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Abstract

This paper is concerned with the optimization of an electrokinetic micromixer suitable for Lab-

on-Chip and other microfluidic applications. The mixing concept is based on the combination of an

alternating electrical excitation applied to a pressure-driven base flow in a meandering microchan-

nel geometry. The electrical excitation induces a secondary electrokinetic velocity component which

results in a complex flow field within the meander bends. A mathematical model describing the

physicochemical phenomena present within the micromixer is implemented in an in-house Finite-

Element-Method code. We first perform simulations comparable to experiments concerned with

the investigation of the flow field in the bends. The comparison of simulation and experiment

reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a

numerical optimization of the micromixer performance. In detail, we optimize the secondary elec-

trokinetic flow by finding the best electrical excitation parameters, i.e. frequency and amplitude,

for a given waveform. The simulation results of two optimized electrical excitations featuring a

discrete and a continuous waveform are compared and discussed. The results demonstrate that the

micromixer is able to achieve high mixing degrees very rapidly.

∗ dominik.barz@chee.queensu.ca
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I. INTRODUCTION

The field of microfluidics comprises the control and manipulation of flows with typical

length scales in the range of micrometers and typical volumes in the range of nanoliters.

Excellent reviews of such flows are available in references [1–3]. Several versatile techno-

logical concepts are based on microfluidics such as Lab-on-Chip (LOC) and micro reaction

technology. The Lab-on-Chip concept is unique among microfluidic systems in that it aims

for the integration of all unit operations that are required in a (bio-)chemical laboratory on

one microfluidic chip of only few square centimeters in size. These steps typically include

chemical synthesis or labeling of proteins which require local mixing of reagents. Conse-

quently, the investigation of mixing strategies in microfluidic devices is of particularly great

interest. Mixing eventually occurs by diffusion on a molecular level and can therefore only

be improved by two approaches: (i) via an enlargement of the (virtual) contact interfaces

between the liquids/species to be mixed; and/or (ii) via decreasing of the molecular dif-

fusion path. These features are usually achieved in macroscopic geometries by employing

fluid-mechanical instabilities or turbulent flows. Contrary to flows in conventional channels,

flows in microscopic channels are typically characterized by small Reynolds numbers in the

range of Re ∼ 0.01−10. At these low Reynolds numbers, inertial forces are weak and cannot

be engaged to enhance mixing by flow instabilities or turbulence; other means are needed to

facilitate mixing. A variety of microfluidic mixing concepts has been proposed in literature.

These concepts can principally be separated into two categories: (i) passive methods which

are based on suitable micro structures; (ii) active methods which are associated with the

introduction of energy into the system.

Many passive mixers take advantage of centrifugal or chaotic (secondary) flows, suitable

to increase the contact interface of the liquids. Typical designs are T-mixers with different

inlet channel diameters [4] or with J-shaped baffles in the common channel [5], plane hair-pin

channels [6] and modified Tesla structures [7]. Other designs include perforated meandering

channels [8], bas-relief structures on the channel floors (the so-called herringbone mixer)

[9], and three-dimensional serpentine channels [10]. Another passive mixer approach is the

multi-lamination concept, i.e. the split-up of liquid streams into thinner lamellas and their

subsequent recombination (cf. e.g. [11, 12]). This concept is intended for both large contact

areas and short diffusion paths without introducing a secondary flow. Passive methods are
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generally linked to manufacturing of rather complex three-dimensional channel geometries

and they often require relatively-high Reynolds numbers.

Alternatively, active methods often allow for straightforward channel geometries, how-

ever, external forces have to be induced to create a secondary flow component. To date,

several concepts have been realized based on different physicochemical phenomena. Ahmed

et al. [13] demonstrate fast mixing inside a microfluidic channel due to the acoustic excita-

tion of an air bubble trapped in a cavity. Khatavkar et al. propose a mixing concept based

on an array of individually addressable artificial cilia covering the channel wall stirring the

surrounding fluid [14]. Another concept by Yi et al. use magnetic forces to stir the liquids by

applying a uniform magnetic field in conjunction with steady or time-dependent electrical

currents [15]. Mixing as a result of simple low frequency vibration of the microfluidic device

is reported by Oberti et al. [16]. The vibrations induce vortices in proximity to sharp

corners of the channel junctions.

Various Lab-on-Chip concepts rely on electrokinetic phenomena to realize unit operations,

such as liquid pumping [17, 18], analyzing of ions [19], or the manipulation of particles or

cells [20, 21]. Electrokinetic phenomena are related to the presence of an electrical double

layer (EDL); comprehensive review is given by [22]. Electroosmosis, also called electroki-

netic flow, is the motion of a liquid under the influence of an applied electric difference

(gradient) relative to a charged solid surface. This electrokinetic phenomenon is a favorable

tool to induce flows in microstructures without applying a pressure gradient or the usage of

micro-mechanical parts. The utilization of electrokinetic phenomena to improve mixing in

micro-flows is described by several authors and, in principle, two different approaches are

identified in literature. One approach takes an advantage of an electrokinetic instability in

which an oscillating electric potential difference is applied to a layered flow of two liquids

with different ionic conductivities [23, 24]. This results in a Coulomb force at the liquid-

liquid interface which stretches and folds it and mixing of the electrolytes occurs rapidly.

