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Abstract—This paper presents a detailed analysis of a mixed
precision iterative refinement solver applied to a linear system
obtained from the 2D discretization of a fluid flow problem.
The total execution time and energy need of different soft-
and hardware-implementations are measured and compared
with those of a plain GMRES-based solver in double precision.
The time and energy consumption of individual parts of the
algorithm are monitored as well, enabling a deeper insight and
the possibility of optimizing the energy consumption of the
code on a general-purpose multi-core architecture and systems
accelerated by a graphics processor.

Keywords-Energy Efficiency, Computational Fluid Dynam-
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I. INTRODUCTION

A. Motivation and contributions

The development of modern technology is characterized

by simulations, that are no longer performed in physical

experiments, but in mathematical modeling and numeri-

cal computations. At the same time, the enormous energy

consumption to perform these simulations is becoming an

increasing problem. Today, already after short time, the

energy cost of running a supercomputer often exceeds the

hardware acquisition cost [1]. Especially in the context

of Exascale Computing, the energy consumption and the

Carbon Footprint are major challenges addressed by an

increasing number of researchers [2].

In the simulation of real-world phenomena, solving large-

scale sparse linear systems is often an essential part, de-

manding for immense computational capacities as well as

the usage of algorithms optimized for the specific applica-

tions. In many cases, a combination of different arithmetic

precisions in the solvers may trigger an acceleration of

the application without sacrificing the accuracy of the final

result [3], [4].

In this paper, we show how a mixed precision error

correction method [5] for solving sparse linear systems of

equations can be adapted to a specific hardware platform,

yielding significant gains in the computation time and energy

demands. As an secondary contribution of the paper, we an-

alyze the correlation between computation time and energy

needs for different parameters controlling the solver, which

allows the investigation of a trade-off between accuracy, time

and energy.

B. Related work

Iterative refinement is a well-known technique to improve

the quality of the computed solution to a linear system

Ax = b [6]. Mixed precision in combination with iterative

refinement has been reported as an efficient means to reduce

the execution time of dense linear systems solvers [7]–[10]

as well as sparse linear system solvers [11], [12]. However,

none of the previous works considers the impact of this

combination on energy.

The idea of applying a mixed precision iterative refine-

ment variant instead of a plain solver to reduce power

demands was recently addressed in [13], [14]. The first

work performs a “potential” analysis of the benefits of

this technique by considering only the theoretical power

consumption of the different hardware components obtained

from vendor specifications. In this paper we provide much

stronger experimental evidence of the energy savings by

using actual power measurements. Alike ours, the second

work also employs real power measures; the target archi-

tecture considered there, though, did not include a hardware

accelerator and the iterative solver (CG) also differs.

C. Paper Organization

In the next section, we offer the necessary mathematical

background. There we outline the rationale of iterative

refinement methods (section II-A); introduce the technique

of using different floating-point precision formats within

these algorithms (section II-B); and review the underlying

mathematical problem arising from a CFD application (sec-

tion II-C). The following section describes the hardware

setup of the test platform (section III-A) and some imple-

mentation issues (section III-B).

In section IV, we perform several experiments, analyzing

the computation time and energy consumption of different
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Figure 1. Stages of the mixed precision approach to an iterative refinement solver.

software setups on a current general-purpose multi-core

processor (or CPU). The study also includes a hybrid multi-

core+graphics processor (GPU) platform, which demon-

strates the potential of GPUs to accelerate scientific codes,

but also to deliver a better energy-per-arithmetic-operation

ratio. The global study shows the benefits of using mixed

precision iterative refinement implementations of linear

solvers on both computation time and power consumption.

At the same time, the detailed energy analysis reveals the

possible optimizations with respect to the used hardware

resources. In the last section, we offer a few concluding

remarks and give a brief overview about the potential of

future implementations on hybrid hardware technology.

II. MATHEMATICAL BACKGROUND

A. Iterative Refinement

The motivation for the iterative refinement method can be

obtained from Newton’s method. Consider a function f and

let xi denote the solution in the i-th step:

xi+1 = xi − (∇f(xi))
−1f(xi). (1)

This method can be applied to the function f(x) = b−Ax

with ∇f(x) = A, where Ax = b is the linear system that

has to be solved.

By defining the residual ri := b −Axi, one then obtains

xi+1 = xi − (∇f(xi))
−1f(xi)

= xi +A−1(b −Axi)

= xi +A−1ri.

