permuta-
tion can be performed on the color classes in order to avoid zero pivot elements
and breakdown of the factorization.

3.12 Increasing parallelism by drop-off techniques

We can increase the degree of parallelism by deleting selected elements of the
obtained factorization matrices L and U. We describe two techniques: one for
the level scheduling algorithm, and one for the power(q)-pattern enhanced multi-
colored ILU(p,q) method. Of course deletion of a large number of elements should
be handled carefully since this comes at the expense of preconditioning efficiency
and convergence of the iterative solver cannot be guaranteed.

Drop-off for level scheduling The elements for deletion can be selected within
a given radius from the main diagonal of a predefined matrix structure (e.g. given
by multi-coloring permutation applied to the original input matrix). In this case
we can define a threshold value where all elements below this threshold are
deleted. As an observation, this technique increases the level of parallelism only
little but it decreases the quality of the preconditioner in many cases.

Drop-off for power(g)-pattern enhanced ILU(p, q) The number of col-
ors in the power(g)-pattern enhanced method can be artificially decreased by
choosing a smaller exponent ¢ < p 4+ 1 for determining the upper bound of the
sparsity pattern. With multi-coloring based on |A|? with ¢ < p + 1 and the
modified ILU(p) applied, a fill-ins into the diagonal blocks are possible. These
fill-in elements are selected for deletion. The effect of this drop-off strategy on
the number of iterations for the CG solver and the non-zero pattern of the fac-
torized matrix for some sample matrices is presented in Section 5. Note, that
the number of sparse matrix-vector multiplications grows quadratically with re-
spect to the number of colors obtained for the forward and backward step (of
course the size of the matrices gets smaller). Therefore, the choice ¢ = p+1 is no
longer suitable for large p with respect to the time for the sweep steps. For GPU
computations, there is a considerable overhead for invoking a huge number of
kernels (e.g. for matrix-vector operations) — and thus the number of operations
should be kept low.

3.13 Other parallel preconditioners

In this subsection we provide a short overview of other classes of parallel pre-
conditioners. Some of them are currently evaluated with respect to fine-grained
parallelism on GPUs.

16

Approximate inverse The approximate inverse preconditioner tries to build
a direct approximation to A~'. But even if the matrix A is sparse there is no
guarantee that the approximate inverse of A is sparse as well. For most problems,
it is not feasible to store a dense matrix with the size of A. The main question
is how to build an approximation with a certain sparsity pattern efficiently. A
well studied approach is to approximate the matrix by Chebyshev matrix-valued
polynomials. In this case, we obtain an approximation of the matrix where the
sparsity pattern grows like A*. But for building the matrix using Chebyshev
polynomials we need to have information on the spectrum of the matrix — the
largest and the smallest eigenvalue of the original problem. In most of the cases
determination of this information has similar complexity as solving the original
linear problem. But for a certain class of problems where the spectrum is known
this preconditioning technique can be applied straightforwardly. Since sparse
matrix-vector multiplication can be executed fully parallel this results in a highly
parallel and efficient preconditioner. A GPU implementation with Chebyshev
polynomials is presented in [2].

There are other approximate inverse techniques like SPAI [33] and FSAI
[26]. Both of them do not require further information about the matrix like the
eigenvalue distribution. The main drawback of the SPAI is the QR decomposi-
tion of a matrix in this algorithm which leads to a very long time for building
the preconditioner. In contrast to that the FSAI algorithm does not have such
factorization step and the coefficients for the sparsity pattern are computed by
solving a large number of small linear systems.

Multigrid methods Multi-grid methods can be used as preconditioners for
some outer loop iterative schemes. However, geometric multi-grid methods re-
quire information on the PDE, the underlying mesh, and the finite element space.
Hence, this type of preconditioner cannot be used as an out-of-the-box solution
for a given linear system. Some detailed information on geometric multi-grid
methods on GPUs and other hardware can be found in [17].

On the other hand algebraic multi-grid (AMG) methods do not require any
information on the underlying problem. Correspondingly, these schemes may
be used as out-of-the-box preconditioners. But AMG has a complicated and
time-consuming setup phase (mostly not parallel) which is based on heuristic
arguments [19]. Nevertheless, this is a promising technique and it is addressed
in the context of multi-core and many-core systems, e.g. in PyAMG [9].

Domain decomposition methods Domain decomposition methods can be
used as parallel solvers and as preconditioning schemes. An example for that is
the Restricted Additive Schwarz (RAS) method which is successfully mapped to
a GPU system [15]. A method with coarse granularity is the Schur complement
method. Successful mapping of Schur complement methods to GPUs needs to
be proven.

Sparse direct methods Vaidya’s preconditioner is an augmented maximum-
weight-basis preconditioner that works by dropping non-zeros from the coeffi-
cient matrix and factorizing the remaining matrix, [12].

4 Local Multi-Platform LAtoolbox

Our preconditioners are implemented in the framework of the Local Multi- Platform
Linear Algebra Toolbox (ImpLAtoolbox) that forms the basis of the parallel and

17

open-source HiFlow?® FEM software package [1] developed at EMCL. The main
goal of the ImpLAtoolbox is to provide a complete, generic and robust set of rou-
tines across a multitude of parallel platforms. It provides maximal flexibility to
the developer and refrains users from in-depth hardware knowledge while deliv-
ering best performance and optimal usage of computing resources. The modular
setup of our approach offers a high-level of abstraction by providing unified inter-
faces for basic matrix and vector routines across diverse platforms. Only a single
code base is required for a portable implementation of highly efficient numerical
schemes. The same code can be run on several hardware platforms where the
final choice of platform can be taken at run time. Platform-specific implementa-
tions are transparent to the user. Therefore, linear and non-linear solvers as well
as preconditioners can be implemented easily and generically without any in-
formation on the underlying hardware platform while keeping platform-adapted
and tuned code.

HiFlow? is a multi-purpose finite element package for solving a wide range of
problems modeled by PDEs. The software stack is based on modular techniques
which provide a generic and flexible approach. It is based on object-orientation
in C+4. The LAtoolbox module handles the basic linear algebra operations
and offers linear solvers and preconditioners. It is implemented as a two-level
library: the global level is an MPI-layer which handles the distribution of data
among the nodes and performs cross-node computations. The local level (local
multi-platform LAtoolbox) takes care of the on-node routines offering a unified
interface independent of the specific platform. Figure 2 presents a diagram of
the structure of the LAtoolbox in HiFlow? detailing the hierarchy of the ImpLA-
toolbox.

The ImpLAtoolbox contains two basic C++-classes for vectors and matrices.
The vector object contains the vector data and provides all vector routines (e.g.
vector update, scaling, rotation, scalar product and others). Similar, the matrix
object provides all matrix routines (matrix-vector multiplication, matrix-matrix
multiplication, scaling functions and others). After the discretization of the PDE
by means of finite element or related methods a sparse linear system is obtained.
Therefore, the matrix data in the object is stored in a sparse structure. Currently,
the module supports compressed sparse row (CSR) format [5], but the library
can be easily extended by other formats.

