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TOWARDS A HYBRID NUMERICAL METHOD USING GENERALIZED

POLYNOMIAL CHAOS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

VINCENT HEUVELINE AND MICHAEL SCHICK

Abstract. Generalized polynomial chaos (gPC) is known to fail for problems involving
strong nonlinear dependencies on stochastic inputs, especially arising in the context of long
term integration. The reason for this is that gPC is a time–independent projection method,
not able to capture a dynamic behavior of probability distributions. Recent developments
in addressing this problem are represented by decomposing the random space or employing

discrete time–dependent basis functionals, both exhibiting promising results but also intro-
ducing increasing computational costs. This work focuses on a numerical analysis of these

two approaches as well as their hybrid combination with regard to a simple ODE decay prob-

lem subject to a uniformly as well as a Gaussian distributed random input. It is observed
that depending on the initial probability distribution strong differences occur with respect
to the error developments, which efficiently can be reduced when employing local discrete
time–dependent basis functionals.

1. Introduction

Many practical applications are modeled by differential equations involving parameters. The
study of those problems often employs deterministic models, which in practice are not always
available and therefore introducing uncertainty into the system. This has influence on the so-
lution, as it can be viewed as a stochastic process, depending on some underlying probability
space. Usually one is interested in the statistics (stochastic moments) of the solution to quantify
its reaction to the uncertainty. A popular and simple strategy is known as the Monte–Carlo
method. Here, a set of samples is generated using some random number generator and a deter-
ministic simulation is performed corresponding to each realization. At a post–processing step,
the collected information is evaluated and one obtains the desired statistics by taking weighted
averages. The positive feature is that the sampling and determination of the corresponding
deterministic solutions can be performed independently, leading to a trivial parallelization tech-
nique. A remedy comes along with the cost of Monte–Carlo, since it is usually not known a
priori how many samples are required to reach a certain accuracy, since its convergence is based
on the “law of large numbers” [2]. However, there exist modifications, such as variance reduc-
tion techniques and Quasi–Monte–Carlo techniques, which can reduce the number of samples
to improve the convergence rate. A powerful alternative, which got increasing attention within
the last two decades is given by the Polynomial Chaos method (PC), initially introduced by
Wiener in 1938 [14]. It decomposes a stochastic process by a linear combination of chosen ba-
sic functionals in terms of random variables. In its original form, Wiener employed Hermite
functionals in terms of Gaussian distributed random variables to represent square–integrable
stochastic processes. In 1991, Ghanem and Spanos [5] pioneered the use of PC in combination
with the Finite–Element–Method naming it the “Spectral–Stochastic–Finite–Element–Method”.
It was successfully applied for problems arising from solid mechanics and turned out to be an

Key words and phrases. Polynomial Chaos, uncertainty quantification, stochastic differential equations, long
term integration.

1



TOWARDS A HYBRID NUMERICAL METHOD USING GPC FOR SDES 2

effective way of representing uncertainties. Later, the area of applications was successfully ex-
tended to fluid mechanics, e.g. [7, 9]. However, the convergence rate of PC was found out to be
poor when trying to represent non–Gaussian processes. In an effort to overcome this restriction
Xiu and Karniadakis [15], in 2003, established a correspondence between the chosen basic func-
tionals and the probability distribution of the to be decomposed random variable naming the
modification the "generalized Polynomial Chaos" method (gPC), which significantly improved
the convergence rate for non–Gaussian stochastic processes.

Ongoing research is focusing on some drawbacks, which come along with gPC, represented
mainly by the stationarity, i.e., time independency, of the approach [4, 11, 12, 6, 8]. This leads
to difficulties arising when the solutions dependency on the stochastic parameters becomes
increasingly nonlinear, which is often the case in highly dynamic systems. First analysis with
respect to time–ideal random functions was carried out in 1969 and 1971 by Imamura et al.
[3, 10]. Addressing this problem by a local approach, Wan and Karniadakis [11] proposed
a variant of gPC, namely an “adaptive multi–element generalized polynomial chaos” method
(ME-gPC) in 2005. Its basic idea is to decompose the probability space into a set of probability
spaces, in which a gPC is employed subject to a conditional probability distribution function.
ME-gPC turned out to be an efficient way of dealing with nonlinearities, yet leading to higher
computational costs, since in every element a local problem of the size of the original global
problem needs to be solved, assuming that the degree of the gPC expansion remains constant.
An alternative was proposed by Gerritsma et al. [4] in 2010, addressing the nonlinearity problem
on the global probability space, employing discrete time–dependent chaos polynomials (TD-gPC)
based on the ideas of [3, 10]. The basic principle is to transform the system to an optimal basis
in terms of new random variables, subject to the same probability distribution as the solution
itsself at some certain discrete time steps. However, a broad analysis and numerical evaluation
is still part of ongoing research. Especially the combination of both ME-gPC and TD-gPC can
lead to a powerful method, combining the features of both worlds.