Denoting the solution update with ci := A−1ri, and using an

initial guess x0 as the starting value, an iterative algorithm

can be defined, where any linear solver can be used as error

correction solver. (In this paper we will use GMRES –see

section III-B3, [15], [16]– without preconditioning, to solve

the general sparse linear system associated with the CFD

application that is analyzed.)

At each iteration, the inner correction solver searches for

a vector ci such that Aci = ri is approximated, and the

solution approximation is updated by xi+1 = xi + ci.

B. Mixed Precision Iterative Refinement

The idea underlying mixed precision iterative refinement

methods is to use different precision formats within the algo-

rithm, updating the solution approximation in high precision,

but computing the error correction term in lower precision.

A comparison of the mixed precision iterative refinement

solver (see, e.g., Figure 1) with a plain solver easily reveals

that the iterative refinement method has more computations

to execute. In particular, each outer loop of the mixed

precision solver consists of the computation of the residual

error term, a typecast into low precision, a vector update, the

scaling process, the inner solver for the correction term, the

transformation of the data back into high precision, and the

solution update. The computation of the residual error itself

consists of a matrix-vector multiplication, a vector addition,

and a scalar product. Furthermore, when a hybrid CPU-GPU

architecture is used to accelerate the computations, a certain

amount of data has to be transmitted between the host and

the device memory address spaces. On the other hand, the

mixed precision iterative refinement approach can potentially

outperform a plain solver in high precision if the additional

computations and typecasts are compensated by the much

faster operation pace of low precision arithmetic in hardware

accelerators like, e.g., GPUs.

If the final accuracy does not exceed the smallest number

ǫlow that can be represented in the lower precision, the

mixed precision solver computes exactly the same solution

approximation as if the solver was performed in the high

precision format. Theoretically, any precision can be chosen,

but in most cases it is convenient to use the IEEE 754

standard formats.

When an iterative method is employed as error correction

solver (i.e., to solve Aci = ri), the iterative approaches to the

Krylov subspace methods are specially appealing, as these



provide an approximation of the residual error iteratively

in every computation loop. Hence, one is able to set a

certain relative residual stopping criterion for the iterative

error correction solver. Possible Krylov subspace solvers

include the CG algorithm, GMRES, BiCGStab, etc. [15].

The mixed precision iterative refinement method based on

a certain error correction solver poses the same demands to

the linear problem as the Krylov subspace solver employed

within it.

It should be mentioned, that the solution update of the

mixed precision iterative refinement solver is usually sub-

optimal for the outer system, since the discretization of the

problem in the lower precision format contains rounding

errors and, therefore, it solves a perturbed problem.

C. Mathematical Application

As the test problem, we employ a linear system of

equations that was obtained from a 2D discretization of

the Navier-Stokes Equations modeling the fluid flow in a

Venturi Nozzle. The sparsity pattern of the coefficient matrix

is captured in Figure 2. The problem size (dimensions of the

square matrix A) is n=395,009 and the number of nonzeros

nnz=3,544,321.

CFD1

Figure 2. Sparsity plots showing the nonzero-structure of the CFD test-
matrices.

III. TEST CONFIGURATION

A. Hardware Platform and Energy Measurement

All experiments reported in this paper were performed on

a platform consisting of two Intel Xeon E5410 Quad-Core

processors at 2.33 GHz, with 4 GB of RAM, connected via

PCIe (16x) to an NVIDIA Tesla C1060 board.

Power is measured at two different points. A commercial

external power meter (Watts Up Pro .net) samples power

for the global system once per second (1 Hz). Given the

low resolution of the measures, and the “noise” introduced

by hardware components as the disk or the network interface

card as well as the inefficiencies of the power supply, we

added an alternative sampling point, with a higher resolution,

using an internal power meter. This is an ASIC operating at

a frequency of 25 Hz (25 samples per second) which is

composed of a number of resistors connected in series with

the power source: thus, the drop of power voltage across

the series yields a direct estimation of the power being

consumed. In this case, we attach the internal power meter to

the lines connecting directly the power supply unit with the

GPU and the motherboard (chipset plus processors) so as to

obtain the energy consumption of the computing hardware.

Samples from both the external and the internal power meter

are collected in a separate system; thus, the measurements

do not affect the performance of the tests. Figure 3 illustrates

the connection between the target platform and the energy

measurement hardware.