Abstract Class

Communication/Computation
Interface

\opena\ R o |

\
L \CBLASJMO “OpenMP

/%c Mat™, Vec, Mat e S BLAS 1, BLAS 2
mw routlnes Q Sequentlal >\’

Fig. 2. Structure of the Local Multi-Platform Linear Algebra Toolbox (lmpLAtoolbox)

‘ Others

Data Management

Each matrix/vector class has its base class and is inherited by a platform-
management class which takes care of the memory allocation, data placement,
and data access on all platforms. Each particular and platform-specific imple-

18

mentation is inherited from the data management class. The base class for each
vector and matrix object provides a complete interface for all routines and op-
erations. A typical usage of the library relies on using only pointers to the base
classes. A code example is presented in Algorithm 7. No specific platform has
to be specified in the code. The final decision on the actual platform and imple-
mentation can be taken at run time by means of user input or any library-guided
choice.

Algorithm 7 Example code for the ImpLAtoolbox

// Declare a CPU matrix object
CPU_IMatrix<double> mat_cpu;

// Declare matrix and vector pointers to the base class
IMatrix<double> *mat;

IVector<double> *x, *y ;

int colors, *c_sizes, *perm;

// Read a cpu matrix from a mtx file
mat_cpu.ReadFile(’matrix.mtx’);

// Multi-coloring permutation of the matrix
mat_cpu.Multicoloring(colors, &c_sizes, &perm);
mat_cpu.Reorder(perm);

// initalize empty matrix on a specific platform
// (nnz,nrow,ncol,name,platform,implementation,format)
mat=init_matrix<double>(0, 0, 0, ”A”, platform, impl, CSR);

// Copy the sparse structure
mat->CopyStructureFrom(mat_cpu);

// Copy only the values of the matrix
mat->CopyFrom(mat_cpu);

delete mat_cpu;

// initialize vector x for a specific platform and implementation
x=init_vector<double>(size, "vec x”, platform, impl);

// create vector y as x (clone it)
y=x->CloneWithoutContent();

// init some values in the vector x
x->SetBlockValues(0, size, values);

// Usage of BLAS 1 and BLAS 2 routines
y->CopyFrom(*x); // vy = x
y->Axpy(*x, 4.3); // y =y + 4.3%x
x->Scale(1.2); // x=12*x
mat->VectorMult(*y, x); // x = mat*y

std::cout << y->dot(*x); // scalar product
delete x, y, mat;

Each matrix and vector object can perform the following operations via its
base class interface:

19

Perform vector/matrix routines with itself or objects on the same platform
(not necessarily with the same implementation)

Clone itself, i.e. create an object on the same platform with the same im-
plementation

Copy its data (matrix/vector) to another object on the same or different
platform and/or implementation

Advanced data manipulation techniques like vector splitting, concatenating,
data extraction based on irregular patterns and others

— Classes for CPUs contain routines for pre-processing like I/0 to files, incom-
plete LU factorization, or graph analysis (e.g. multi-coloring, level-scheduling,
(reverse) Cuthill-McKee ordering)

With these interfaces inherited from the base class iterative solvers and pre-
conditioners can be easily built without hard-coding a specific platform or im-
plementation. Using this kind of abstraction the same source code can be used
on all platforms. Like that we provide a generic, robust, flexible, and extendable
approach for building applications. In this way, the developer has no direct ac-
cess to the raw data of matrices or vectors, but by declaring a platform-specific
object the user can obtain direct pointers to the data of its object. These tech-
niques can be used for advanced platform-specific algorithms, like special nested
loop iterations or irregular data access.

Parallelization of the routines is based on fine-grained data-parallel tech-
niques. For implementations on multi-core x86 CPUs our library provides a
purely sequential version and two parallel versions: CBLAS/MKL routines and
OpenMP parallel routines. For our GPU backends we support NVIDIA GPUs
where the vector routines are based on CUBLAS, and for the matrix-vector op-
erations we have implemented our own kernels. We use scalar versions of the
data-parallelization (i.e. a single thread for processing a matrix row) due to
the fact that the considered FEM matrices usually have a very low number of
non-zero elements with short inner loops. Details about the parallelization tech-
niques for NVIDIA GPUs can be found in [7,6]. Currently, we are working on
an OpenCL [25] implementation for different backends like multi-core CPUs,
NVIDIA and ATT GPUs and the STT Cell BE.

Currently, we provide Krylov subspace solvers, namely CG and GMRES.
Newton-like methods are used for the non-linear solvers. The preconditioners
based on specific matrix partitionings and re-orderings (e.g. multi-coloring and
level-scheduling) are also built via our unified interfaces. An example for parallel
LU substitutions for the symmetric Gau3-Seidel preconditioning can be found
in Algorithm 8. Due to the fact that the block-diagonal sub-matrices D; contain
only diagonal elements they are stored as vectors and element-wise vector-vector
routines are applied. All of the routines in the preconditioner building step are
performed on the CPU — like graph analysis, re-ordering and incomplete fac-
torizations. After that all of the necessary matrices and vectors for solving the
preconditioned equation are allocated on the selected platform and via pointers
they are upcasted to their base classes. Doing so, we can apply the precondi-
tioning step by simply performing the matrix/vector and vector/vector routines
by calling the corresponding interface of the base class — see for example the
symmetric Gauss-Seidel solver described in Algorithm 8.

The usage of the ImpLAtoolbox within an MPI environment on distributed
memory architectures can be combined with all current platforms and implemen-
tations. An advanced data blocking technique is used in the GPU class for min-
imizing the effect of the communication bottleneck over the PCle bus [23]. Due
to the lack of an appropriate preconditioning algorithm for distributed memory
architectures, our preconditioners are currently restricted to node-level execu-

20

Algorithm 8 LU-sweeps for solving Mz = r for symmetric Gauss-Seidel with
preconditioning matrix M := (D + L)D~}(D + R)

Split and copy vector r into z; fori=1,...,B

i—1

Forward step z; := D; *(z; — Y. Lijzj) fori=1,...,B
Jj=1

Diagonal step z; := D;z; fori=1,...,B

B—i
Backward step z; := D; '(z; — > Rijziy;) fori=1,...,B
j=1

Concatenate vector z; into z

tion, i.e. to multi-socket multi-core processors on a shared memory node or to
single GPUs. Extensions, also for multi-GPU and heterogeneous configurations,
are in the test phase.