This work is aiming at addressing some modifications to a basic TD-gPC to reduce its com-
plexity and a numerical evaluation of a hybrid approach consisting of TD-gPC and ME-gPC.
The numerical analysis is performed on some simple decay model problem. Here, a uniformly
and a Gaussian distributed input parameter will be considered. The outline of this paper is as
follows: In Section 2 a mathematical background reviewing gPC is given following in Section
3 with the introduction of the model problem. Section 4 briefly reflects the main ideas behind
ME-gPC and TD-gPC. In Section 5 both methods as well as their combination are applied to
the model problem and are being evaluated. Section 6 closes with drawing conclusions from this
work.

2. Generalized Polynomial Chaos

2.1. Discrete expansion of a second order random variable. Consider, without loss of
generality, a real–valued random variableX defined on some probability space (Ω,F ,P), whereas
Ω denotes the sample space, F ⊂ 2Ω the filtration, and P a probability measure. Further, let us
assume that X is square–integrable, i.e., X ∈ L2(Ω) = {X : E(X2) <∞}, whereas

(2.1) E(X) :=

ˆ

Ω

X dP
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Case Probability distribution Askey–chaos Support

Continuous Gaussian Hermite–chaos (−∞,∞)
Gamma Laguerre–chaos [0,∞)

Beta Jacobi–chaos [a, b]
Uniform Legendre–chaos [a, b]

Discrete Poisson Charlier–chaos {0, 1, 2, . . .}
Binomial Krawtchouk–chaos {0, 1, 2, . . . , N}

Negative binomial Meixner–chaos {0, 1, 2, . . .}
Hypergeometric Hahn–chaos {0, 1, 2, . . . , N}

Table 1. Askey–chaos for selecting polynomials corresponding to certain types
of distributions.

denotes the expectation of X. The original polynomial chaos expansion of X can be represented
in the form

X(ω) = a0H0 +
∞
∑

i1=1

ai1H1(ξi1(ω)) +
∞
∑

i1=1

i1
∑

i2=1

ai1i2H2(ξi1(ω), ξi2(ω))

+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3H3(ξi1(ω), ξi2(ω), ξi3(ω)) + . . . ,(2.2)

whereas Hn(ξi1 , . . . , ξin) denote the Hermite polynomials of order n in terms of the multi–
dimensional independent standard Gaussian random variables ξ = (ξi1 , . . . , ξin). Note that this
expansion is the discrete version of the original decomposition introduced by Wiener [14]. The
multi–dimensional Hermite polynomials are constructed by a tensor product of the corresponding
one–dimensional Hermite polynomials, resulting in

(2.3) Hn(ξi1 , . . . , ξin) = (−1)n exp(
1

2
ξT ξ)

∂n

∂ξi1 · · · ∂ξin
exp(−1

2
ξT ξ).

To simplify the notation, equation (2.2) can be rewritten to obtain the form

(2.4) X(ω) =
∞
∑

i=0

xiψi(ξ(ω)),

since there exists a one–to–one correspondence between the polynomials {ψi} and {Hn}, and
between the coefficients {ai1 , . . . , aik} and {xi}. The decomposition is indeed an orthogonal and
complete basis in the L2–space of Gaussian random variables in terms of

(2.5) 〈ψiψj〉 = 〈ψ2
i 〉δij ,

where δij denotes the Kronecker–delta and 〈·〉 denotes the inner product, defined by