B. Implementation Issues

1) Libraries: Our CPU-implementations of the mixed

precision iterative refinement solver as well as the plain

GMRES solver operate on vectors using the BLAS (basic

linear algebra subprograms) functionality provided in Intel

Math Kernel Library [17] (MKL version 11.1). Although

MKL also includes an implementation of the sparse matrix-

vector multiplication, invoked from within the GMRES

algorithm and the residual computation (the test matrix is

sparse, stored in the CRS format [18]), we decided not

to use it, as our experiments reported the superiority of a

plain implementation of the sparse matrix-vector kernel for

the specific structure and dimensions of matrix CFD1. In

order to improve performance, the CPU code was compiled

using the Intel icc compiler (version 11.1) with the flags

-O3 -parallel -ipo [19], which enable aggressive

optimizations and parallel execution using multiple threads

on the Intel multi-core processor.

When the error corrector solver within the mixed precision

iterative refinement implementation solver is executed on

the GPU, the vector operations are performed with the

respective CUBLAS routines in [20] (version 2.2). NVIDIA

nvcc compiler (version 2.2) with an up-to-date CUDA

driver was employed in the GPU. The CUBLAS routines are

used whenever possible; a kernel for sparse matrix-vector

multiplication was implemented following the guidelines

suggested in [21].

2) Memory Management: For the CPU-implementation

of the plain GMRES in double precision, the matrix is

stored in double precision only. The mixed precision iterative

refinement method requires an additional copy in single

precision. In the GPU-implementation, this additional copy

is stored in the GPU memory during the initialization,

such that no regular memory-copy from host to device is

necessary during the solution stage.

3) GMRES Solver: For both the plain solver in double

precision as well as the error correction solver in the

iterative refinement framework, we use a GMRES algorithm

(Generalized Minimum Residual Method). GMRES is a
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projection method that operates on Krylov subspaces Vm =
Km(A, v) = span{v,Av,A2v, . . . , Amv}, generated by the

Arnoldi algorithm. It was designed for the solution of linear

systems where the coefficient matrix A is neither necessarily

symmetric nor positive definite [15], [16]. Indeed, GMRES

also works for non symmetric semi-positive definite systems,

and is especially appropriate for large-scale sparse matrices.

As GMRES uses the Arnoldi algorithm to generate the

Krylov subspace, and the entire Krylov subspace Kn spans

R
n, in exact arithmetic and after n steps, GMRES computes

the exact result to a linear system of dimension n. Therefore,

GMRES is in fact a direct method, like other Krylov sub-

space solvers, that computes the analytically exact solution

in n steps. In practice, for large linear systems, difficulties

appear in the method due to a linear increase in computa-

tional and storage costs, and to the loss of orthogonality of

the Krylov subspaces triggered by rounding errors. Because

choosing a small number m ≪ n of iterations often yields

a good approximation of the result, one usually employs

GMRES as an iterative solver, with a stopping criterion

depending on the residual norm.

In the plain GMRES algorithm, the whole Krylov basis

has to be stored until the residual has reached a certain

threshold. Therefore, for large linear systems, the memory

and computational costs of this method become prohibitive.

To avoid this, a variant known as RESTART-GMRES, or

GMRES-(m), is often used, where the Krylov subspace and

the approximation is not computed until the residual has

reached the demanded threshold, but restarted after a certain

number of steps (m).

The advantages of the restarted algorithm are that the

orthogonality of the computed Krylov subspaces is preserved

to a higher degree due to the restart of the Krylov-subspace

generator and the computational and memory costs are

decreased, as the linear problem stays at a lower dimension,

and only m Krylov subspace vectors have to be stored (see

Algorithm 1).

4) Solver Parameters: While we use a plain GMRES

algorithm in restart-variant as reference solver, the mixed

precision iterative refinement method uses Restart-GMRES

solver in low precision as error correction solver. For the

different tests, we set the restart parameter to m=30. Further-

more, in most of our experiments we fix the relative residual

stopping criterion for the final solution approximation to

10−10. Due to the iterative residual computation in the

case of the plain GMRES solvers, the mixed GMRES

solvers based on the mixed precision iterative refinement

method usually yield a more accurate approximation, since

they compute the residual error explicitly. However, as the

difference is generally small, the results can be compared.

In the first tests, we vary the relative residual stopping

criterion εinner of the error correction solver inside the

mixed precision iterative refinement solver. In all other tests,

when analyzing the energy consumption of the individual

parts of the solver and the comparison to the plain solver

implementation, we set the inner stopping criterion to 10−1,

since this choice is the optimal for our application from the

points of view of execution time and energy needs.