A similar effect is observed under the influence of a steady electric potential difference [25].

The other approach is based on electrokinetic flows of liquids of homogeneous conductivity,

whereas the secondary flow regime has to be either created by alternating surface charges

(zeta potentials) as shown in [26, 27] or employing appropriate channel geometries [28].

The latter mixer concept relies on the interaction of electrokinetic flow and a meandering
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channel segment. A pressure-driven flow drives the layered liquids to be mixed through the

meander channel. An oscillating secondary electrokinetic flow, induced by an alternating

applied electric potential difference, increases the mixing performance considerably given

a reasonable ratio of main flow to secondary flow amplitudes. This approach is attractive

in its simplicity since it neither relies on specific ionic liquid properties, nor complicated

patterning of a microchannel’s surface charges. Additionally, the mixing concept does not

require complex microfluidic structures and allows for a straightforward control by manip-

ulating the electrical excitation parameter.

Even though a considerable number of micromixer concepts has been published in literature,

the question of how to operate these mixers in order to obtain optimal mixing results is usu-

ally not answered. Very few research deals with this issue including the work of Ansari [29]

and Cortes-Quiroz [30] who report on optimized geometries of herringbone mixers. Gen-

erally, the control parameters to achieve high mixing performance are rather intuitionally

derived. Hence, in the present article we focus on the investigation and optimization of the

electrokinetic micromixer introduced in [28]. At first, a short overview of the mixer concept

and design is given. We proceed to the next section by introducing our 3D mathemati-

cal model of the physicochemical processes within the micromixer based on the method of

matched asymptotic expansions. This model is implemented in a numerical code which is

used to perform simulations of the flow, concentration and electric potential field. The model

and the numerical schemes are verified by comparison with the analogous flow experiments.

An extensive discussion of the simulated flow and concentration fields follows. Eventually,

the validated simulation code is employed for a numerical optimization of the micromixer

in order to achieve high mixing degrees in short operation times. In detail, we optimize the

electrokinetic flow by finding the best frequency and amplitude for two forms of electrical

excitations, a continuous (sine) and a discrete (square) waveform, and compare the resulting

mixing performances. Finally, this article is summarized with some concluding remarks.

II. ELECTROKINETIC MICROMIXER

The micromixer geometry under investigation comprises two inlet channels, forming a

Y-junction, and a subsequent single meander geometry located downstream in the common

outlet channel. The merging channels of the Y-junction feature an angle of 40◦. The
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liquids to be mixed flow through the inlet channels and merge at the Y junction. This base

flow is pressure-driven and can be created by employing displacement (syringe) pumps, for

instance. Without an applied electric potential difference, an even, layered flow is observed

in the common channel. Here, mixing of the liquids occurs only by diffusion across the

(virtual) contact interface of the layered flows. The mixing performance can be considerably

improved by applying an alternating potential difference along the microchannel axis which

induces an oscillating electrokinetic flow. The electrokinetic flow creates a secondary velocity

component which is, within the bends of the meander channel geometry, perpendicularly-

directed to the pressure-driven main flow. This secondary velocity component stretches and

folds the contact interface of the liquids resulting in higher mixing degrees at the micromixer

outlet.

The micromixer concept has been realized for the sake of experimental characterization

as described in our previous works [31, 32]. The channel geometry is microfabricated by

a lithography process in a microfluidic chip made out of FOTURAN glass and is built of

three layers. The base layer is made of FOTURAN of 1000 µm thickness, with a number

of etched holes for inflow and outflow and for accurate relative positioning of the three

layers. The mixer layer is made of FOTURAN of 110 µm thickness in which channels

of wideness d0 =110 µm are etched. Consequently, all these flow channels have, to good

accuracy, square cross-sections of 110µm×110µm. Figure 1 gives a schematic drawing of the

experimental micromixer setup and mode of operation. The inlet channels and the outlet

outlet
reservoir

inlet
reservoirs

micromixer geometry
on microfluidic chip

electrodes

j(t)

Dj(t)

D

electrical
potential difference

FIG. 1. Sketch of the electrokinetic micromixer principle.

5



channel are connected with two inlet reservoirs and an outlet reservoir, respectively, enabling

a gravity-driven non-pulsating base flow of small Reynolds numbers. A DC power supply in

conjunction with a function generator allows to apply time-dependent potential differences

∆ϕ(t) of desired waveform, amplitude and frequency between the electrodes immersed in

the reservoirs. The inlet electrodes are electrically connected so that the potentials in both

inlet reservoirs are identical.