(2.6) 〈f(ξ)g(ξ)〉 :=
ˆ

f(ξ)g(ξ)w(ξ) dξ

with the weight function w given by

(2.7) w(ξ) :=
1

√

(2π)n
exp(−1

2
ξT ξ)

as the joint probability density function of the multi–dimensional independent standard Gaussian
random variable ξ. Cameron and Martin [1] proved that this expansion converges in mean–
square to any second order random variable.
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In practical applications, it is desirable that the series in (2.4) converges fast, since for fea-
sible numerical implementations the series needs to be truncated at some finite integer, which
should be of small value. Although for the decomposition of Gaussian random variables this
is usually the case (exponential convergence is expected, because of the spectral projection na-
ture), other types of non–Gaussian random variable expansions may exhibit poor convergence
rates. Therefore, Xiu and Karniadakis [15] introduced the so–called “Askey–chaos” and with it
the “generalized polynomial chaos”, which essentially replaces the Hermite polynomials {ψi} by
other polynomials, which are orthogonal with respect to the underlying probability density func-
tion of the random input. For example, if X is chosen to be represented in terms of uniformly
distributed random variables, then {ψi} are chosen to be Legendre polynomials. It is expected
by a generalization of the Cameron and Martin theorem [1], that this kind of expansion will
also converge to any second order random variable. The "Askey–chaos" is listed in Table 1 and
gives an overview which polynomials correspond to certain types of distributions (continuous
and discrete ones). To distinguish between the classical Hermite–chaos in terms of Gaussian
random variables ξ and other types of chaos, the notation for the random vector is changed to
ζ throughout the rest of this work.

2.2. Application of gPC to stochastic processes and differential equations. Let us
consider, without loss of generality, the following scalar problem:

Seek u = u(x, t;ω) such that

(2.8) L(u,x, t;ω) = f(x, t;ω),

where L denotes some differential operator in the space variable x ∈ D ⊂ R
d, d ∈ N, and

the time variable t ∈ [0, T ] ⊂ R. Further, ω ∈ Ω denotes a sample from the sample space Ω,
representing the stochastic influence within the differential equation. Here, Ω belongs to some
underlying probability space (Ω,F ,P). The stochastic influence is assumed to be parameterized
by some vector of independent random variables ζ = (ζ1, ζ2, . . .). Hence, problem (2.8) can be
reformulated in the way:

Seek u = u(x, t; ζ) such that

(2.9) L(u,x, t; ζ) = f(x, t; ζ).

This is the starting point for the discretization technique employing chaos polynomials. Since
ζ represents the stochastic input, its probability distribution is known a priori. However, no
information about the stochastic distribution of u is available, therefore, gPC constitutes an
efficient way of representing u in terms of ζ, leading to

(2.10) u(x, t; ζ) =
∞
∑

i=0

ui(x, t)ψi(ζ),

whereas the notation of ω is dropped for notational convenience. For computational purposes,
equation (2.10) is not adequate, since it involves an infinite summation and therefore needs to
be discretized by truncation at some finite level N . This is achieved by restricting the size of ζ
at some finite level M , resulting in ζ ≈ ζM = (ζ1, . . . , ζM ) and fixing the maximal polynomial
order of the chaos polynomials ψi to a finite level P . The expansion now reads

(2.11) u(x, t; ζ) ≈ uN (x, t; ζM ) =
N
∑

i=0

ui(x, t)ψi(ζ
M ),

with

(2.12) N + 1 =
(M + P )!

M !P !
,
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P\M 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 6 10 15 21 28
3 4 10 20 35 56 84
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924

Table 2. Number of unknowns N + 1 in gPC.

which is equal to the number of unknowns ui within the expansion. Table 2 states some values
for N + 1 to illustrate the high number of unknowns even for small truncations at low poly-
nomial degrees and low stochastic input sizes. This creates a great numerical task, since each
of the unknowns ui = ui(x, t) needs to be discretized further by some deterministic numerical
procedure, e.g., the Finite–Element–Method, resulting in a blown up system size in comparison
to a single deterministic problem. In literature, this phenomena is often refered to as “curse of
dimensionality”.

Galerkin Projection. The Galerkin method is one representative of the class of so–called
"weighted residual methods". The basic principle lies in formulating a weak equation for the
solution u, such that the residual is orthogonal to the space of test respectively ansatz functions.
For illustration, consider problem (2.9) and approximate u by uN , such that

(2.13) L(
N
∑

i=0

uiψi,x, t; ζ
M ) = f(x, t; ζM ).