IV. NUMERICAL TESTS

In the first experiment, we analyze the effect of the inner

stopping criterion on the execution time and the energy

consumption of different hardware implementations of the

mixed precision iterative refinement method. To compare

with a direct algorithm without iterative refinement, we

also consider a plain GMRES solver, operating in double-

precision arithmetic, and using the same relative residual

stopping criterion of 10−10 for the approximation to the final

solution.

Figure 4 gathers the results of this first experiment on

CFD1. For the execution time as well as for the energy

consumption, we observe the superiority of the mixed pre-

cision iterative refinement solver (label “IT. REF.”) using

the very loose inner stopping criterion εinner = 0.1. Con-

sidering the CPU implementations (bars corresponding to

1, 2 and 4 threads), the plain solver in double precision

(label “GMRES”) runs almost two times longer, while the

internal powermeter measures energy savings larger than 3×.

Due to the noise introduced by other hardware components,

the external powermeter offers less detailed values and will

be discarded it in the following experiments. The mixed
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time; center: energy consumption measured with the internal powermeter;
bottom: energy consumption measured with the external powermeter.

1: for (l = 1, l++) do
2: Compute r0 = b−Ax0, d0 = β0 =‖ r0 ‖2, v1 = r0

β0

3: for (j = 1, j ≤ m, j ++) do
4: % Iteration process of GMRES

5: Compute wj = Avj
6: for (i = 1, i ≤ j, i ++) do
7: % Arnoldi’s method

8: hi,j = 〈wj , vi〉
9: wj = wj − hijvi

10: end for

11: ω =‖ wj ‖2
12: for (i = 1, i < j, i ++) do
13: % Apply former rotation to hk

14: h̃ = cihi,j + sihi+1,j

15: hi+1,j = −sihi,j + cihi+1,j

16: hi,j = h̃

17: end for

18: if (ω ≤ |hj,j|) then
19: % Compute new rotation

20: tj =
ω

|hj,j|

21: cj =
hj,j

|hj,j|
√

1+t2
j

22: sj =
tj√
1+t2

j

23: else

24: tj =
hj,j

ω

25: cj =
tj√
1+t2

j

26: sj =
1√
1+t2

j

27: end if

28: hj,j = cjhj,j+sjω % Apply rotation to rest of Ĥ

29: dj = −sjdj−1 %Apply the rotation to the RHS

30: dj−1 = cjdj−1

31: end for

32: solve Hly = d with the Gauss-Algorithm

33: Define the matrix Vl = [v1 . . . vl]
34: Compute the approximation xl = x0 + Vly

35: if (|dl| ≤ ε) then
36: stop

37: end if

38: end for

Algorithm 1: GMRES-(m) Algorithm.

precision iterative refinement using the GPU as coprocessor

(bar corresponding to GPU) for the error correction solver

yields a speedup of 12 in computation time compared with

the sequential implementation of the plain solver, and almost

8 compared with the implementation using 4 cores/threads.

Still, the energy savings are lower, since running the GPU

is expensive, especially because it is not switched off but

remains active even when not needed. The internal power-

meter measures energy savings of a factor around 6 for the

implementation using 4 cores, while the external powermeter

only gives a factor of 4. This is again due to the noise



generated by the power supply unit and other hardware

components.

The purpose of the next experiment is to analyze the

computation time and the power consumption of the in-

dividual parts of one single run of the mixed precision

iterative refinement solver. From the insights gained from

the previous study, we set the inner stopping criterion to

εinner = 0.1. We split the algorithm into the following parts:

T1 Reading matrix. Read data from file.

T2 Initialization. Allocate and initialize matrix and vec-

tors, in double as well as in single precision. In case

the GPU is used as a coprocessor, the single precision

matrix and the vectors are also allocated and initialized

in the GPU memory. This involves, among other tasks,

the transfer of the full matrix contents from the CPU

memory to the GPU memory.

T3 Typecast double→single. The residual is typecasted

from double to single precision. When the GPU is used

as coprocessor, the typecasted residual is also copied

to the device.

T4 Error correction solver. The error correction equa-

tion is solved in single precision. If the GPU is

involved, this task is mainly executed by it.

T5 Typecast single→ double. The solution update ob-

tained from the error correction solver is typecasted

from single precision to double precision. When oper-

ating with the GPU, this task also includes transferring

the data from device back to host.

