SKIT

Karlsruhe Institute of Technology

Software Transactional Memory,
OpenMP and Pthread implementations
of the Conjugate Gradients Method

- a Preliminary Evaluation

S. Janko, B. Rocker, M. Schindewolf,
V. Heuveline, W. Karl

No. 2012-01

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

LA
=77 IIII['l

= L7

i i
20,0200

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

ISSN 2191-0693
No. 2012-01

L Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Impressum

Karlsruhe Institute of Technology (KIT)
Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86
76133 Karlsruhe
Germany

KIT — University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de .

©10Ie)

Software Transactional Memory, OpenMP and Pthread
implementations of the Conjugate Gradients Method
- a Preliminary Evaluation

Sven Janko!, Bjorn Rocker??, Martin Schindewolf!, Vincent Heuveline?, Wolfgang Karl!

! Karlsruhe Institute of Technology (KIT)
Chair for Computer Architecture and Parallel Processing
Haid-und-Neu-Strafe 7
76131 Karlsruhe, Germany
{sven.janko, karl, schindewolf}@kit.edu

? Karlsruhe Institute of Technology (KIT)
Engineering Mathematics and Computing Lab (EMCL)
Fritz-Erler-Str. 23
76133 Karlsruhe, Germany

{vincent.heuveline, bjoern.rocker}@kit.edu

3 Robert Bosch GmbH
Corporate Sector Research and Advance Engineering
Robert-Bosch-Platz 1
70839 Gerlingen-Schillerhche, Germany
{bjoern.rocker}@de.bosch.com

Abstract. This paper shows the runtime and cache-efficiency of parallel implementations of the
Conjugate Gradients Method based on the three paradigms Software Transactional Memory (STM),
OpenMP and Pthreads. While the two last named concepts are used to manage parallelization as
well as synchronization, STM was designed to handle only the latter. In our work we disclose that an
improved cache efficiency does not necessarily lead to a better execution time because the execution
time is dominated by the thread wait time at the barriers.

1 Introduction and Motivation

Parallelization is state of the art in scientific computing for a long time, but also comes with
the need to synchronize parallel threads of execution. Efficient synchronization is the key to-
wards maximum performance on (shared memory) multicore architectures. Traditional syn-
chronization primitives in OpenMP (e.g., omp critical) and Pthreads (e.g., locks) achieve
synchronization through enforcing mutual exclusion. Threads may experience long delays
when waiting for a lock to become available. In the last decade Transactional Memory
(TM) has been proposed for synchronization. Instead of following the traditional pessimistic
scheme of avoiding memory conflicts, TM favors an optimistic scheme that detects and re-
solves conflicting accesses. The goal of this strategy is to increase the scalability in regard
to a high number of threads and coevally to decrease the time needed for synchronization.
In this paper, we evaluate the applicability of TM for the method of Conjugate Gradients
(CG), a solver for linear systems of equations that is frequently used in many fields of ap-
plication, especially in the area of structural mechanics and computational fluid dynamics.
This paper is structured as follows. To begin with, Section 2 gives a short review of the
above-mentioned programming paradigms. Also, the method of CG is described. In Section
3 we will discuss our implementations which leads us to Section 4 where we present our
results. Section 5 concludes our work and presents ideas for future work.

2 Background
2.1 OpenMP

One of the most common shared memory programming models is OpenMP (Open Multi-
Processing) [6]. More precisely, OpenMP is a shared memory application programming in-
terface (API) that can be used with the programming languages Fortran, C and C++. With
OpenMP it is possible to describe how computations are shared on different threads running
on one or different processors or cores. To do so compiler directives (often called only direc-
tives) are used to specify how the instructions have to be computed in parallel. Of course,
the compiler has to support OpenMP which is nowadays the case for most compilers (e.g.
compilers from GNU, IBM, Intel, PGI, Pathscale etc.).

In many cases it is possible to parallelize sequential code with OpenMP, especially when
the code contains loops and the data dependency between several loop iterations is low.
Sometimes this is not enough to get a sufficient level of performance and a reorganization
of the code is needed to create parallelism.

2.2 Pthreads

Pthreads stands for POSIX Threads, an API for managing threads in user space [7]|. This
multithreading model can be used with the programming languages C and C++ and imple-
mentations of the library exist for most Unix-like operating systems as well as for Windows.