Here, the space of test and ansatz functions is the same and is equal to VN = span{ψ0, ψ1, . . . , ψN}.
The next step is to multiply (2.13) by all ψj and taking the expectation 〈·〉 to obtain

(2.14) 〈L(
N
∑

i=0

uiψi,x, t; ζ
M ), ψj〉 = 〈f(x, t; ζM ), ψj〉, for j = 0, . . . , N.

The resulting equation (2.14) is a coupled system of deterministic differential equations, which
is larger than one single deterministic problem by a factor of N + 1. This can be solved by
employing any appropriate deterministic solver, which needs to be modified to take account of
the couplings within the system resulting from the stochastic discretization using gPC. Note that
the couplings only occur within the left hand side of equation (2.14) and therefore, for linear
problems involving only uncertainty in boundary or initial conditions, the system deteriorates
to a fully decoupled structure, which is attributed to the orthogonality property of the chaos
polynomials {ψi}.

3. A simple decay problem

For illustrating the efficiency of gPC for short time simulations and the lack of convergence
as time progresses, a simple ODE model problem is studied:

∂

∂t
u(t; ζ) = −k(ζ)u(t; ζ),(3.1)

u(0; ζ) = 1,(3.2)

whereas k(ζ) = 1
2 + 1

2ζ. The analytical solution to this ODE is given by

(3.3) u(t; ζ) = exp(−k(ζ)t).
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(a) Analytical and computed mean. (b) Analytical and computed variance.

(c) Relative error mean. (d) Relative error variance.

Figure 3.1. Solutions employing gPC for P = 4, 5, 6 and their corresponding
relative errors of mean and variance for a uniformly distributed input. An
explicit Runge–Kutta Scheme of 4th order with ∆t = 0.001 was used for time
discretization.

Employing gPC yields the following coupled system of deterministic ODEs:

∂

∂t
uj(t) = −

P
∑

i=0

ui(t)
〈kψiψj〉
〈ψjψj〉

, for j = 0, . . . , P,(3.4)

u0(0) = 1,(3.5)

uj(0) = 0, for j = 1, . . . , P.(3.6)

Since we consider a one–dimensional stochastic random variable ζ, the index j of ψj denotes its
degree and P = N .
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(a) Analytical and computed mean. (b) Analytical and computed variance.

(c) Relative error mean. (d) Relative error variance.

Figure 3.2. Solutions employing gPC for P = 4, 5, 6 and their corresponding
relative errors of mean and variance for a standard Normal distributed input.
An explicit Runge–Kutta Scheme of 4th order with ∆t = 0.001 was used for
time discretization.

Suppose ζ ∼ U(−1, 1), i.e., ζ is uniformly distributed within (−1, 1). Hence, the analytical
solutions for the mean and the variance are given respectively by:

E(u)(t) =
1− exp(−t)

t
,(3.7)

σ2(u)(t) =
1

2t
(1− exp(−2t))−

(

1− exp(−t)
t

)2

.(3.8)

If ζ = N (0, 1), i.e., ζ is a standard Normal distributed random variable, then the analytical
solutions for the mean and the variance are respectively given by:

E(u)(t) = exp(−1

2
t+

1

8
t2),(3.9)

σ2(u)(t) = exp(−t+ 1

2
t2)− exp(−t+ 1

4
t2).(3.10)
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For a uniformly distributed ζ the chaos polynomials ψj are selected to be Legendre polynomials
Lj , for a standard Normal distributed ζ Hermite polynomials are chosen - both according to
the Askey–chaos (see Table 1). The chaos polynomials are orthogonal w.r.t. the probability
distribution function of ζ, which is given by

f(z) =
1

2
, z ∈ (−1, 1), for a Uniform distribution,(3.11)

f(z) =
1√
2π

exp(−z
2

2
), z ∈ R, for a standard Normal distribution.(3.12)

As one can see in Fig. 3.1 and Fig. 3.2, gPC is able to approximate the mean and the variance of
the solution for short physical time only. As time progresses gPC is not capable of representing
the stochastic moments accurately, leading to relative errors of order O(1) for both mean and
variance at later times. This can be explained by taking a closer look on the series representation
of the analytical solution itself:

(3.13) u(t; ζ) = exp(−k(ζ)t) =
∞
∑

n=0

(−1)n
(1 + ζ)ntn

2nn!
.

It is clear that when t gets large the nonlinear dependency on ζ becomes more dominant.
However, only polynomials up to the degree P are used throughout the whole simulation time,
therefore restricting the representable nonlinearities in ζ to the order of P , which is only sufficient
for early times.