III. SIMULATION METHODOLOGY

A. Mathematical formulation of electrical potential, flow and concentration field

In this section, a brief introduction of a mathematical model capable of describing the

physicochemical phenomena within the micromixer is given. The model is based on the

method of matched asymptotic expansions (cf. [33]); a detailed derivation of the model

is published elsewhere [32]. The model comprises the governing equation of the electrical

potential ϕ, flow field (v, u, w)T , pressure p, and the species concentration ci. The equations

are related to a local wall-normal and wall-tangential coordinate system (x, y, z)T with the

origin at the channel wall. In detail, the model consists of the Poisson-Boltzmann equation,

the Navier-Stokes equation extended by a Coulomb force term, and a convection-diffusion

species transport equation. All equations are non-dimensionalized with a length scale, a

convective velocity scale, a viscous pressure scale, a convective time scale, a potential scale,

and a concentration scale; we use:

~X =
~x

d0
, ~V =

~v

u0

, P =
pd0
µu0

, T =
t

t0
, Φ =

ϕ

∆ϕ0

, Ci =
ci
c0
. (1)

Within the scaling (1), d0 denotes the channel width, u0 is the average axial velocity

in the common channel, t0 = d0/u0 is a convective time scale, µ is the dynamic viscosity,

∆ϕ0 is a typical potential difference (e.g. between inlet and outlet electrodes), and c0 is the

initial species concentration. The non-dimensionalization of the governing equations shows

two domains which can be distinguished by whether to or not a Coulomb force acts on the

liquid. That is, the electrically-neutral bulk liquid and the electrically-charged electrical

double layer (EDL). We find approximate analytical solutions for electrical potential, flow,

pressure and concentration fields within the EDL. These solutions are employed, using the
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method of matched asymptotic expansions, to infer (transition) boundary conditions for the

electrically-neutral bulk liquid which has to be solved numerically. Consequently, a very fine

mesh resolution of the EDL, resulting in expensive numerical costs, is omitted.

In detail, in terms of the electrical potential, non-dimensionalization and asymptotic

matching lead to a Laplace equation in conjunction with a Neumann boundary condition at

the transition between bulk liquid and EDL. That is,

∆Φ ≃ 0, (2)

∂Φ(X, Y, 0)

∂Z
≃ 0. (3)

Here, we treat the electrical potential as quasi-instantaneous since the time for its estab-

lishment is much smaller than the convective time scale of the flow. However, we account

for the time-dependency of the electrical potential by introducing a non-dimensionalized

excitation frequency corresponding to a Strouhal number

St =
fd0
u0

= ft0 (4)

where f is the dimensional frequency of the electrical potential.

For the flow in the bulk liquid, we obtain the governing equations according to

∇ · ~V = 0 , (5)

Re

(
∂~V

∂T
+ (~V · ∇)~V

)
= −∇P +∆~V , (6)

with the corresponding boundary conditions:

U(T,X, Y, 0) ≃ −Π
∂Φ

∂X
, (7)

V (T,X, Y, 0) ≃ −Π
∂Φ

∂Y
, (8)

W (T,X, Y, 0) ≃ 0 , (9)

P (T,X, Y, 0) ≃ C(T,X, Y ) . (10)

Two dimensionless groups arise from non-dimensionalization; the Reynolds number Re =

u0d0/ν and Π =
lDqζ∆ϕ0

u0d0µ
which can be interpreted as the ratio of electric to viscous forces.

Here, ν denotes the kinematic viscosity of the liquid, lD is the Debye length, and qζ is the

charge density at the shear layer of the EDL. We see that any wall-tangential electrical

potential difference (gradient) leads to a finite velocity transition condition for the bulk
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solution. The boundary velocity conditions (7,8) correspond to the well-known Helmholtz-

Smoluchowski slip velocity (cf. [34]). However, there is a distinct difference between both

approaches. Smoluchowski essentially neglected the thickness of the EDL and introduced

the effect of the EDL by means of the slip velocity while the velocity decrease to zero at

the channel wall is not captured. In our approach, the slip velocity appears naturally at

the transition between bulk and EDL solution. Hence, the overall solution, which is based

on superposition of bulk and asymptotic EDL solutions, captures the velocity decrease and

fulfills the no-slip condition at the wall.

The concentration field of species i is simulated by means of a standard convection-

diffusion equation. We arrive after non-dimensionalization in the following governing equa-

tion and boundary conditions:

∂Ci

∂T
+∇ · (~V Ci) =

1

ReSci
∆Ci , (11)

∂Ci(X, Y, 0)

∂Z
= 0 . (12)

Here, Sci = ν/Di is the Schmidt number of species i which is a measure for the ratio of

convective to diffusive species transfer rate.

B. Computational Procedure

The mathematical model, discussed in the previous section, is implemented in an in-house

code HiFlow3 (www.hiflow3.org) developed by the Engineering Mathematics and Comput-

ing Lab (EMCL) at Karlsruhe Institute of Technology (KIT). HiFlow3 is a multi-purpose

Finite-Element-Method toolbox capable for solution of a wide range of physical problems

modeled by partial differential equations. Parallel Computing – as the foundation for high

performance simulations on modern computing systems - is introduced on two levels: (i)

Coarse-grained parallelism by means of distributed grids and distributed data structures;

(ii) fine-grained parallelism by means of platform-optimized linear algebra back-ends. Mod-

ern numerical schemes in HiFlow3 are built on top of both levels of parallelism; further

information is available in [35]. In the present work, two different high-performance com-

puters are used for the simulations. The first set of micromixer simulations is performed

on the distributed memory parallel computer HP XC3000 at Steinbuch Centre for Com-

puting, KIT, Germany equipped with 288 computation nodes. Each node contains two
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Quad-core Intel Xeon X5540 (2.53 GHz) CPUs and 24 GB of main memory. For the nu-

merical micromixer optimization, we employ the high-performance computer JUROPA-JSC

at Forschungszentrum Jülich, Germany equipped with 2208 nodes. Each node is equipped

with two Quad-core Intel Xeon X5570 CPUs (2.93 GHz) and 24 GB of main memory.