5 Effects of Re-ordering on Matrix Sparsity Patterns

In this section we consider the impact of matrix re-ordering techniques on the
structure and sparsity pattern of the system matrix. On modern multi-core and
manycore architectures like cache-based multi-core CPUs and processors with
user-managed local memory (like shared memory on GPUs) data locality is a
performance-critical issue. The matrix decomposition into blocks with a lower
bound on the block size is a necessary building block for fine-grained parallel
methods like our preconditioners. The number of elements per block determines
the degree of parallelism while the number of blocks in the matrix decompositions
is a measure for function call overheads.

By means of small test matrices we investigate how multi-coloring, level
scheduling and the power(g)-pattern enhanced multi-colored ILU(p,q) method is
influencing the number of blocks for parallel execution (i.e. the number of colors)
and the sparsity pattern of the system matrix. In case of the ILU decomposition
also the factorized matrices are analyzed. Furthermore, we examine the impact
of the choice of p and ¢ in the power(gq)-pattern enhanced ILU(p, ¢) decomposi-
tion with and without drop-off strategies. In this section small test matrices are
chosen for a proper visualization of the matrix patterns in spy plots. In Section 6
performance analysis is conducted for large matrices. Smaller matrices — as con-
sidered in this section — are not an appropriate input for fine-grained parallel
preconditioners since lower bounds for block sizes in matrix decompositions are
mostly missed.

The symmetric and positive definite nos5 matrix of size 468-by-468 and 2820
non-zero elements describes a finite element approximation of beams by a bi-
harmonic operator with one end free and one end fixed [27]. The symmetric and
positive definite gr3030 matrix is derived from a finite difference discretization
of a Laplace problem. It has dimension 900-by-900 with 4322 non-zero entries
[28]. The original sparsity patterns are shown in Figure 3 with nos5 on the left
and gr3030 on the right.

In this section we consider the conjugate gradient method (CG) [31] as an
iterative Krylov subspace-type solver. We use right hand side set to one and
initial guess zero. For the nos5 matrix it takes more than 400 iterations to
achieve a relative residual smaller than 1076 as shown in Figure 4 (left). With
the multi-colored symmetric block GauB-Seidel (SGS) preconditioner and the
level-scheduling based ILU preconditioner with level-p fill-ins for p = 0,1,2,3
the iteration count can be reduced by a factor 71. The ILU(p) efficiency with
respect to iteration count is increasing with p. A similar observation is made for

21

nos5 gr3030

200

e

400

an

w0

o0

B0

w0

Fig. 3. Sparsity patterns of the nosb5 matrix of size 468-by-468 with 2820 non-zero
elements (left) and the gr3030 matrix of size 900-by-900 with 4322 non-zero elements
(right).

the gr3030 matrix in Figure 4 (right). The preconditioners decrease the number
of iterations, where ILU(3) has an acceleration factor of 4.7, i.e. 4.7 times less
iterations are necessary with the ILU(3) preconditioner

Total number of iterations (nos5) Total number of iterations (gr3030)
500 NO — s NC —
SGS mmmm 30 SGS mm
400 ILU(O) o ILU(O) o
LU o 25 ILU(1) oo
ILU(2) === ILU(2) m===
300 LU 3; == ILU 3; [

#iterations
#iterations

200

100

CG + Precondtioner CG + Precondtioner

Fig. 4. Level scheduling: Number of CG iterations without preconditioner and with
level scheduling for symmetric Gau-Seidel (SGS) and ILU(p) preconditioners for p =
0,1,2,3 for the nos5 matrix (left) and the gr3030 matrix (right).

In Figure 5 the improvements with respect to CG iteration count are pre-
sented for the power(q)-pattern enhanced multi-colored ILU(p,q) preconditioners
with and without drop-off. We observe that the ILU(p,p + 1) strategy without
drop-off gives the best results in terms of reduction of the iteration count. These
results also improve with increasing p. For the results with drop-off, i.e. ¢ < p+1,
efficiency is slightly worse.

When level-scheduling is applied to the factorized matrices L, and U, of
the ILU(p) decomposition of the nos5 matrix, i.e. A = L,U, + R, with p-fill-
ins, we obtain 39 levels for p = 0, 136 levels for p = 1, 312 levels for p = 2,
and 403 levels for p = 3. Accordingly, each block only contains a very low
number of elements (only one element in many cases). The necessary degree
of parallelism is not given in this scenario. The matrix patterns obtained by
applying level scheduling renumbering to the ILU(p)-factorized matrices L, and
U, (more specific L, + U, in a single matrix structure) are shown in Figure 6 for
the nos5 matrix. When the same level-scheduling re-ordering 7, corresponding
to ILU(p) is applied to the original system matrix A the patterns depicted in
Figure 7 are observed. After renumbering, this structure of A is used within

22

Total number of iterations (nes5s) Total number of iterations (gr3030)

500 NO m— 100 NG m—
SGS = SGS
400 ILU(O) ILU(O) o
ILU(T,1) 80 ILU(T,1) e
o ILU(1,2) === © \LUELE; ——
S 300 ILU(2,1) == S & 1) ——
= ILI(2,2) — = IL1(2,2) —
o ILU(2,3) o o ILU(2,3)
& 200 ILU(3,1) o 5 40 ILU(3,1) e
\LIES,z; — ILIES,E —
ILU(3,3) mmmm ILU(3,3) s

100 20
. el . Illl llill

CG + Precondtioner CG + Precondtioner

Fig. 5. Power(q)-pattern enhanced multi-colored ILU(p,q) preconditioners: Number of
CG iterations without preconditioner and with multi-colored symmetric Gauf3-Seidel
(SGS) and power(g)-pattern enhanced multi-colored ILU(p,q) preconditioners for p =
0,1,2,3 with and without drop-off for the nos5 matrix (left) and the gr3030 matrix
(right).

parallel matrix-vector operations in the parallel CG solver. These figures show
how locality is affected by the re-ordering of nodes.

6. nosb: Level scheduling re-ordering m, applied to the factorized matrices L,
U, (combined in a single matrix structure) given by the ILU(p) decomposition
A = L,U, + R, with level-p fill-ins.

Now we apply level-scheduling re-ordering to the ILU(p) preconditioner for
the gr3030 matrix and obtain 87 levels for p = 0, 116 levels for p = 1, 145 levels
for p = 2, and 174 levels for p = 3. The structure of the factorized matrices
L, and U, of gr3030 with level scheduling re-ordering m, applied is shown in
Figure 8. In this scenario again the necessary degree of parallelism cannot be
obtained by level scheduling. When the level-scheduling re-ordering m, corre-
sponding to ILU(p) is applied to the original matrix A the patterns depicted in
Figure 9 are observed.

Permutation based on LS ILU(0)

o @ oo i m 250 am am0 00 4m0

Permutation based on LS ILU(1)

Joo

1

0 250

am

Permutation based on LS ILU(3)

Fig. 7. nosb: Level scheduling re-ordering 7,
original matrix A.