4. Multi-element and time-dependent approach

4.1. Multi-element generalized Polynomial Chaos (ME-gPC). In their work, Wan and
Karniadakis [11, 13] developed an adaptive domain decomposition method of the probability
space to split the global problem into independent local ones. The basic principle lies in de-
composing the range of ζ into a finite set of intervals of finite or infinite boundaries, i.e., if
ζ ∈ (a, b) ⊂ R

∗ = R ∪ {−∞,∞} with a, b ∈ R
∗ then

(4.1) (a, b) =

N
⋃

k=1

Bk, Bk = (ak, bk) ⊂ R
∗, Bk ∩Bl = ∅ if k 6= l.

By defining the indicator function

(4.2) Ik =

{

1 if ζ ∈ Bk

0 otherwise
,

one obtains a decomposition of the sample space Ω via

(4.3) Ω =

N
⋃

k=1

I−1
k (1).

In each element Bk a new random variable ζk : I−1
k (1) 7→ Bk is defined subject to a conditional

probability distribution function

(4.4) fζk(zk|Ik = 1) =
fζ(zk)

P(Ik = 1)
.

The next step is to employ gPC locally in each element Bk leading to N problems, which can be
solved independently from each other. For simplification the focus will lie only on a uniformly
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refined probability space, not on an adaptive procedure. Any statistics of the solution u can be
obtained by Bayes’s rule and the law of total probability by

(4.5)

ˆ

B

g(u(z))fζ(z) dz ≈
N
∑

k=1

P(Ik = 1)

ˆ

Bk

g(u(k)(zk))fζk(zk|Ik = 1) dzk,

whereas u(k) denotes the solution in element Bk.

Remark 1. Note that since on each element gPC is employed, a set of orthogonal polynomials has
to be computed w.r.t. the conditional probability distribution for each element. Also, solving
N independent problems leads to higher costs, which increase linearly in N if P is fixed over
all elements. Another view on ME-gPC is that the chaos polynomials are replaced by piecewise
chaos polynomials, hence allowing for improved accuracy.

4.2. Time-dependent generalized Polynomial Chaos (TD-gPC). Gerritsma et al. [4]
introduced a time–dependent approach evaluated for uniformly distributed random variables,
which aims at reducing the nonlinear dependency of the solution u on the stochastic input.
In contrast to ME-gPC, TD-gPC constitutes a global polynomial chaos discretization of the
probability space. Its basic principle lies in the idea of representing the solution u in terms
of a new random variable, which is defined as the solution u itself at certain time steps. The
procedure can be summerized by the following:

First employ gPC in a standard way. Define a reset criteria for some parameter θ

(4.6) max{|u2(t)|, . . . , |uP (t)|} ≥ |u1(t)|
θ

,

which measures the nonlinear dependency, represented by the higher modes, on the random
variable ζ. If this criteria is fulfilled, say at time step t = tr, halt the simulation and perform a
reset step. First define a new random variable η by

(4.7) η := u(tr; ζ) =
P
∑

i=0

ui(tr)ψi(ζ).

Next, employ a gPC representation of u in terms of η, i.e.,

(4.8) u(t; η) =
P
∑

i=0

ui(t)φi(η), t ≥ tr,

whereas {φi} is a set of new chaos polynomials, which are orthogonal to the probability distri-
bution function fη of η. Computing this polynomials can be done by a Gram–Schmidt orthog-
onalization procedure starting with φ0 ≡ 1, using the well known fact that

(4.9)

ˆ

φi(y)φj(y)fη(y) dy =

ˆ

φi(u(tr; z))φj(u(tr; z))fζ(z) dz

allowing for evaluating all inner products without explicitly computing fη. The last step is to
reformulate the model problem. For (3.1), (3.2) this results in

∂

∂t
u(t; η) = −k(η)u(t; η), for t ≥ tr,(4.10)

u(tr; η) = u0(tr)φ0(η) + φ1(η).(4.11)

Since this is a linear expansion in η at t = tr, it is an optimal representation of u in terms of η.
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Remark 2. The criteria in (4.6) can be replaced by any other suitable stopping criteria. In the
following a decay rate of the variance will be used troughout the numerical simulations, defined
by

(4.12)
u2P (t)〈ψPψP 〉

∑P

i=0 u
2
i (t)〈ψiψi〉

≥ θ,

since the higher order moments represent the critical quantities.