Despite of these impressive computational resources, we have to limit the computational

domain to the meander as shown in figure 2 in order to obtain reasonable computation

times. This computational domain is ”cut out” of the complete micromixer geometry in a

1

1

5

6.5

6
.5

5

XZ

Y

6.64

inlet

outlet

R=0.41
R=0.29

bottom

top

FIG. 2. Sketch of the computational domain (without rounded corners).

distance of five channel widths upstream of the first bend and six and a half channel widths

downstream of the last bend, respectively. Note that all dimensions in figure 2 are scaled

by the channel width d0 = 110µm. Due to the fabrication process, we find two different

types of corners in the mixer geometry. The radii of the inside and outside corners are

0.41 (4.5µm) and 0.29 (3.2µm), respectively. As the entire microchannel consists of three

glass layers, the junction of top and bottom walls to side walls is idealized by right angles.

At all boundaries of the computational domain, adequate boundary conditions have to be

formulated reflecting the corresponding physics of the complete set-up. According to our

mathematical model, the ”channel walls“ indicate the transition between liquid bulk and

EDL.

The model liquids to be mixed are pure water and water with a dissolved tracer. We

assume that the tracer does not change the properties of the water so that all liquid pa-

rameters are identical. Density and dynamic viscosity of the liquid are ρ = 1000kg/m3 and
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10−3Pas, respectively. The diffusion coefficient of the tracer is D = 4.27 · 10−10m2/s which

consequently arrives in a Schmidt number of Sc = 2340. We have to define reasonable

initial and boundary conditions for the concentration field which is not a trivial task. The

upstream Y-junction where both liquids meet is not part of the computational domain. We

decide to use a rather artificial initial concentration field. At the lower half of the inlet

cross-section, we implement a concentration of C = 1, while at the upper half C = 0 is used.

Accordingly, the entire lower and upper half of the microchannels have an initial (T = 0)

concentration of C = 1 and C = 0, respectively. A vanishing flux condition ∂C/∂Z = 0

is engaged at the micromixer outlet and at all transition layers liquid bulk–EDL. To infer

appropriate boundary conditions for the electrical potential, we estimate that 4.7% of the

potential difference ∆ϕ between inlet and outlet reservoir electrodes drops over the compu-

tational domain. Our experiments have typically been performed using potential differences

of about 1kV so that we choose ∆ϕ0 = 47V as an appropriate scaling parameter for the

electrical potential. In principle, the boundary conditions for the potential at the inlet and

outlet alternate in time between Φin ∼ 1,Φout = 0 and Φin = 0,Φout ∼ 1. For the sake of

simplification, we permanently set the inlet potential in the computations to be zero and

consider only the corresponding outlet potential from now on. At the transition between

the liquid bulk solution and the EDL solution ∂Φ/∂Z = 0 is enforced.

To realize the pressure-driven base flow, we implement a tangential body force within

the first straight channel part in conjunction with fully-developed flow conditions, i.e.

∂U/∂X = V = W = 0) at the inlet and outlet cross-section (Here, X and U are directed

downstream along the channel axis). The value of the body force is adjusted to establish

the desired Reynolds number in the common channel. Throughout all computations, the

velocity and time scales are u0 = 9.1 · 10−4m/s and t0 = 0.121s, respectively. The electroki-

netic flow is introduced into the liquid bulk solution via boundary conditions (7,8). Previous

experiments have revealed that the charge density at the microchannel wall and the Debye

length correspond to qζ = 2.2 · 10−3C/m2 and lD ≃ 216nm [32]. Hence, we calculate the

ratio of electrical to viscous forces to be Π = 21.36 which is used throughout the simulations.
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IV. FLOW AND CONCENTRATION FIELD

A. Flow Field

Each mathematical model and its numerical implementation has to be validated to make

it a suitable tool for optimization purposes. In this section, we compare three-dimensional

(3D) numerical simulations to our experimental results obtained with Micro Particle Im-

age Velocimetry (µPIV) as described in [32]. In detail, we focus on selected flow fields

which can be found within the lower bends of the micromixer. The Reynolds number of

the pressure-driven flow is Re = 0.1. The electrokinetic flow is excited by an alternating

potential difference of ∆ϕ = 1000V between the electrodes featuring a square waveform and

a frequency of f = 0.1Hz. Scaling results in according Strouhal number and outlet potential

amplitude of St = 0.012 and Φ̂out = 1, respectively. We observe two different flow regimes

within the micromixer depending on the polarity of the electrical potential difference. These

flow regimes are, of course, time-dependent. However, within almost the entire half of a wave

period, the flow can be considered as (quasi-)steady since the transition between the flow

regimes occurs very quickly. For an outlet potential of Φout = 1, the induced electrokinetic

flow is equally directed to the pressure-driven base flow; an even and quasi-steady flow is

observed (not shown graphically). The flow regime changes drastically when the electrode

polarity changes, i.e. Φout = −1. The electrokinetic flow is now directed upstream, i.e.

against the pressure-driven base flow. This counterflow situation in conjunction with the

meander geometry gives rise to highly interesting flow fields which considerably support

mixing. Figure 3 shows selected flow fields by means of particle paths, i.e. we integrate the

movement of particles due to the velocity field in planes of constant heights. This method

allows us to infer the flow topology in terms of singular, i.e. vortex and saddle, points, and

results in a demonstrative illustration of the complex flow regime. The upper row of figure

3 shows the flow topology measured by µPIV while the lower row displays the results of our

numerical simulations.