Fi

a
A

23

corresponding to ILU(p) applied to the

LS ILU(0) LS ILU(1)
. .

100 100

- 0

o -

o w0

w0 0

o @

0 0

o -

5:IDD 100 200 am 400 B0 w0 00 B0 o000 - 100 200 a0 400 B0) TOO. BOD 500

LS ILU(2) LS ILU(3)

. .

oo oo

20 0

20 0

o an

o an

o @0

. 0

o -

. o0 200 am 400 oo w0 oo ElD 200 = 100 2m a0 400 B0 50 Too B00 B0

g.
d

+ R, with level-p fill-ins.

8. gr3030: Level scheduling re-ordering 7, applied to the factorized matrices L,
U, (combined in a single matrix structure) given by the ILU(p) decomposition
LpUp

24

. Permutation based on LS ILU(0) . Permutation based on LS ILU(1)
oo 100
a0 0
a0 an
a0 a0
=0 =
can can
0 oo
o0 o
5‘]DD 100 2m Ao 400 Boo 0] 00 =0 200 5‘:IDD 100 200 3 400 B00 00 o0 Ban s00
Permutation based on LS ILU(2) Permutation based on LS ILU(3)
o o
100 100
a0 o
0 2
4a0 o0
a0 =0
o0 oo
200 o0
s oo
=0 s

Fig. 9. gr3030: Level scheduling re-ordering m, corresponding to ILU(p) applied to the
original matrix A.

A higher degree of parallelism can be obtained by applying multi-coloring
techniques to the powers |A|? of the modulus of the system matrix. For the nosb
matrix and ¢ = 1,2, 3,4 we observe 9, 33, 84 and 157 colors. The corresponding
multi-color permutation is denoted by 4. The matrix patterns m,|A[?m, L (not
shown here) are an upper bound for the level-g fill-ins for the ILU(q, ¢ + 1)
decomposition for ¢ = 0,1,2,3. The sparsity patterns of the permuted linear
systems 7, A7 L are shown in Figure 10. These matrices are the starting point
for the incomplete factorizations. In this setting m Amy ! (left upper figure) is
the superset for the ILU(0,1) decomposition (see upper left figure in Figure 11).

For the power(g)-pattern enhanced multi-colored ILU(p,q) preconditioner,
Figure 11 details the structure of the factorized matrices L, , and U, , with A =
L, Uy q + Rp q for the noss matrix. The upper sub-figures show the factorized
multi-colored ILU(p) decomposition for p = 0 and p = 1 with permutation based
only on the original matrix, i. e. |A|. The resulting matrix in the left figure is
equal to the original ILU(0) decomposition. For the matrix shown in the right
figure the described drop-off technique is applied. The first figure of the second
row presents ILU(1,2), the factorization of first order without drop-offs. The
second figure in this row shows a drop-off strategy for p = 2 and ¢ = 1 using
only 9 colors. Results for ILU(2,q) are shown in the last row of Figure 11 for
q = 2 and ¢ = 3 resulting in 84 and 157 colors, where the latter case is without
drop-off. Decomposition patterns for ILU(3,q) for the nos5 matrix are depicted
in Figure 12 for ¢ = 1,2, 3,4. The drop-off strategy is applied for ¢ = 1,2, 3 for
reducing the number of colors which is 9, 33, 84 and 157.

The upper bound for the sparsity pattern for the ILU decomposition is de-
rived by the power(g)-pattern method based on the structure of |A|7.

The sparsity pattern of the multi-color permuted system matrix, i.e. m, Am L
for the gr3030 matrix is depicted in Figure 13. Here again, 79 is obtained from
multi-color analysis of |A|?. We find 4, 9, 16 and 25 colors for ¢ = 1,2, 3, 4.

25

Permutation based on MC g=1 Permutation based on MC g=2

o @ fao i m 250 a0 am0 00 4m0 o @ fon 1w 0 250 am am oo e

Fig. 10. nosb: Sparsity patterns of the permuted linear system m Ay ! with multi-
coloring permutation w4 obtained from analysis of |A|? for ¢ = 1,2,3,4 with 9, 33, 84,
and 157 colors.

For the ILU(p,q) method, Figure 14 details the structure of the factorized
matrices L, , and U, , with A = L, ,U, , + Ry, for the gr3030 matrix. The
upper sub-figures show the multi-colored factorization decomposition for p = 0
and p = 1 with ¢ = 1 with 4 colors. The left figure of the second row shows the
ILU(1,2) permutation, the right figure of the middle row represents the drop-off
strategy for ILU(2,1) with only 4 colors. The figures in the lower row present
ILU(2,2) with drop-off elements and ILU(2,3) without drop-off. Finally, factor-
ization matrices for the ILU(3,q) for ¢ = 1,2,3,4 are presented in Figure 15.
The drop-off strategy is applied for ¢ = 1,2, 3 for reducing the number of colors
which is 4, 9, 16 and 25.

6 Performance Analysis of Parallel Preconditioners

In this section we investigate and present efficiency and scalability of our de-
scribed preconditioners in terms of reduced number of iterations, in terms of
solver times, in terms of parallel speedup, and in terms of acceleration factors
due to preconditioning (for a fixed platform and implementation). In particular,
we show how the power(g)-pattern enhanced multi-colored ILU(p,q) precondi-
tioner behaves for different values for p and ¢, where ¢ = p + 1 represents the
natural scenario and ¢ < p 4 1 represents the drop-off technique with a reduced
number of colors where non-diagonal elements in the diagonal blocks are deleted.

Our test suite is based on three real-valued symmetric and positive definite
matrices from three different application areas. The ecology2 matrix is derived
from a landscape ecology problem based on electrical network theory to model
2D animal/gene movement flow [34]. The s3dkg4m2 matrix is obtained from a
finite element analysis of cylindrical shells on a uniform quadrilateral mesh [29].
The g3_circuit matrix results from a circuit simulation problem [35]. In Table 1
basic data and properties of the test matrices are listed. It shows the numbers

26

MG 1LU(0,1) MG ILU(1,1)
o, -)
W .

‘.'\\ =y

MC ILU(1,2)

Fig. 11. nos5: Sparsity patterns for power(g)-pattern enhanced multi-colored ILU(p,q)
decomposition with and without drop-off; upper row: ILU(0,1) (no drop-off) and
ILU(1,1) (drop-off), second row: ILU(1,2) (no drop-off) and ILU(2,1) (drop-off); last
row: 1LU(2,2) (drop-off) and ILU(2,3) (no drop-off).

MC 1LU(3,1)

Fig. 12. nos5: Sparsity patterns for the

27

power(q)-pattern enhanced multi-colored

ILU(3,q) decomposition with drop-off (¢ = 1,2, 3) and without drop-off (¢ = 4); upper

row ILU(3,1) and ILU(3,2); lower row: ILU(3,3) and ILU(3,4).