5. Numerical results

Throughout this section the model problem (3.1), (3.2) will be analyzed for a uniformly and
a standard Normal distributed ζ. Recapitulate that the corresponding analytical solutions for
the mean and the variance are given respectively by

E(u)(t) =
1− exp(−t)

t
,(5.1)

σ2(u)(t) =
1

2t
(1− exp(−2t))−

(

1− exp(−t)
t

)2

,(5.2)

for ζ ∼ U(−1, 1) and

E(u)(t) = exp(−1

2
t+

1

8
t2),(5.3)

σ2(u)(t) = exp(−t+ 1

2
t2)− exp(−t+ 1

4
t2),(5.4)

for ζ ∼ N (0, 1). All calculations were performed using a 4th order explicit Runge–Kutta method
with a time step of ∆t = 0.001. Errors are measured in a relative norm, i.e.,

ǫmean(t) :=
|E(uanalytical)(t)− E(ucomputed)(t)|

|E(uanalytical)(t)|
(5.5)

ǫvariance(t) :=
|σ2(uanalytical)(t)− σ2(ucomputed)(t)|

σ2(uanalytical)(t)
.(5.6)

5.1. Numerical results for TD-gPC. First, the time–dependent approach (TD-gPC) for a
uniformly distributed ζ is being analyzed. As can be seen in Fig. 5.1 the relative errors both for
the mean and the variance are significantly improved in comparison to gPC leading to an error
reduction of approximately 3 to 4 orders in the best case. Note that decreasing θ results in a
higher number of reset steps throughout the simulation (see Table 3). The optimal θ, however,
for which the smallest possible error is obtained, is not necessarily of smallest magnitude. For

θ No, P = 4 No, P = 6

10−2 2 1
10−3 3 2
10−4 7 2
10−5 50 2
10−6 184 30
10−7 614 196
10−8 1962 642

Table 3. Number of resets steps No for P = 4 and P = 6 corresponding to
various values of the stopping parameter $\theta$ for Uniform distribution.
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(a) Relative error mean. (b) Relative error variance.

(c) Relative error mean. (d) Relative error variance.

Figure 5.1. Relative errors of mean and variance for TD-gPC with P = 4 and
varying stopping parameter θ = 10−2, . . . , 10−8 for a Uniform distribution.

P = 6 optimal results are achieved employing θ = 10−6 leading to an error reduction of 4 orders
compared to gPC, whereas only 30 reset steps are sufficient, which makes up for just 0.03% of all
time steps (the case P = 6 is not shown). Decreasing θ even further, will not improve the relative
errors anymore, even making them slightly worse. The case P = 4 exhibits a similar behavior,
achieving optimal results for θ = 10−4 with an error reduction of 2 to 3 orders requiring only 7
reset steps.

For a standard normal distributed ζ, however, the results exhibit some completely different
behaviors (see Fig. 5.2). The plots show a discretization carried out with P = 4 and a stopping
parameter θ = 10−6 to illustrate the problem. The classical gPC approach is demonstrating an
expected development, i.e., error growth in time to the order O(1), in contrast to TD-gPC, which
drastically diverges from the exact solution and leads to considerably worse results in comparison
to gPC measured in the relative errors. This phenomena can be explained by a numerical loss of
orthogonality, i.e., the orthogonality of the time–dependent polynomials cannot be maintained
throughout the simulation time. This is due to the solution itself, which at every reset steps
defines a new inner product, which evaluation is numerically unstable, if the polynomials differ
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(a) Relative error mean. (b) Relative error variance.

(c) Relative error mean. (d) Relative error variance.

Figure 5.2. Relative errors of mean and variance for TD-gPC with P = 4 and
stopping parameter θ = 10−6 for standard Normal distribution. Top TD-gPC,
bottom limited TD-gPC.

to much in the magnitudes of their coefficients. Note, that the inner product is approximated
by some quadrature rule, in this case a Gauss–Hermite quadrature, which will involve round off
errors if terms with highly different magnitudes are summed. To be able to use TD-gPC, one
therefore has to restrict the maximum number of reset steps allowed, resulting in an limited
time–dependent approach (L-TD-gPC). However, it is not feasible to define a limit a priori, we
therefore use the following application dependent criteria to analyze, if the orthogonality is still
satisfied:

(5.7) if max
i,j,i 6=j

|〈ψiψj〉| > δ then do not reset anymore,

whereas δ = 10−15, which is a quite strong criteria. Fig. 5.2 shows that using this limitation
leads to significantly improved results and that L-TD-gPC is also able to reduce the errors
compared to gPC even further. Note that for this case, TD-gPC results in 869 steps, whereas
L-TD-gPC only allows for 2 reset steps, which are sufficient to decrease the relative errors up to
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one order in comparison with gPC. Especially, considering TD-gPC, for the variance a reduction
of up to 6 orders is achieved by L-TD-gPC.