Figure 3(a) depicts the flow topology at a height level of Z = −0.43. The measured and

simulated pathlines indicate a (quasi-steady) flow from right to left through the meander

segment. At this height level close to the bottom wall at Z = −0.5, the flow field is

dominated by the electrokinetic flow.
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FIG. 3. Measured (upper row) and simulated (lower row) pathlines of the flow at height levels (a)

Z=-0.43, (b) Z=-0.32 and (c) Z=0.00. The flow consists of a pressure-driven base flow with Re=0.1

and a counter-directed electrokinetic flow.

If we move towards the midplane of the meander segment, the topology of the flow

field changes drastically as indicated in figure 3(b) which shows pathlines at a height level

of Z = −0.32. The measured pathlines are strongly stretched and folded resulting in a

complex flow topology which features various singular points. We find a vortex point (v)

and a saddle point (s) in the left (vertical) channel segment, whereas in the right (vertical)

channel segment, only a vortex point is found. Another set of vortex and saddle points

is observed in the middle (horizontal) channel segment. Furthermore, we find a pair of

saddle and vortex points within each bend. This complex flow field results from the mutual

influence of the electrokinetic and pressure-driven flows present close to all channel walls and

within the channel core, respectively. If we compare measured and simulated pathlines, the

overall picture is in a very good agreement. All singular points are rediscovered featuring

an equal type and almost identical positions. Likewise, the characteristics of the pathlines

appear similar within the channel segment.

The flow topology in the mid-height level (Z = 0) of the meander segment is presented in

figure 3(c). The measured pathlines reveal a quasi-steady and even flow, from left to right,
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which is the pressure-driven part of the flow located within the centre of the microchannel.

Adjacent to the walls, the electrokinetic part of the flow is counter-directed from right to left

giving rise to several singular points located at the (shear) interface between the two flows.

In detail, we rediscover all singular points known from height level Z = −0.32, whereas

some positions are slightly changed. For instance, saddle and vortex points previously lo-

cated in the bend centers are moved towards the bend corners. The comparison between

measured and simulated pathlines shows again a very good agreement with respect to type

and position of the singular points and the pathlines characteristics.

The present results reveal some further interesting aspects when we refer to our previous

work [32] where we compared measured and simulated pathlines obtained with a different

numerical code and, more importantly, with a simplified numerical mesh structure. The

simplified mesh consisted of a perfect rectangular geometry featuring sharp edges and cor-

ners which cannot be achieved in reality due to constraints imposed by microfabrication

processes, e.g. by etching. The overall comparison revealed a good agreement as well but

there was a distinct topology difference within the inner (protruding) corner of the bends.

We previously obtained two vortices and a separating saddle in the simulations. In contrast,

the present study shows a single vortex and a separating saddle in both experimental and

simulation results. We concluded that the difference is due to the sharp edges/corners;

an assumption which is verified by the simulations in this work performed with a mesh

corresponding to a more realistic micromixer geometry.

To summarize, the comparison of measured and simulated results proves that the numeri-

cal code HiFlow3 is able to reproduce the complex flow fields in the electrokinetic micromixer

with an excellent agreement. This validation of the mathematical models and their numer-

ical implementations with respect to the flow field serves as a basis for further simulations

of the concentration fields and, eventually, for the electrokinetic optimization.

B. Concentration Field

We now focus on different concentration fields which are present in the micromixer as a

result of different (non-optimized) electrical excitations. We only present results of numerical
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simulations since the measurement of complex, time-dependent 3D concentration fields in

microchannels is a rather difficult task. In our previous work [31], a Micro Laser-Induced

Fluorescence (µLIF) has been engaged to investigate the influence of Dean vortices, induced

by a pure pressure-driven flow, on the concentration field within the micromixer geometry.

In contrast to the application of fluorescence intensity techniques to macroscopic flows (LIF),

this method illuminates the complete microchannel volume. This results in height-averaged

concentration fields which can be easily misinterpreted. In principle, if a LIF method is

coupled with a scanning confocal microscope, as shown in [36] for mixing in slug flows,

measurements of 3D concentration fields in microstructures are possible. However, even for

microchannels, the scanning across the channel height takes a relatively long time. Thus,

this method is restricted to steady concentration fields or to concentration fields with a

regular recurrence of patterns so that the measurements can be synchronized.