Permutation based on MC g=1

Permutation based on MC gq=2

200

200

400

a0

o

700

B

a0

200

T

400

a0

w0

o0

£

a0

o o0 200 am 400 an w0 0

Permutation based on MC g=3

g

N
. o O N
\ SO
oo NN
mu\ \\ \
. NN N

~ NN

NN
NN

w0

a0

&0

.

H

H

Fig. 13. gr3030: Sparsity patterns of the permuted linear system 71'qA71';1 with multi-
coloring permutation 7, obtained from analysis of |A|? for ¢ = 1,2, 3,4 with 4, 9, 16,

and 25 colors.

28

MC ILU(0,1) MC ILU(1,1)

MC ILU(1,2) MC ILU(2,1)

Fig.14. gr3030: Sparsity patterns for power(q)-pattern enhanced multi-colored
ILU(p,q) decomposition with and without drop-off; upper row: ILU(0,1) and ILU(1,1);
second row: ILU(1,2) and ILU(2,1); last row: ILU(2,2) and ILU(2,3).

29

MC ILU(3.1) MC ILU(3,2)

oo w0 a0 B0 =00

MC ILU(3,3)

N NN
NN

T

400

a0

LI
LI

/é//////////

(I
(11 IIITITIiIIiiii

w0

o0

SN

o RN NN

NN NN

I N N
-

Fig. 15. gr3030: Sparsity patterns for power(q)-pattern enhanced ILU(3, ¢) decompo-
sition with and without drop-off; upper row ILU(3,1) and ILU(3,2), lower row ILU(3,3)
and ILU(3,4).

of rows, the number of columns and the number of colors when multi-coloring is
applied to the original matrix. In the last column, the number of sparse matrix-
vector operations with respect to the block decomposition is given for the multi-
colored ILU(0) preconditioner. For the g3_circuit matrix the decomposition
into colors (by applying multi-coloring to the original matrix) is imbalanced
with 689390, 789436, 106502 and 150 entries per color. For the s3dkq4m2 and
ecology2 matrix the block distributions have balanced sizes. In general, smaller
matrices (like 3dkgq4m2) are better suited for the cache-oriented CPUs since sub-
blocks or parts of the matrix and solution vectors can be kept in the cache and
no further access to the main memory is necessary.

Name |Description of the problem| #rows |#non-zeros|#colors|#block-SpMV
in MC-ILU(0)

ecology2 | Animal/gene movement |999999 | 4995991 2 2
s3dkq4m?2 Cylindrical shells 90449 | 4820891 24 552
g3_circuit Circuit simulation 1585478| 7660826 4 12

Table 1. Description and properties of considered test matrices.

Our experiments are performed on a hybrid test platform, a dual-socket Intel
Xeon (E5450) quad-core system (eight cores in total) that is accelerated by an
NVIDIA Tesla S1070 GPU system with four GPUs attached pairwise by PCle
to one socket each. The memory capacity of a single CPU and GPU device is
16GB and 4GB respectively.

For our performance analysis we are using the CG solver as an iterative
Krylov subspace solver for symmetric positive definite matrices. As stopping cri-
terion we choose 10~° for the relative residual. The initial guess for the iterative
solver is taken to be zero and the right hand side is initialized with constant
value one.

30

For some GPU kernels performance can be improved by using texture caching,
i.e. replacing loads from device memory by texture fetches which is a viable al-
ternative to explicit pre-caching with shared memory. For some matrices, we see
improvements, for others we find severe drawbacks from texture caching due to
call overheads. For running the CG method without the preconditioning step we
use texture caching for the matrix-vector multiplications but for the precondi-
tioned CG solver we disable texture caching. Details on the impact of texture
caching on multi-coloring sweeps is presented in [22].

Table 2 summarizes the iteration counts for the CG solver for the three test
matrices for achieving the prescribed error tolerance. The acceleration factor in
terms of reduced number of iterations (#its), i.e #its(no precond)/#its(precond)
goes up to 5.4 for the ecology2 matrix, 554 for the s3dkq4m2 matrix and 33
for the g3_circuit matrix. However, these numbers do not reflect the addi-
tional work and time amount consumed by the preconditioning step. i.e. the
solution of the block-triangular systems. Moreover, Table 2 details the number
of colors in the multi-colored SGS and ILU(0) scheme, in the power(q)-pattern
enhanced multi-colored ILU(p,p+1) scheme, and in the drop-off version ILU(p,q)
for p = ¢ = 3. In comparison to these numbers, the number of levels in the level
scheduling algorithm applied to the original matrix, i.e. the number of blocks, is
2593 for ecology?2, 2388 for s3dkq4m2, and 1998 for g3_circuit.

No
precond| SGS [ILU(0)|ILU(1,2)|ILU(2,3)|ILU(3,4)|ILU(3,3)
ecology2 | #its | 5391 |2783| 2855 | 1815 1308 997 1277
acc. fact.| 1.0 1.93 | 1.88 2.90 4.12 5.40 4.22
colors 2 2 7 8 19 8

g3_circuit| #its 12760 | 1328 | 1242 747 497 386 397
acc. fact.| 1.0 9.6 10.2 17.0 25.6 33.0 32.1
colors 4 4 10 17 35 17

s3dkqg4m?2 #its | 535056 [12728| 3918 | 2203 1600 965 6086
acc. fact.| 1.0 42.0 | 136.5 | 242.8 334.4 554.4 87.9
colors 24 24 56 96 150 96

Table 2. Number of iterations of the preconditioned CG solver, acceleration factors
with respect to reduced iteration count, and number of colors for the three test matrices.

Figure 16 details the performance of the preconditioner for the ecology?2
problem. The left figure shows the number of iterations with and without pre-
conditioner for reaching the prescribed error tolerance. We consider the multi-
colored SGS preconditioner with two colors, the multi-colored ILU(0) decompo-
sition with two colors, and the power(q)-pattern method enhanced multi-colored
ILU(p,q) method with level-p fill-ins for p = 1,2, 3. The matrix exponent ¢ (with
g=p+1orqg<p+1) for determining the sparsity pattern is given in the
notation ILU(p,q). For ¢ < p + 1, all fill-in elements within the diagonal blocks
are deleted. The right figure shows the corresponding solver times including the
preconditioning step (triangular sweeps) but not the preprocessing step (LU fac-
torization, multi-coloring or power(gq)-pattern determination). It depicts solver
times for the sequential solution running on a single core, the OpenMP par-
allel solution running on eight cores, and the single GPU version with texture
caching for the non-preconditioned solver and without texture caching for the
preconditioned one.