A remedy of TD-gPC and L-TD-gPC is that the errors still continue to grow as time pro-
gesses, although the growth rate seems to become relatively small for later simulation time.
Gerritsma et al. [4] introduced a revised TD-gPC approach, which does consider both the
probability distribution of the solution as well as the probability distribution of the initial pa-
rameter. Therefore, the modes of the solution are expressed in a gPC in terms of the initial
input distribution, i.e.,

(5.8) u = u(t; ζ; η) =

P1
∑

i=0

P2
∑

j=0

uij(t)φi(ζ)ψj(η),

whereas ζ denotes the random variable of the initial parameter and η the random variable
coming from the time–dependent approach as explained previously. Note that η = η(ζ), i.e., the
expansion now employs two dependent random variables. This modification allows for a better
representation of the time derivative of the solution leading to strongly improved results in the
reduction of the relative errors throughout the whole time simulation interval for this model
ODE problem subject to a uniformly distributed input. However, a drawback of the revised
approach is the increasing cost which comes along with introducing two dependent random
variables instead of a single one. Especially, the number of unknowns is increased by a factor
of P1 + 1 instead of just using P2 + 1 unknowns. This can lead to computational difficulties
when considering more complex problems like partial differential equations. Future work will
elaborate in detail on this modification.

Remark 3. The observable peaks in the error throughout the simulation time are due to the
change of sign in the corresponding absolute error, resulting in jumps of the relative errors at
exact these time steps.

5.2. Numerical results for ME-gPC. Next the numerical results concerning the multi–
element approach (ME-gPC) as introduced in [11, 13] are being evaluated. For simplicity a
global refined probability space is assumed, i.e., no adaptive refinement strategies will be con-
sidered. The partitioning in case of a standard Normal distributed input is carried out employing
initially three elements (−∞,−a), (−a, a), (a,∞), whereas a = 9 such that P(ζ /∈ (−a, a)) =
2.25718 · 10−19, resulting in a small contribution of the tail elements to the global problem.
Therefore, it is sufficient to only refine the middle element (−a, a). For a uniformly distributed
input, the interval (−1, 1) is being refined.

The results as seen in Fig. 5.3 and Fig. 5.4 display exponential convergence for a 4th order
chaos expansion both for a uniformly and a standard Normal distributed ζ similar to an h-
refinement in the context of a Finite–Element–Method. This is in good agreement with the
results shown in [13]. However, ME-gPC also exhibits an error growth over time which can be
decreased if more elements are used at later times, yet leading to higher costs since in every
element a gPC problem needs to be solved. Further, comparing the local approach of ME-gPC
with the global one of TD-gPC shows, that for a Uniform distribution TD-gPC is capable of
achieving the same low relative errors as ME-gPC employing a small number of elements, yet
with less costs, since the computation of orthogonal polynomials at every reset step is negligible
in comparison to solving the ODE. Even for the case subject to a standard Normal distribution,
at least the limited TD-gPC can achieve the same error bounds as ME-gPC for N = 6 both
for the mean and the variance. Since ME-gPC as well as (L-)TD-gPC provide efficient means
of reducing the relative erros, a combination of both of these approaches is expected to lead to
even better results concerning the accuracy, yet at less cost than using ME-gPC only, which will
be evaluated in the following.
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(a) Relative error mean. (b) Relative error variance.

Figure 5.3. Relative errors of mean and variance for ME-gPC with P = 4
and varying number of elements N = 1, 4, 8, 16 for a Uniform distribution.

(a) Relative error mean. (b) Relative error variance.

Figure 5.4. Relative errors of mean and variance for ME-gPC with P = 4 and
varying number of elements N = 1, 6, 10, 18 for a standard Normal distribution.