Compared to OpenMP more effort is required to achieve and manage parallelization.
One has to exploit every loop by defining the borders for each threads calculation and one
has to write constructs for reduction and similar patterns by oneself, which can be easily
accomplished with one line of code when using OpenMP. In exchange the developer has
full control over the granularity of the parallelization as well as a higher flexibility in using
complex data structures.

2.3 Transactional Memory

Writing efficient, highly scalable and correct parallel software is a challenging task for pro-
grammers. They are in charge of the synchronization and communication of the involved
threads in order to avoid memory conflicts and deadlocks. Furthermore, one should have
consolidated knowledge of the mechanisms of the underlying runtime/operating system.

The idea behind TM is to simplify the process of writing parallel code by providing
basic constructs for synchronization. These constructs are called transactions and guaran-
tee to execute the comprising load and store commands with three properties: atomicity,
consistency and isolation [10]. In contrast to traditional synchronization approaches that
enforce mutual exclusion, transactions are executed optimistically in parallel and conflicts
are detected and resolved by a TM run time system. In case of a Software Transactional
Memory system a user-level library fulfills this task. This STM is combined with an API for
thread management such as the before-mentioned OpenMP and Pthreads APIs.

2.4 Conjugate Gradients

The Method of Conjugate Gradients (CG) is a common solver in many fields of ap-
plication, especially in the area of structural mechanics and computational fluid dynamics.
There, finite element and volume methods (FEM/FDM) are frequently employed. Within
most linearization methods linear systems have to be solved, consuming often most of the
time within the solution process. If those systems are symmetric and positive definite, CG
can be applied. Usually, CG is used in combination with an appropriate preconditioning de-
pending on the problem that is solved. Within this paper, a pure version of CG is evaluated.

CG is an improvement of the methods of Steepest Algorithm 1 Conjugate Gradients
Descent and Conjugate Directions where the disad- .77 =5 = Az, po = r0, A spd
vantage in building the search directions disappears. 2: fori=0,1,2,... do

T
T T

By conjugation of the residuals the search directions 3: ai = 75~
are constructed and it is no longer needed to store the Tit1 = Ti + Qipi
old search vectors (see [5] for a detailed explanation). T = oidp
In the following, n denotes the dimension of the
matrix A that is introduced in Algorithm 1. There
are one matrix-vector product, three vector updates
and two dot-products per iteration cycle. In general the matrix-vector product for com-
puting Ap; needs n? floating-point multiplications and n* — n summations, leading to a
asymptotic complexity of O(n?). The complexity for the vector updates is O(n), because n
multiplications and n summations for each update are needed. The inner product has also
a complexity of O(n). Hence the total complexity per iteration step is dominated by the
matrix-vector product. If sparse matrices are used and only nonzero entries are saved the
complexity decreases. Supposing a matrix having nnz nonzero entries and nnz << n?. Now,
nnz floating-point multiplications are needed and at most nnz — 1 summations. The total
complexity is O(nnz) compared to O(n?) in the dense case.

T;I‘Tj
Pit1 = Tit1 + Bipi

4

5:

ﬁ TT+1T1:+1
6: i = T
7

8: end for

3 Implementations

In the first step we implemented the CG-algorithm as described in Section 2.4 using the
C programming language and OpenMP. Afterwards this code was transformed to a similar
Pthreads variation and afterwards this version was modified using TM commands. With
this approach we were able to get results that were comparable to each other. The main
calculation takes part in five for-loops, corresponding to lines 3 to 7 in Algorithm 1, each
iterating n times where n still is the dimension of the underlying matrix of the algorithm.

3.1 OpenMP

In our OpenMP program the parallelization is achieved by inserting #pragma omp for-
statements on top of each for-loop. Because of the implicit barriers we did not have to care
about data dependencies between the several for-loops.

Listing 1.1 shows the five for-loops where most of the execution time is spent. In line 4 and
10 we make use of an OpenMP feature that is called reduction. Every thread, that is part
of the calculation, gets its own private copy of the variable scp temp. Fach thread then
uses this copy for calculations inside of the loop. Afterwards an addition takes place and the
variable scp temp can be used as the sum of all thread-private variables. As this reduction
is generated by the OpenMP compiler and hence is hidden from the programmer, this is
exactly where we had to insert commands to achieve mutual exclusion when writing the
Pthreads versions (with and without TM, respectively).