Figure 4 shows the concentration field within the midplane of the micromixer for different

modes of electrical excitation. The Reynolds and Schmidt numbers are Re = 1 and Sc =

2340, respectively, and the simulation time is T = 30. Figure 4(a) shows the concentration

field for a pure pressure-driven flow without any electrical excitation corresponding to a

Strouhal Number of St = 0. We basically recognize three layers of liquid. The lower (red)

layer is at tracer concentrations around C = 1 and the upper (blue) layer is at concentrations

around C = 0. Further, a thin (green) concentration boundary layer of mixed liquid (C =

0.5) is present between the upper and the lower layer. In the absence of electrical excitation,

it can be clearly seen that mixing occurs only by diffusion across the contact interface of

both (blue and red) liquids. The thickness of this concentration boundary layer increases

along the channel axis as the residence time of the liquids increases.

Figure 4(b) shows the concentration field as a result of a constant electrical potential

Φout = 1 which can be interpreted as a wave of infinite high frequency, i.e. St 7→ ∞. The

electrical potential induces an electrokinetic flow which is counter-directed to the pressure-

driven base flow. Comparable to figure 4(a), we find an even concentration field characterized

by three liquid layers. In contrast to figure 4(a), however, it can be seen that the concen-

tration boundary layer between blue and red liquid is wider. This implies that a higher

fraction of mixed liquid leaves the mixer outlet compared to the pure pressure-driven flow

regime. This can be simply explained by the residence time. The counter-directed electroki-

netic flow decreases the total flow rate. Hence, the residence time of the liquids within the

14



(a)

(b)

(c)

Concentration

FIG. 4. 3D Simulations of the concentration field within the midplane of the micromixer at T = 30

for different modes of electrical excitations: (a) pure pressure-driven flow; (b) pressure-driven flow

with a steady counter-directed electrokinetic flow; and (c) pressure-driven flow and an alternating

electrokinetic flow. The Reynolds and Schmidt numbers are Re = 1 and Sc = 2340, respectively.

mixer geometry is increased and there is more time for diffusive mixing across the contact

interface.

The concentration field for the micromixer operated with a time-dependent electrical
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excitation is given by figure 4(c). Here, the outlet electrical potential has a square wave-

form, an amplitude of between Φ̂out = 1 and alternates with a frequency corresponding

to St = 0.012. We find locations where the concentration boundary layer is folded and

stretched which increases the contact interface area and, consequently, facilitates mixing by

diffusion. The stretching and folding is induced by the interaction of the meandering geome-

try and the alternating electrokinetic flow. The electrokinetic flow is perpendicular-directed

to the pressure-driven base flow within the bends. This secondary flow transports liquid by

convection across the channel center into locations previously occupied by the other liquid.

Additionally, the flow regime switches between an even flow and the flow fields illustrated

in figure 3. The complex flow topologies close to the channel walls as a result of mutual in-

fluence of pressure-driven and (counter-directed) electrokinetic flow contribute to mixing as

well. Even though the performance might be better than for the previous operation modes,

it is obvious that the mixer does not operate at its best. The electrical excitation settings

used here are inferred from the µPIV experiments described in section IVA, and cannot

necessarily be employed to achieve good mixing. Eventually, all shown concentration fields

demonstrate the need for an optimization of the micromixer’s mode of operation.

V. OPTIMIZATION

In this section, we employ the validated numerical tools to optimize the mixing per-

formance of the electrokinetic micromixer. Even though we have access to considerable

computational resources, in terms of optimization we have to further restrict simulations.

The dimensionless tracer diffusion coefficient of our mixing problem (Re = 1, Sc = 2340) is

given as D = 1/(ReSc). This value in conjunction with the cell Peclet number Pec = UL/D

allows to infer a roughly-suitable mesh size L for our computations. Given a mean veloc-

ity of U ≃ 1 and the necessary condition that Pe . 1, the maximal size of a mesh cell

should be L . 1/2340 ≈ 0.0004 (0.05µm). A 3D optimization with such a fine mesh is far

beyond the computational capabilities accessible for this work. Hence, we concentrate on

2D optimizations and restrict the computations to the midplane (Z=0) of the micromixer.

This simplification is justified after inspecting the concentration fields of the micromixer at

different height levels (not shown). Even though the flow topology changes considerably

along the channel height (cf. figure 3), the concentration fields are similar. Likewise, a
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comparison of midplane flow and concentration fields obtained from 3D and 2D simulations

reveals a very good qualitative agreement; see [37] for details.

In general, we have to identify the common features of a optimization problem prior to

the application optimization techniques [38]. That is: (i) A quantitative criterion that has

to be optimized which is usually formulated as a cost functional; (ii) One or more control

or design parameters that can be modified to achieve an optimization; (iii) And finally, the

constraints which have to be fulfilled within the optimization problem.

A simple approach to express perfect mixing of two liquids is to correlate it to a respective

concentration CM . In the case of two identical liquids with (C = 1) and without tracer

(C = 0), perfect mixing is given for a concentration of CM = 0.5. A practical, quantitative

mixing criterion can be achieved by integrating the quadratic difference from perfect mixing

in an area of interest Ωs for each time step. Hence, the cost functional for the optimization

is defined to be

J(C, T ) ≡

∫

Ωs

(C(T )− CM)2d ~X. (13)

We consider the last horizontal channel segment of the meander as the area of interest

Ωs. Eventually, perfect mixing is achieved when the cost functional J(C, T ) is zero.