T6 Solution update. Using the solution update, the dou-

ble precision solution approximation is improved.

T7 Residual computation. The new residual is computed

and the relative residual stopping criterion is checked.

If it is fulfilled, the algorithm stops; otherwise, it

cycles back to the typecast for the residual T3.

Note that T1 and T2 are not strictly part of a single run of the

mixed precision solver, but are performed before the iteration

commences; we include their values for completeness. The

results for tasks T3–T7 are averaged by the number of

iterations of the mixed precision solver.

Table I shows the average time/energy consumption for

the individual tasks T1–T7 in one iteration loop of the

iterative refinement method applied to the matrix associated

with CFD1. As one could expect, the error correction solver

is by far the most demanding part of the algorithm, not only

in computation time but also in power input.

When the mixed precision iterative refinement method is

run on the hybrid hardware platform consisting of CPU and

GPU, the GPU runs on idle all time when the operations are

exclusively performed by the CPU. This concerns especially

tasks T1, T6 and T7. A more efficient system would shut

down the GPU while not using it (assuming the cost of

shutting down/powering up is close to negligible). The same

is true vice-versa. While in case of the GPU-implementation,

T4 is mainly executed by the GPU, the CPU still runs at

Execution time

Task 1 thread 2 threads 4 threads 1 GPU

T1 2.53e+00 2.65e+00 2.60e+00 2.48e+00
T2 3.72e-02 3.68e-02 3.70e-02 1.22e+00
T3 3.49e-03 3.60e-03 3.60e-03 5.20e-03
T4 5.10e+01 4.35e+01 4.18e+01 1.21e+01
T5 3.14e-03 2.80e-03 2.87e-03 4.62e-03
T6 3.55e-03 3.04e-03 2.68e-03 3.11e-03
T7 2.75e-02 2.65e-02 2.57e-02 2.69e-02

Energy – internal powermeter

Task 1 thread 2 threads 4 threads 1 GPU

T1 5.03e-02 5.12e-02 5.11e-02 8.51e-02
T2 9.07e-04 6.86e-04 7.47e-04 3.72e-02
T3 6.10e-05 0.00e+00 1.24e-04 2.24e-04
T4 1.21e+00 1.06e+00 1.09e+00 5.08e-01
T5 5.40e-05 0.00e+00 0.00e+00 2.84e-04
T6 6.48e-05 6.48e-05 9.79e-05 0.00e+00
T7 5.36e-04 6.68e-04 6.14e-04 8.86e-04

Table I
DETAILED ANALYSIS OF INDIVIDUAL TASKS OF THE MIXED PRECISION

ITERATIVE REFINEMENT SOLVER ON CFD1. TOP: TIME (IN SEC.);
BOTTOM: ENERGY MEASURED WITH THE INTERNAL POWERMETER

(IN WH).

high frequency. Here, technologies like dynamic voltage and

frequency scaling (DVFS) may become very handy, as they

enable to lower the processor frequency while not being

used.

Our last experiments evaluates the trade-offs between

execution time, accuracy and power consumption. There

we again set the inner stopping criterion εinner = 0.1 for

the mixed precision solvers. We then analyze the execution

time and energy necessary to reach a certain accuracy of the

solution. Figure 5 shows an homogeneous increase of both

factors, linear with the magnitude of the relative residual

of the computed solution. The figure illustrates the large

gaps in execution and power demand of the mixed precision

solvers compared with those of the plain GMRES solver.

Furthermore, we observe that except for the plain GMRES

implementation, the usage of multiple cores does not offer

significant benefits to the solving process. In contrast, good

acceleration is provided by the GPU attached to the system

used for the low precision arithmetic computations of the

mixed precision iterative refinement method.

V. CONCLUSIONS AND FUTURE WORK

The experiments show the high potential of using a mixed

precision iterative refinement method for the test case we

considered. At the same time, the efficient use of hy-

brid hardware systems triggers considerable energy savings.

These can even be enlarged by using dynamic voltage and

frequency control for the processors, and hardware systems

where coprocessors like GPUs only run on demand. Future

work will include these topics as well as more advanced

ones like, e.g., the design of an intelligent runtime that aids

in choosing hardware resources and solver type at execution
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time. From the numerical point of view, future work will

also consider the impact of preconditioning and reordering

techniques on the performance of the sparse linear system

solvers.
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