Listing 1.1: OpenMP parallelization

#pragma omp for private (...) schedule(static)
for (i=0; i<n; i++){ ... }

#pragma omp for reduction (+:scp temp) schedule(static)
for (i=0; i<n; i++) scp_temp 4= p[i]*v][i];

#pragma omp for schedule(static)
for (i=0; i<n; i++){ ... }

© 00~ O U W

10
11
12
13
14

#pragma omp for reduction (+:scp temp) schedule(static)
for (i=0; i<n; i++) scp temp += r[i]*xr[i];

#pragma omp for schedule(static)
for (i=0; i<n; i++){ ... }

3.2 Pthreads

The basic idea of the OpenMP-to-Pthreads transformation was to pass the main calculation
to each created thread modifying the start and end index of each for-loop. With this practice
we tried to keep very close to the internal implementation of our OpenMP model. Of course,
we also had to reproduce the implicit barriers (OpenMP). We achieved this by calling the
simple function shown in Listing 1.2.

Listing 1.2: Pthreads barrier implementation

typedef struct barrier {
pthread cond t complete;
pthread mutex t mutex;
int count;
int crossing;

} barrier t;

void barrier cross(barrier t xb)
{
pthread mutex lock(&b—>mutex);
b—>crossing++; // one more thread through
if (b—>crossing < b—>count) { // if not all here, wait
pthread cond wait(&b—>complete, &b—>mutex);
} else {
// last thread arrived
pthread cond broadcast(&b—>complete);
/* Reset for mnext time */
b—>crossing = 0;
}

pthread mutex unlock(&b—>mutex);

3.3 Transactional Memory

The third model of the CG-algorithm was written using our Pthreads program as basis. Only
few lines in the TM-implementation differ from this code. We used the same thread creation
concept and also the same barriers. We customized our code mainly on two places where
there had to be mutual exclusion by inserting TM instructions to generate a transaction.
A code example can be seen in Listing 1.3. It shows the reduction that was previously
mentioned in Section 3.1.

Listing 1.3: TM reduction

~N O Uk W N

for (i = thread—>start; i < thread—end; i++) {
scp _temp private += p[i]xv][i];
}

START (thread —>id , RW);
scp_temp private += (double)LOAD DOUBLE(&scp temp);
STORE DOUBLE(&scp temp, scp temp private);

COMMIT;

4 Numerical Experiments

4.1 Hardware and Software Environment

All experiments were run
on two computers, the

Computer 1 (C1)

Computer 2 (C2)

CPU name

main parameters are shown #Sockets
CPU frequency

in Table 1, for com-
plete topology see Fig-
ures 1 and 2. As com-
piler, gcc-4.4 was invoked
with -0O8% -¢3 as op-
tions.

As Software Trans-
actional Memory library
we chose TinySTM |[8,9).
TinySTM is a lightweight

RAM

Size of L1

Size of L2

OS

Kernel version
Architecture

Hyper-threading

NUMA

Intel Xeon X5670*
two

2.93 GHz

12 GB

32 KB

256 KB
GNU/Linux (Ubuntu)
2.6.32-29-server
x86 64

yes

yes

AMD Opteron 23782
two

2.36 GHz

16 GB

64 KB

512 KB

GNU/Linux (Ubuntu)
2.6.38-12-server

x86 64

no

yes

Table 1: Experimental Setup

and efficient word-based STM implementation. Its time-based algorithm is derived from
LSA and its lock-based design borrows several key elements from other word-based STMs,

such as TL2.

Fig. 1: Topology of the system for Computer 1

Machine (12GE]

| NUMANode #0 (5084MEB)

Fig. 2: Topology of the system for Computer 2

Machine (16GB)

| NUMANode #0 (8191MB)