31

In Figure 17 the associated speedups for the ecology2 matrix are presented.
The left figure shows the parallel speedup for the eight core OpenMP parallel
version and the data-parallel GPU version. The GPU version is by a factor of
3 to 4 faster than the OpenMP parallel version on eight CPU cores. The right
figure shows the overall acceleration of the preconditioned solver over the non-
preconditioned version with fixed hardware and implementation. For this test
problem, the preconditioner on the GPU accelerates the solver by a factor of
up to 1.7. In some cases, there is no acceleration by preconditioning due to the
additional work and minimal benefits from reduced iteration count. The drop-
off technique for ILU(3,3), reduces the number of colors from 19 to 8, slightly
increases the number of iterations, but gives comparable execution times for the
preconditioned solver.

ecology2 - GG number of iterations ecology2 - Time for solving the linear system
5000
4000

3000

#iterations
time [sec]

2000

1000

CG + Preconditioner CPUceq CPUgpenvp GPU

Fig. 16. ecology2 matrix: Iteration numbers (left) and solver time (right) for multi-
colored symmetric GauB-Seidel (SGS), multi-colored ILU(0), and power(g)-pattern en-
hanced ILU(p,q) with and without drop-off on single/eight core multi-core CPU(s) and
a single GPU.

ecology2 - parallel speed up ecology2 - preconditioning acceleration
3.5
20 None m— None
s = : O =
ILU(1,2) 25 ILU(,2) e
a B ILU(2,3) === S ILU(2,3) e
5 ILU(3.4) =—= s 5 ILU(3.4) ==
B ILU(3,3) g ILU(3,3) w—
g 10 FEERF-
@ 8 1
5
0.5
0 0
CPUggq CPUgpenme GPU CPU,eq CPUgpenmp GPU

Fig. 17. ecology2 matrix: Parallel speedup (left) and acceleration factors by precon-
ditioning step (right) for multi-colored symmetric GauB-Seidel (SGS), multi-colored
ILU(0), and power(q)-pattern enhanced ILU(p,q) with and without drop-off on sin-
gle/eight core multi-core CPU(s) and a single GPU.

In Figure 18 the performance of the preconditioner for the g3_circuit matrix
is shown. The left figure shows the number of iterations with and without precon-
ditioner. We find 4 up to 35 colors for this problem. The multi-colored SGS and
the multi-colored ILU(0) decomposition have 4 colors whereas the power(q)-
pattern method enhanced multi-colored ILU(3,4) has 35 colors. All precondi-
tioners show a significant decrease of the iteration count (left) and solver time

32

(right). In Figure 19 (left) we find parallel speedups between 2 to 3 for the eight
core OpenMP parallel version and 8 to 12 for the data-parallel GPU version.
Again, the GPU version is by a factor of 3 to 5 faster than the OpenMP parallel
version on eight CPU cores. The right figure shows the acceleration factor of the
preconditioner with respect to time for fixed hardware and implementation. The
total acceleration factor is between 4 and 9 for this test problem. Acceleration
and parallel speedup is observed for all presented preconditioner configurations.
The drop-off technique for ILU(3,3) reduces the number of colors from 35 to 17.
It gives better results with respect to the solver time and better acceleration
factors.

G3 circuit - CG number of iterations G3 circuit - Time for solving the linear system

12000 1200

10000 1c00

8000 800

6000 600

#iterations
time [sec]

4000 400

2000 200

CG + Preconditioner CPUgeq CPUgpenmp GPU

Fig. 18. g3_circuit matrix: Iteration numbers (left) and solver time (right) for multi-
colored symmetric Gau3-Seidel (SGS), multi-colored ILU(0), and power(g)-pattern en-
hanced ILU(p,q) with and without drop-off on single/eight core multicore CPU(s) and
a single GPU.

G3 circuit - parallel speed up G3 circuit - preconditioning acceleration
25 18
None m—" None m—
SGS 16 SGS mm
20 ILUO) o 14 ILU(O) o
ILU(1,2) oo ILU(1,2) oo
a ILU(2,3) e s 12 ILU(2,3) ==
s 15 ILU(3,4) —= 2 10 ILU(3.4,
B ILU(3,3) m— g ILU(3,3) w—
g g °
o 1o 2 6
5 4
2
0 0
CPUgeq CPUgpenmp GPU CPUgq CPUgpenmp GPU

Fig. 19. g3_circuit matrix: Parallel speedup (left) and acceleration factors by precon-
ditioning step (right) for multi-colored symmetric GauB-Seidel (SGS), multi-colored
ILU(0), and power(g)-pattern enhanced ILU(p,q) with and without drop-off on sin-
gle/eight core multi-core CPU(s) and a single GPU.

Figure 20 depicts performance data for the s3dkq4m2 matrix. The left figure
shows a zoom-in plot for the iteration count where the left-most bar for the non-
preconditioned case is cut off in both figures. The number of iterations for the
non-preconditioned CG is 535056 in this example. It shows that the number of
iterations without preconditioner is massive but can be decreased considerably
by preconditioning. Figure 20 (left) shows that the best results in terms of re-
duction of iterations are achieved for the ILU(3,4) scheme with 150 colors. But
for this matrix, the best parallel solver times are obtained by the multi-colored

33

ILU(0) preconditioner, see Figure 20 (right). The drop-off technique reduces the
number of colors from 134 to 96 for p = 3 but has no positive effect with re-
spect to efficiency. Solver times are improved by the parallel OpenMP and GPU
versions only for p = 0, 1,2, with best results for p = 0. As shown in Figure 21
(left) the OpenMP parallel speedup is not much more than two and gets worse
when increasing p. For p = 2 or larger, results on the GPU break down when
texture caching is enabled (not shown). Due to the large number of colors and
the small matrix size the blocks per color become too small and the overhead
from texture caching is dominating the solver time. The maximal speedup on the
GPU is around three and about 50% higher than the eight core OpenMP parallel
speedup. In the parallel case, the acceleration factor from preconditioning is still
immense; see Figure 21 (right). Compared to the sequential case, the precondi-
tioner does not lose much of its efficiency. For ILU(0) the acceleration factor is
more than 60 on the GPU without texture caching. However, for increasing p
results on the GPU and the parallel OpenMP version get worse while they get
better in the sequential CPU case, because the sub-matrices contain only very
few elements. For this test problem, the drop-off technique with reduced number
of colors in ILU(3,3) gives bad results.

s3dkg4m2 - CG number of iterations 53dkg4m2 - Time for solving the linear system
12000
14000

12000 10000

10000 8000

8000 6000

time [sec]

6000

#iterations

4000
4000

2000 2000

o]
CG + Preconditioner CPUseq CPUgpenmp GPU

Fig. 20. s3dkg4m2 matrix: Iteration numbers (left, zoom-in with bar for non-
preconditioned case cut off, #its(no precond)=535056) and solver time (right) for
multi-colored symmetric GaufB-Seidel (SGS), multi-colored ILU(0), and power(q)-
pattern enhanced ILU(p,q) with and without drop-off on single/eight core multi-core
CPU(s) and a single GPU.

s3dkq4m2 - parallel speed up s3dkg4m2 - preconditioning acceleration

Speed up
Acceleration

CPUq CPUgpenp GPU CPUsq CPUgpenup GPU

Fig. 21. s3dkq4m2 matrix: Parallel speedup (left) and acceleration factors by precon-
ditioning step (right) for multi-colored symmetric GauB-Seidel (SGS), multi-colored
ILU(0), and power(q)-pattern enhanced ILU(p,q) with and without drop-off on sin-
gle/eight core multi-core CPU(s) and a single GPU.