The performance of the micromixer can be effectively influenced by different con-

trol/design parameters. These include geometric factors, such as number of bends or length

ratio of horizontal to vertical channel segments, and flow parameters, such as the Reynolds

number, which can be adjusted more easily. In this work, we restrict the optimization

efforts to the secondary electrokinetic flow which can be conveniently manipulated in form

of the electrical excitation (control) parameters αk including outlet potential’s amplitude

Φ̂, frequency (Strouhal number St) and waveform. In detail, we perform optimizations for

two different outlet potentials featuring a discrete and a continuous waveform. The first

optimization is performed using a discrete square wave potential. We choose a Fourier series

approximation for the sake of differentiability, i.e.

Φout,1(T, αk) =
4Φ̂1

π

n∑

j=0

sin((2j − 1)2πSt1T )

2j − 1
. (14)

Practically, we limit the number of Fourier terms to n=10. The second optimization is
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performed for a continuous outlet potential of sinusoidal waveform. That is:

Φout,2(T, αk) = Φ2 + Φ̂2 sin(2πSt2T ) (15)

with the potential offset Φ2 as additional control parameter. The constraints within

our optimization problem are specified by the mathematical model and the corresponding

boundary conditions as described in section III. In terms of practical applications, rapid

mixing is also a desirable feature and we therefore restrict the time interval to be T ∈ [0, 30].

Common optimization methods can principally be distinguished by the determination of

the cost functional gradient. Two approaches are common, the adjoint- and the sensitivity-

based approach. Both approaches calculate the gradient of the cost functional with respect

to the control parameter to solve the optimization problem. For a time dependent problem,

the adjoint-based approach requires forward- and backward-in-time solutions of the adjoint

equations while sensitivity-based methods only project forward in time. That is, the adjoint-

based approach determines ∇J(C, αk) simultaneously and independent of the number of

parameters αk , whereas the sensitivity-based approach requires the solution of a linearized

problem for each αk. In this work, we use a sensitivity-based approach, whereas the chain

rule is applied to derive the gradient of the cost functional (13). Eventually, the optimization

problem of the electrokinetic micromixer can be formulated as

min
C,αk

J(C, αk) ≡
1

2

∫ T

0

∫

Ωs

(C(T )− CM)2d ~XdT +
λ

2

m∑

k=1

|α2

k|, (16)

whereas λ is the regularization term which can be chosen to control the optimization

problem and m is the number of control parameters of the optimization problem. Further

information on the sensitivity-based optimization methods used in our work can be found

in [38–41].

We solve the optimization problem for a flow of Re = 1 and two different electrical

excitations Φout,1,Φout,2 so that the mathematical model, boundary conditions and equation

(16) are fulfilled. The resulting optimized control parameters for both waveforms are given in

Table I. The optimization of the discrete (square waveform) outlet potential Φout,1 indicates

best mixing for an amplitude and frequency of Φ̂1 = 1.490 and St1 = 0.208, respectively.
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Excitation Offset Amplitude Frequency

square wave potential Φout,1 – Φ̂1 = 1.490 St1 = 0.208

sine wave potential Φout,2 Φ2 = 0.018 Φ̂2 = 1.476 St2 = 0.210

TABLE I. Optimized control parameters for two different electrical excitations.

Regarding the continuous (sine waveform) electrical excitation, the optimization shows no

need for an offset of the potential. The optimal amplitude and frequency are Φ̂2 = 1.476 and

St = 0.210, respectively. Surprisingly, there is no distinct difference between the continuous

and the discrete electrical excitation parameters but the waveform. To obtain a better

insight into the mixing performance, we plot the evolution of the cost functional (degree of

mixing) vs. the simulation time for different electrical excitation modes in figure 5.
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FIG. 5. Evolution of the cost functional, scaled with the (initial) value at T=0, vs. the dimension-

less simulation time T for different modes of electrical excitation.

In detail, we plot the cost functional J(C, T ), scaled with the (initial) cost functional

at T = 0 for the pure pressure-driven flow, for the non-optimized square wave potential as
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discussed in section IVB, and for the optimized square and sine waveform potentials. The

pure pressure-driven flow (solid line) without any electrical excitation indicates the baseline

for all cases. We see that starting from a value of 1, the scaled cost functional decreases

to about 0.7 at T ≈ 15 and then slowly approaches a steady value of about 0.73 resulting

from the (artificial) initial conditions of two totally unmixed liquids that we employ in all

simulations. The steady value is related to the concentration boundary layer between the

two layered liquids and is the minimum degree of mixing which can be achieved for the

given mixing configuration. Additionally, this plot allows to infer the mean residence time

of the mixer at the given mode of operation. The initial concentration condition can be

interpreted as a perturbation of the steady-state concentration field. The time to sweep out

the perturbation from the micromixer domain, i.e. the mean residence time, is displayed by

the time required to achieve a steady cost functional, i.e. Tm ≃ 20 (tm ≃ 2.4s).