Sacket #0
Socket #0
| L3 #0 (12MB) |
| L3 #0 (6144KE) |
L2 #0 (256KE)		L2 #1 [256KE)		L2 #2 (256KE)		L2 #3 [256KE)		L2 #4 (256KEB)		L2 #5 [256KE)
L2 #0(512KB)		L2 #1(512KE)		L2 #2 (512KB)		L2 #3 (512KB)				
L1 #0 (32KB)		L1 #1 (32KB)		L1 #2 (32¢B)		L1 #3 (32KB)		L1 #4 (32kB)		L1 #5 (32KB)
L1 #0 (64KBE)		L1 #1 (64KB)		L1 #2 (G4KB)		L1 #3 (64KB)				
Core #0 Core #1 Core #2 Core #3 Core #4 Core #5										
PU %0 PU #2 U #4 PU #6 U #8 FU #10 Eriid ek EreE =										
PU #1 PU #3 PU #5 PU #7 PU #3 PU #11	PU 0		PU#L		PU#2		PU#3			
NUMANode #1 (6144MB)	NUMANode #1 (B192MB)									
Sockst #1 Socket #1										
L3 #1 (12MB)										
L3 #1 (6144KE)										
L2 #6 (256KE]		L2 #7 [256KE)		L2 #8 (256KEB)		L2 #9 [256KE)		L2#10[256KE]		Lzﬂltzssxe)l
L2 #4 (512KB)		L2 #5 (512KE)		L2 #6 (512KB)		L2 #7 (512K8)				
L1 #6(32KB)		L1 #7 [32KB)		L1 #8 (32€B)		L1 #3 (32KB)		L1 #10(32KB)		L1 #11 (32€8)
L1 #4 (64KB)		L1 #5 (64KB)		L1 #6 (64KB)		L1 #7 (64KB)				
Core #6 Core #7 Core #8 Core #3 Core #10 Core #11
Core #4 Core #5 Core #6 Core #7
PU #12 PU #14 PU #16 PU #18 PU #20 PU #22
PU #13 PU #15 PU #17 PU #19 PU #21 PU #23 | PU #4 | | PU#5 | | PU#6 | | PU#T |

4.2 Numerical Results

Each of our tests were run several (>15) times taking into account the exclusive computing
time for the process. Afterwards we calculated the arithmetic mean of the results omitting
the fastest and the slowest run. Thus, every value in the subsequent figures is an arithmetic
average of at least 14 executions.

! Registered Trademark by Intel Corporation

2 Registered Trademark by AMD

We evaluated the performance assuming a sparse matrix described by means of a CSR
format. The linear system is obtained from a finite element discretization of the station-
ary heat equation without heat source (homogeneous case)which represents a prototype of
Laplace’s equation. It was considered on a unit square using linear test-functions, which is
equivalent to a finite differences discretization based on the 5-point-stencil. The matrix has
the following characteristics: 4.000.000 degrees of freedom (dofs) and 19.992.000 nonzero
entries (nnz). The residual stopping criteria for the residual is set to 10719,

Performance As expected, with all three paradigms we could achieve significant speedups
over the respective single thread execution time by increasing the number of threads from one
to two, three, four and more. On Computer 1 we achieved a speedup of Sg = 2.72 (OpenMP),
Sg = 3.42 (Pthreads) and Sg = 3.79 (STM) by increasing the number of threads from one
to eight. The dimension of the underlying matrix was set to 5M in this case. See Figure
3. Although there are clear differences in the above-named speedups, the execution time
does not differ much between the three paradigms for more than eight threads on Computer
1. Except for the calculation with 24 threads and OpenMP: here it takes slightly longer
than the single threaded concept. Another finding of our research is that the Pthread-

Time (s)
4

T T T T T T Computer: C1
Dimension: 5M
- Iterations: 25

3.5—‘
2.5+

2_
1.5

o e e * *

o ™ B OpenMP —+—
Pthreads —x
STM —»—

1k

0.5 i i i i i i i i i i
0 4 8 12 16 20 24 28 32 36 40 44

Number of threads

Fig. 3: Runtime analysis of the CG method (OpenMP, Pthreads, STM)

program (and also the TM-program) is in the majority of cases slightly slower than the
OpenMP-variation. We see mainly two causes therefor: a) more cache misses (see Section
Cache-Efficiency Analysis) and b) more time is spent at the barriers. This second argument
we will discuss in more detail now. We measured the time that the threads had to wait at
each barrier in the Pthreads-program on Computer 2. For two threads it took 7-15% of the
overall execution time to wait at the barriers. Four threads waited about 25%, six threads
about 43% and eight threads even about 70% of the execution time. What we discovered with
this analysis is, that the time at the barriers increases rapidly if there are pairs of threads
that have the same Hardware-Thread-ID. That means these threads cannot be executed in
parallel because they are mapped to the same hardware entity and hence have to run one
after the other. Those pairs appear even if the number of threads is less than the number
of possible hardware threads in the system, which is an important insight. Apparently this
is nothing the software developer is able to control.