Remark 4. The number of elements used in ME-gPC can efficiently be reduced if an adaptive
refinement procedure is employed [11, 13]. Also note that the problem in each element can be
solved independently from each other, which can be exploited by using appropriate paralleliza-
tion techniques.

5.3. Time–dependent multi–element gPC. In this section we analyze the effects of the
time–dependent approach implemented in every single element resulting from the partitioning
of the probability space due to ME-gPC. This approach can play a huge role when dealing
with multi–dimensional random input, since then a time–dependent approach on the global
probability space becomes quite expensive.
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(a) Relative error mean. (b) Relative error variance.

(c) Relative error mean. (d) Relative error variance.

Figure 5.5. Relative errors of mean and variance for TD-ME-gPC with P = 4,
stopping parameter θ = 10−4 and varying number of elements N = 2, 4, 8, 16
for a Uniform distribution.

Here, a discretization using 4th order polynomial chaos (P = 4) in combination with a
stopping parameter θ = 10−4 for the Uniform case and θ = 10−6 for the standard Normal case
is carried out employing a varying number of elements. As one can see in Fig. 5.5 and Fig. 5.6,
in which the errors resulting from (L-)TD-gPC and ME-gPC are compared to each other, the
results exhibit strongly different error developments with respect to the underlying probability
distribution and partitioning. For a uniformly distributed ζ (see Fig. 5.5) the improvements,
especially for the variance, are significant, whereas the less elements are used, the bigger is the
gap between ME-gPC and TD-gPC. For N = 2, for example, the error decrease is of the order 3
to 4 for both the mean and the variance for the time–dependent approach. A higher refinement
level partitioning, however, has only less benefit from employing TD-gPC elementwise, since in
each element, the problem to be solved becomes smoother with respect to stochastic dynamics,
hence resulting in less impact of the time–dependent approach.

In contrast, looking at the results for the standard Normal distributed ζ (see Fig. 5.6) the
relative errors behaviors are different than those for the Uniform case. For N = 4, meaning
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(a) Relative error mean. (b) Relative error variance.

(c) Relative error mean. (d) Relative error variance.

Figure 5.6. Relative errors of mean and variance for limited TD-ME-gPC
with P = 4, stopping parameter θ = 10−6 and varying number of elements
N = 4, 6, 10, 18 for a standard Normal distribution.

that the middle element is refined once, L-TD-ME-gPC is leading to even worse relative errors
compared to ME-gPC. However, for the next refinement level, i.e., N = 6, this is not the case
anymore and L-TD-ME-gPC is achieving significantly improvements up to 3 orders, especially
with regard to the variance. For the mean, no such clear error reduction is observable. But
it is expected, that choosing different stopping parameters θ and varying the order P of the
chaos expansion will lead to different results. This aspects, however, will be addressed in future
publications.

6. Conclusions

Generalized polynomial chaos exhibits poor convergence qualities, when dealing with a highly
nonlinear dependency on the random input quantity. Therefore, two recent developments ad-
dressing this issues were analyzed, namely a discrete time–dependent generalized polynomial
chaos method (TD-gPC, [4]) and a multi–element generalized polynomial chaos method (ME-
gPC, [11, 13]). Both approaches were evaluated and analyzed for a simple ODE decay problem
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subject to a uniformly and a standard Normal distributed random input. The results were
compared and a combination of both methods was proposed and studied, leading to promising
improvements in accuracy, which strongly depend on the underlying probability distribution
of the input. Especially for the standard Normal case, a restriction of TD-gPC needs to be
performed, limiting the maximum number of time resets allowed during one simulation. This
is attributed to the loss of orthogonality of the chaos polynomials, which is a problem not oc-
curring for the uniformly distributed input. To overcome this problem, a criteria is suggested
checking wether the orthogonality is still satisfied and therefore being dependent only on the
application itself. It is expected that the combination of TD-gPC and ME-gPC can play a
huge role in the case of multi–dimensional random variables and / or vector–valued differential
equations, since a time–dependent “stand alone” approach can lead to very high computational
costs very quickly. Future work will give a more detailed analysis on the hybrid formulation.
Furthermore, a convergence analysis in terms of the number of chaos polynomials and a study
of alternative reset criteria is required. This will also be addressed in future publications, also
extending the analysis to the field of partial differential equations, for which it is assumed that
due to the dependency on space and time, the challenges and complexity of TD-ME-gPC will
increase significantly.
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