34

7 Future Work

The status of our current work still gives room for further improvements and
investigations. In our current experiments we have treated the setup of the pre-
conditioner as a preprocessing step. In future work we will present optimiza-
tion approaches and run time considerations for this setup step. A model for
the overall preconditioning costs, including building of the sparsity pattern of
|A|PT1, will be included. Additional optimization potential has been identified
for matrix-vector multiplications in case of small matrices and for the forward
and backward substitutions. Pivoting strategies on the level of color classes are
an inevitable means to improve stability of our preconditioners. Moreover, we
are identifying the class of matrices for which the original ILU(p) scheme in
Algorithm 3 gives the same factorization as our modified ILU(p,q) scheme in
Algorithm 5.

As the ImpLAtoolbox supports code execution on multi-GPU systems and for
heterogeneous configurations with different types of processors contributing to
the parallel solution, our preconditioners will be tested for these scenarios. With
respect to further scalability we are working on concepts for preconditioners on
distributed memory architectures where the global MPI layer in our LAtoolbox
will be used.

In further research we are investigating non-symmetric systems with precon-
ditioned GMRES solvers [31]. Furthermore, additional preconditioners will be
included into the ImpLAtoolbox and the HiFlow® package. Besides the precon-
ditioners based on LU-sweeps, we are currently working on the approximate in-
verse preconditioners [31]. Moreover, we are investigating properties of the FSAI
algorithm [26] and try how to determine proper sparsity patterns. In addition,
we are trying to deploy the preconditioning techniques in the context of parallel
smoothers for multi-grid methods with promising results obtained so far.

8 Conclusion and Outlook

In this work we have considered node-level parallel preconditioners for shared
memory based multi-core systems with several sockets and for GPU-enhanced
systems. We have investigated matrix re-ordering schemes for introducing scal-
able parallelism for block-decomposed preconditioners based on additive or mul-
tiplicative matrix splittings. Our focus was on parallel solution of resulting tri-
angular systems originating from Gauf3-Seidel-type methods and incomplete LU
decompositions. Level scheduling and multi-coloring methods have been used to
generate block decompositions where the diagonal blocks are diagonal itself for
easy inversion.

We have presented a new parallel algorithm for performing ILU(p) with
level p fill-ins by means of the power(q)-pattern enhanced multi-colored ILU(p,q)
method. The major advantage is that multi-coloring can be applied to this new
structure before performing the ILU(p) decomposition with additional fill-ins.
The diagonal structure of the block diagonals is then preserved and fill-ins only
occur outside of the blocks on the diagonal. The fill-in positions are known in
advance by precomputing a superset of the data distribution pattern. Thereby,
we eliminate costly insertion of new matrix elements into dynamic data struc-
tures. We have reported speedups in parallel environments as well as convincing
acceleration factors due to the parallel preconditioning techniques. In particu-
lar, efficiency of the preconditioner is maintained during parallel execution when
compared to its sequential version.

35

Our approach provides a flexible, easy-to-handle and out-of-the-box precon-
ditioner. We have outlined integration of the proposed preconditioners into the
portable ImpLAtoolbox and the parallel finite element package HiFlow®. In this
context platform optimized solvers can be built by utilizing unified and generic
interfaces. The choice of final hardware configuration can be taken at run time
and there is no need for in-depth hardware knowledge for the user. Our pre-
sented results show considerable improvements. To the best of our knowledge
this is the first time that a parallel version of ILU(p) preconditioners with fill-ins
is successfully adapted and ported to GPU platforms that become increasingly
important in the current and future computing landscape.

Acknowledgements

The Shared Research Group 16-1 received financial support by the Concept
for the Future of Karlsruhe Institute of Technology in the framework of the
German Excellence Initiative and its collaboration partner Hewlett-Packard. We
would like to express our gratitude to Felix Riehn and Niels Wegh who have
implemented some parts of our software.

The Engineering Mathematics and Computing Lab (EMCL) at KIT has been
awarded NVIDIA CUDA Center of Research for its research and efforts in GPU
computing. The authors acknowledge the support by means of hardware dona-
tion from the company NVIDIA in that framework.

References

1. Anzt, H., Augustin, W., Baumann, M., Bockelmann, H., Gengenbach, T., Hahn,
T., Heuveline, V., Ketelaer, E., Lukarski, D., Otzen, A., Ritterbusch, S., Rocker,
B., Ronnas, S., Schick, M., Subramanian, C., Weiss, J.P., Wilhelm, F.: HiFlow®
— A Flexible and Hardware-Aware Parallel Finite Element Package (2010). URL
http://www.emcl.kit.edu/preprints/emcl-preprint-2010-06.pdf

2. Asgasri, A., Tate, J.E.: Implementing the Chebyshev Polynomial Preconditioner for
the Iterative Solution of Linear Systems on Massively Parallel Graphics Processors.
In: CIGRE Canada Conference on Power Systems (2009)

3. Axelsson, O., Barker, V.A.: Finite element solution of boundary value problems :
theory and computation. Computer science and applied mathematics

4. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley,
M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2011). URL
http://www.mcs.anl.gov/petsc

5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. STAM, Philadelphia,
PA (1994)

6. Baskaran, M.M., Bordawekar, R.: Optimizing Sparse Matrix-Vector Multiplication
on GPUs. Tech. rep., IBM (2009)

7. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC ’09: Proc. of the Conf. on High Perf. Com-
puting Networking, Storage and Analysis, pp. 1-11 (2009)

8. Bell, N., Garland, M.: CUSP: Generic parallel algorithms for sparse matrix and
graph computations (2010). URL http://cusp-library.googlecode.com. Version
0.1.0

9. Bell, W.N., Olson, L.N., Schroder, J.B.: PyAMG: Algebraic multigrid solvers in
Python v2.0 (2011). URL http://www.pyamg.org. Release 2.0

10. Braess, D.: Finite elements: theory, fast solvers, and applications in solid mechanics,
2. ed. edn. Cambridge Univ. Press, Cambridge (2001)

36

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 2.
ed. edn. Texts in applied mathematics. Springer, New York (2002)

Chen, D.: Analysis, implementation, and evaluation of vaidya’s preconditioners
(2001)