PARSEC Barrier Tests Another test concerning the barriers was the comparison of two
slightly varying Pthreads programs. On the one hand, we used the constructs for the barriers
as described in Listing 1.2, on the other hand, the PARSEC barriers were tested [2]. When
using the PARSEC barriers, one can choose between two modes: 1) spinning ON and 2)
spinning OFF. The results (executed on Computer 2) are shown in Figure 4.

Time (s)

0.5 T T T T Computer: C2
Dimension: 500k
Iterations: 20

0.45 |
0.4 |-
035 |
03}

0.25 -

Own barriers —+—
PARSEC (spinning ON) ——
PARSEC (spinning OFF) —»—

0.2 |-

0.15 i i i i

Number of threads

Fig.4: PARSEC barrier comparison

In general, using the PARSEC barriers did not bring strong advantages over the simple
implementation which we used earlier. On the contrary, it was even slower for most config-
urations. Only for four to eight threads, if the spinning option was set to ON, it resulted
in a faster runtime. As shown in Figure 4, the execution time increases for more than eight
threads. That is exactly as we expected. In this example, spinning does not make any sense
for a higher number of threads.

Cache-Efficiency Analysis In order to understand the differences in runtime we also
studied the cache behavior in detail. Our main focus was on the data cache, because the
instruction cache analysis did not reveal noticeable results. The following designations apply
to Computer 2.

Time (s) Cache Misses
6.5 2.5e+08 Computer: C2
Dimension: 5M
6. [ty lterationen: 25
2e+08
55 %
s 1.5e+08
al le+08
OpenMP —+—
[T, PECHERSR. . Pthreads —=—
5e+07 Pthreads with STM —%—
1| I— L1 DCM (OpenMP) o
L1 DCM (Pthreads) =
25 0 L1 DCM (Pthreads with STM) o

Number of threads

Fig. 5: Level 1 data cache misses

As one can see in Figure 5, the data cache misses of the first level cache (L1 DCM) do
not change with an increasing number of threads?, whereas the L2 DCMs increase at the
same time (see Figure 6). This holds as long as the number of threads is less or equal the
number of possible hardware threads (here 8) in the system. Beyond this point the L2 DCMs
are not increasing anymore. From Figure 6 we educe that there is no direct correlation of
the L2 DCMs and the execution time of the program. Rising .2 DCMs do not necessarily
bring a slower execution time and on the contrary, falling .2 DCMs do not always result in
a faster execution time. This holds for all three programs.

4 The DCMs of OpenMP are hidden behind the DCMs of Pthreads.

Time (s) Cache Misses

6:5 1.02e+07 Computer: C2
i Dimension: 5M
L le+07 Iterationen: 25
9.8e+06
5 Prensaes -9
: : 9.6e+06
9.4e+06
4 SRS
OpenMP —+—
[T, e SR 9:2806 Pthreads —<—
Pthreads with STM —%—
|0 — = 9e+06 L2 DCM (OpenMP) o
; : A L2 DCM (Pthreads) =
25 i i i 8.864+06 L2 DCM (Pthreads with STM) o
0 4 8 12 16

Number of threads

Fig. 6: Level 2 data cache misses

If we now compare Figure 6 and 4, it becomes apparent that the waiting time at the
barriers dominates the execution time of the programs. As one can see in Listing 1.2, the
main function of the barrier construct is to pause a thread at a specific point of execution
until all other threads reach. That means, that the last thread significantly increases the
execution time. Thus, increasing the number of threads only makes sense, if the time that
is spent at the barriers is improved, too.

5 Conclusion and Future Work

In our work we compared three similar implementations of the Conjugate Gradients Method.
One that uses OpenMP, one that uses Pthreads without TM and one that uses Pthreads
with TM constructs. The results showed that it is very important to reduce the waiting time
at the barriers in order to improve execution time of the programs.

In most cases, OpenMP is the fastest approach on both machines. This is the case
because STM suffers from significantly more L1 cache misses compared to a pure OpenMP
or Pthread implementation. In terms of performance, OpenMP is the first choice if the CG
algorithm is used as done in this paper.

As future work, the above-mentioned programs should be compared to other formulations
of the Conjugate Gradients Method, such as the pipelined CG-algorithm described in [1] in
order to benefit from TM advantages.