The mixer operated with the non-optimized square wave potential Φout(Φ̂ = 1, St =

0.012) (dotted line) achieves a value of about 0.56 at T = 30. This represents a perfor-

mance improvement compared to the mixer with the pure pressure-driven flow even though

the electrical excitation setting was chosen arbitrarily. When the micromixer is operated

with the optimized potentials, higher mixing degrees in shorter mixing times are generally

achieved compared to the previous cases. The mixer excited with the sine wave potential

Φout,2 (dashed line) approaches a final value of 0.4, whereas the operation with the square

wave potential Φout,1 (dash-dot line) results in 0.26 at T = 30. Eventually, even though

amplitude and frequency of both optimized potentials are similar, the performance of the

mixer operated with the discrete signal is distinctively superior to the mixer operated with

the continuous signal.

Figure 6 shows the optimized concentration fields in the micromixer at the end of the

optimization interval (T = 30), which gives an illustrative demonstration of the cost func-

tionals. In detail, figure 6(a) illustrates the situation when the electrokinetic flow is excited

by the optimized sine wave potential Φout,2. The concentration boundary layer is strongly

distorted and we find locations where one liquid is (almost) entirely enclosed by the other.

Nevertheless, even though a considerable fraction of Ωs is occupied by mixed liquid, the con-

centration field is somewhat heterogenous. When the mixer is operated with the optimized

square wave potential Φout,1, we find improved mixing results as already indicated by the

lowest scaled cost functional. The domain Ωs is mainly filled with mixed liquid, whereas
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(a)

(b)

FIG. 6. Concentration fields in the midplane of the micromixer at T = 30. The flow consists of

a pressure-driven base flow with Re = 1 and an optimized electrokinetic flow induced by (a) sine

and (b) square wave potential.

some minor unmixed areas are present as well. Again, the difference in the electrical exci-

tation resulting in the optimized concentration fields plotted in figure 6(a) and (b), is just

the waveform. Interestingly, when we compare the concentration fields, we find in principle

similar patterns. That is, the track of the concentration boundary layer(s) is comparable for

both excitations; obviously a result of the similar amplitudes and frequencies. However, it

appears, especially in the first half of the mixer geometry, that the discrete potential results

in a more pronounced stretching and folding. This is presumably related to the duration of

the velocity amplitude of the secondary flow. The square wave potential induces a maximum

electrokinetic velocity which is present over almost the entire half of the wave period. The

electrokinetic velocity as a result of the sine wave potential, however, increases continuously

from zero to the maximum value over one quarter of the period and immediately decreases

again. Consequently, there is less convective transport of liquid across the channel center
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towards the other liquid when operated with the continuous signal.

VI. CONCLUDING REMARKS

In this article, we undertake investigations on the optimization of an electrokinetic mi-

cromixer. The conceptual approach of the micromixer is realized by inducing a secondary

(alternating) electrokinetic flow which is partially directed perpendicular to the pressure-

driven main flow due to the mixer’s meandering geometry. The electrokinetic flow is induced

by an alternating electric potential difference applied between the mixer’s in- and outlet.

Good mixing results can be achieved by using an appropriate ratio of secondary electrokinetic

velocity to pressure-driven main flow velocity in conjunction with a respective excitation fre-

quency to obtain folding and stretching of the contact interface of the liquids to be mixed.

Suitable modes of electrical excitation, i.e. amplitude, frequency and waveform of the ap-

plied potential difference, are not known and respective technical/design guidelines do not

exist.

We therefore implement a mathematical model of the electrical potential, flow and con-

centration field into a Finite-Element-Method code. Model and numerical implementations

are validated against experimental observations of the complex flow topology present in the

lower channel segment of the micromixer geometry. The comparison of numerical and exper-

imental results shows excellent agreement. The computed concentration fields clarify that,

even though an increased mixing performance is observed when the mixer is electrically-

excited, the mixer does not operate at its best. Hence, there is a need to optimize the mode

of operation which can be done by engaging our validated numerical model in conjunction

with adequate numerical optimization strategies.

We restrict the optimization efforts to the electrokinetic flow which can be conveniently

controlled in form of the electrical excitation parameters potential amplitude, frequency

(Strouhal number) and waveform. Two exemplary waveforms are chosen, a square wave

and a sine wave potential representing a discrete and a continuous excitation. It turns out

that the optimized amplitudes and frequency for both electrical excitation modes are almost

identical. Here, the optimized outlet electrical potentials induce a (secondary) electrokinetic

flow amplitude which is about 10% of the pressure-driven main flow amplitude. The opti-

mized frequencies correspond to approximately 1/5 of the inverse convective time scale t−1

0
.
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The most noteworthy observation of the present optimization results is the influence of the

waveform. A considerable superior mixing performance is observed for the discrete over the

continuous excitation, even though amplitudes and frequencies are similar.

In summary, the present work demonstrates that the electrokinetic mixing concept is able

to achieve high mixing degrees in short operation times, given a reasonable ratio of main flow

to secondary flow amplitudes and an appropriate excitation frequency. The question whether

to or not other electrical excitation waveforms, discrete or continuous, exist which result in

improved mixing degrees at shorter times must be answered in future work. Eventually,

an optimization with a completely arbitrary electrical potential, using the adjoint-based

optimization approach, is desirable but this would require very expensive computations.
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