Chen, K.: Matrix preconditioning techniques and applications. Cambridge mono-
graphs on applied and computational mathematics ; 19

Ciarlet, P.G.: The finite element method for elliptic problems. Classics in applied
mathematics; 40. Society for Industrial and Applied Mathematics, Philadelphia,
PA (2002)

Cohen, J.: Presenatation slides (2011). URL http://www.ima.umn.edu/2010-
2011/W1.10-14.11 /activities/Cohen-Jonathan/Jonathan _Cohen IMA.pdf
Demmel, J.W.: Applied numerical linear algebra. STAM, Philadelphia, PA (1997)
Goddeke, D.: Fast and Accurate Finite-Element Multigrid Solvers for PDE Simu-
lations on GPU cluster. Ph.D. thesis, Technische Universitdt Dortmund (2010)
Hackbusch, W.: Elliptic differential equations: theory and numerical treatment.
Springer series in computational mathematics ; 18. Springer, Berlin (2003)
Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Appl. Numer. Math. 41(1), 155-177 (2002)

Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long,
K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Wil-
lenbring, J., Williams, A.: An Overview of Trilinos. Tech. Rep. SAND2003-2927,
Sandia National Laboratories (2003)

Heuveline, V., et al.: HiFlow® - Parallel Finite Element Software (2011). URL
http://www.hiflow3.org/

Heuveline, V., Lukarski, D., Weiss, J.P.: Scalable multi-coloring preconditioning for
multi-core CPUs and GPUs. In: UCHPC’10, Euro-Par 2010 Parallel Processing
Workshops (2010)

Heuveline, V., Subramanian, C., Lukarski, D., Weiss, J.P.: A multi-platform linear
algebra toolbox for finite element solvers on heterogeneous clusters. In: PPAAC’10,
IEEE Cluster 2010 Workshops (2010)

Intel: Intel Math Kernel Library (MKL) (2011). URL http://software.intel.com/en-
us/articles/intel-mkl/

Khronos Group: OpenCL (2011). URL http://www.khronos.org/opencl/
Kolotilina, L.Y., Yeremin, A.Y.: Factorized sparse approximate inverse precondi-
tionings, I: theory. STAM J. Matrix Anal. Appl. 14, 45-58 (1993)

Matrix Market: gr-30-30 (2011). URL http://math.nist.gov/MatrixMarket/data/
Harwell-Boeing/laplace/gr_30_30.html

Matrix Market: nos5 (2011). URL http://math.nist.gov/MatrixMarket/data/
Harwell-Boeing/lanpro/nos5.html

Matrix Market: s3dkg4m?2 (2011). URL http://math.nist.gov/MatrixMarket/data/
misc/cylshell /s3dkq4m2.html

Rudolf, F.: ViennaCL (2011). URL http://viennacl.sourceforge.net/. Version 1.1.1
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2003)

Subramanian, C., Heuveline, V., Lukarski, D., Weiss, J.P.: Parallel preconditioning
and modular finite element solvers on hybrid CPU-GPU systems. In: Proceedings
of ParEng 2011 (2011)

Tuma, M., Benzi, M.: A comparative study of sparse approximate inverse precon-
ditioners. Appl. Numer. Math 30, 305-340 (1998)

University of Florida Sparse Matrix Collection: ecology2 (2011). URL
http://www.cise.ufl.edu/research/sparse/matrices/McRae/ecology2.html
University of Florida Sparse Matrix Collection: G3_circuit (2011). URL
http://www.cise.ufl.edu/research/sparse/matrices/ AMD /G3_circuit.html

recent issues

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

2011-07

2011-06

2011-05

2011-04

2011-03

2011-02

2011-01

2010-07

2010-06

2010-05

2010-04

2010-03

2010-02

2010-01

Preprint Series of the Engineering Mathematics and Computing Lab

Thomas Gengenbach, Vincent Heuveline, Rolf Mayer, Mathias J. Krause, Simon Zimny:
A Preprocessing Approach for Innovative Patient-specific Intranasal Flow Simulations

Hartwig Anzt, Maribel Castillo, Juan C. Ferndndez, Vincent Heuveline,
Francisco D. lgual, Rafael Mayo, Enrique S. Quintana-Orti: Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Graphics Processors

Hartwig Anzt, Maribel Castillo, José I. Aliaga, Juan C. Ferndndez, Vincent Heuveline,
Rafael Mayo, Enrique S. Quintana-Orti: Analysis and Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and
Many-core Platforms

Vincent Heuveline, Michael Schick: A local time—dependent Generalized Polynomial
Chaos method for Stochastic Dynamical Systems

Vincent Heuveline, Michael Schick: Towards a hybrid numerical method using
Generalized Polynomial Chaos for Stochastic Differential Equations

Panagiotis Adamidis, Vincent Heuveline, Florian Wilhelm: A High-Efficient Scalable
Solver for the Global Ocean/Sea-lce Model MPIOM

Hartwig Anzt, Maribel Castillo, Juan C. Fernandez, Vincent Heuveline, Rafael Mayo,
Enrique S. Quintana-Orti, Bjorn Rocker: Power Consumption of Mixed Precision in the
Iterative Solution of Sparse Linear Systems

Werner Augustin, Vincent Heuveline, Jan-Philipp Weiss: Convey HC-1 Hybrid Core
Computer — The Potential of FPGAs in Numerical Simulation

Hartwig Anzt, Werner Augustin, Martin Baumann, Hendryk Bockelmann,

Thomas Gengenbach, Tobias Hahn, Vincent Heuveline, Eva Ketelaer, Dimitar Lukarski,
Andrea Otzen, Sebastian Ritterbusch, Bjorn Rocker, Staffan Ronnds, Michael Schick,
Chandramowli Subramanian, Jan-Philipp Weiss, Florian Wilhelm: HiFlow?® — A Flexible
and Hardware-Aware Parallel Finite Element Package

Martin Baumann, Vincent Heuveline: Evaluation of Different Strategies for
Goal Oriented Adaptivity in CFD — Part |: The Stationary Case

Hartwig Anzt, Tobias Hahn, Vincent Heuveline, Bjorn Rocker: GPU Accelerated
Scientific Computing: Evaluation of the NVIDIA Fermi Architecture; Elementary
Kernels and Linear Solvers

Hartwig Anzt, Vincent Heuveline, Bjorn Rocker: Energy Efficiency of Mixed Precision
Iterative Refinement Methods using Hybrid Hardware Platforms: An Evaluation of
different Solver and Hardware Configurations

Hartwig Anzt, Vincent Heuveline, Bjorn Rocker: Mixed Precision Error Correction
Methods for Linear Systems: Convergence Analysis based on Krylov Subspace Methods

Hartwig Anzt, Vincent Heuveline, Bjorn Rocker: An Error Correction Solver for Linear
Systems: Evaluation of Mixed Precision Implementations

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a
preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