References

1. Strzodka, R., Goddeke, D.: Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers
from Low Precision Components. IEEE Proceedings on Field-Programmable Custom Computing Machines, 2006.

2. Bienia, C.: Benchmarking Modern Multiprocessors. Princeton University, January 2011,

3. Bolz, J., Farmer, 1., Grinspun, E., Schréder,P.: Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Transactions on Graphics, vol. 22, 2003, pp. 917-924.

4. Goodnight, N., Lewin, G., Luebke, D., Skadron, K.: A multigrid solver for boundary-value problems using pro-
grammable graphics hardware. Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2003, pp. 102-111.

5. Saad, Y.: Iterative Methods for Sparse Linear Systems. 2003.

6. OpenMP Architecture Review Board: OpenMP Application Program Interface. Version 3.1, July 2011, http:
//www.openmp . org/mp-documents/OpenMP3. 1. pdf

7. Butenhof, D.: Programming with POSIX threads. 1997, Addison-Wesley Longman Publishing Co., Inc.

8. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-Based Software Transactional Memory. 2010.

9. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software transactional memory.
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, 2008.

10. Larus, J., Rajwar, R.: Transactional Memory. Synthesis Lectures on Computer Architecture, Morgan & Claypool
Publishers 2007,

recent issues

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

2011-17

2011-16

2011-15

2011-14

2011-13

2011-12

2011-11

2011-10

2011-09

2011-08

2011-07

2011-06

2011-05

2011-04

2011-03

Preprint Series of the Engineering Mathematics and Computing Lab

Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Piotr Luszczek: GPU-Accelerated
Asynchronous Error Correction for Mixed Precision Iterative Refinement

Vincent Heuveline, Sebastian Ritterbusch, Staffan Ronnds: Augmented Reality for
Urban Simulation Visualization

Hartwig Anzt, Jack Dongarra, Mark Gates, Stanimire Tomov: Block-asynchronous
multigrid smoothers for GPU-accelerated systems

Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Stanimire Tomov: A
Block-Asynchronous Relaxation Method for Graphics Processing Units

Vincent Heuveline, Wolfgang Karl, Fabian Nowak, Mareike Schmidtobreick,
Florian Wilhelm: Employing a High-Level Language for Porting Numerical Applications
to Reconfigurable Hardware

Vincent Heuveline, Gudrun Thater: Proceedings of the 4th EMCL-Workshop Numerical
Simulation, Optimization and High Performance Computing

Thomas Gengenbach, Vincent Heuveline, Mathias J. Krause: Numerical Simulation of
the Human Lung: A Two—scale Approach

Vincent Heuveline, Dimitar Lukarski, Fabian Oboril, Mehdi B. Tahoori,
Jan-Philipp Weiss: Numerical Defect Correction as an Algorithm-Based Fault
Tolerance Technique for Iterative Solvers

Vincent Heuveline, Dimitar Lukarski, Nico Trost, Jan-Philipp Weiss: Parallel
Smoothers for Matrix-based Multigrid Methods on Unstructured Meshes Using
Multicore CPUs and GPUs

Vincent Heuveline, Dimitar Lukarski, Jan-Philipp Weiss: Enhanced Parallel
ILU(p)-based Preconditioners for Multi-core CPUs and GPUs — The Power(q)-pattern
Method

Thomas Gengenbach, Vincent Heuveline, Rolf Mayer, Mathias J. Krause, Simon Zimny:
A Preprocessing Approach for Innovative Patient-specific Intranasal Flow Simulations

Hartwig Anzt, Maribel Castillo, Juan C. Ferndndez, Vincent Heuveline,
Francisco D. lgual, Rafael Mayo, Enrique S. Quintana-Orti: Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Graphics Processors

Hartwig Anzt, Maribel Castillo, José I. Aliaga, Juan C. Fernandez, Vincent Heuveline,
Rafael Mayo, Enrique S. Quintana-Orti: Analysis and Optimization of Power
Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and
Many-core Platforms

Vincent Heuveline, Michael Schick: A local time—dependent Generalized Polynomial
Chaos method for Stochastic Dynamical Systems

Vincent Heuveline, Michael Schick: Towards a hybrid numerical method using
Generalized Polynomial Chaos for Stochastic Differential Equations

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a
preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

