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1 Introduction

The key issue of hydrodynamic stability is the investigation of spectral properties of the
underlying system describing the fluid flow. Since in many applications the governing op-
erators are strongly nonnormal, an analysis based on eigenvalues only may be misleading.
As a remedy, pseudospectra have become a popular tool to investigate spectral proper-
ties, where a traditional eigenvalue analysis fails. Pseudospectra provide more information
about the behavior of a system as they constitute a more general tool than eigenvalues.
The intention of this manuscript is to present pseudospectra of fluid flow problems
rather than to give an extensive discussion on all the involved backgrounds. The evaluation
is done by exploiting parallel computational techniques which allows us to address complex
problems. In the following Sections we give a short review of hydrodynamic stability and
the role of pseudospectra in this context. Afterwards we present extensive numerical
results, i.e. spectral portraits of different fluid flow problems with different setups.

2 Hydrodynamic Stability

The approach of hydrodynamic stability is to investigate how a laminar fluid flow behaves
with respect to perturbations. If the perturbation decays in time and the flow returns to
its original state it is said to be stable. On the other hand, if the perturbation causes
the flow to change into a different state, it is said to be instable. Instability may trigger
turbulence, but it may also take the flow to a different laminar state.

There are two main approaches for the study of hydrodynamic stability. The nonlinear
stability theory is based on examining the kinetic energy of the flow by means of integral
inequality techniques. The linear stability theory is concerned with a linearized model
of the fluid flow and establishes statements by means of the spectrum of the linearized
operator. If all eigenvalues lie in the left half of the complex plane, the flow is said to be
linear stable. If there is at least one eigenvalue in the right half of the complex plane, the
flow is linear instable.

We consider a viscous fluid flow with velocity v and pressure p governed by the incom-
pressible Navier-Stokes equations

—vAvV 4+ (v-V)v+Vp=0,

V.-v=0 (1)

in a bounded domain 2. For simplicity we have set p = 1. Furthermore, v denotes the
kinematic viscosity and f some prescribed external force. We assume the boundary I' = 952
to be disjointly comprised of I' = I'z;4q U I'iy U I'oys. As an inflow condition we set

v=v;, only,
with a given function v;,. On I';;4,q we impose no-slip boundary conditions, i.e.
v=0 on Frigid-
Furthermore, we prescribe free-stream outflow conditions (or do-nothing conditions)
vOnv —pn =0 on [y,

where n refers to the outward unit normal.



Assume a steady solution (V, P) which stability we want to investigate is known (either
numerically or even analytically). The linear stability problem is formulated by means of
an eigenvalue problem which is derived by a linearization around (V, P) seeking for the
eigenvalues A\ and the eigenmodes (v, p) of

AV = VAV — (¥ V)V = (V- V)v — V5,

0=V v @

in Q, see e.g. [9, 10]. The boundary conditions are prescribed by

V|Frigid = 07 {"an - 07 l/an{} - ﬁn‘FouL - 0

All eigenvalues A of (2) are either real or occur in complex conjugate pairs. If Re A < 0,
the corresponding mode dies out in time. Whereas a mode with ReA > 0 results in
instability. Finally, a mode with Re A = 0 is called neutrally stable and may trigger
nonlinear instability.

Assume we have countably many eigenvalues with no accumulation point at 0. Then,
we have that the basic flow of the linearized problem is stable with respect to a perturbation
consisting of a superposition of eigenmodes if all normal modes are stable, i.e. Re A < 0
for all eigenvalues (see [9, 10]). If there exists at least one eigenvalue A with Re A > 0, the
basic flow is instable.

The Reynolds number is crucial for the stability behavior and is defined by Re = VL /v
with characteristic velocity V' and characteristic length L. Typically, a flow becomes in-
stable as the Reynolds passes a certain threshold, which is called critical Reynolds number.
Hence, the critical Reynolds number Re, is defined as the smallest number such that the
basic flow under consideration is stable for all Re < Re., and becomes instable for a
Re > Re..

Note that linear stability does not guarantee stability in general, whereas linear insta-
bility means also instability. Hence, the linear stability theory can provide us an upper
bound for Re. if for any Re > Re. at least one eigenvalue of (2) has a positive real
part. In order to determine also a lower bound one could employ nonlinear techniques.
However, in this work we consider pseudospectra as an approach to track down the crit-
ical Reynolds number as, even for simple setups, a traditional linear stability analysis by
means of the spectrum only may not reveal instability which is experienced in laboratory
experiments (see [18] and references therein). For example, let us consider a dynamical
system describing the evolution of a perturbation u by

% u = Au
with a linear operator A. Under certain conditions the solution can be expressed in forms
of an operator exponential eug, where g represents the initial disturbance u(0). If the
spectrum of A lies in the left half of the complex plane, e!4ug tends to zero as t — oo and
no instability is detected. Nevertheless, et4ug may become arbitrarily large for finite ¢,
which can trigger instabilities.

3 Pseudospectra

In the sequel, let (X, || - ||) be a Banach space and A : X — X a bounded linear operator.
The spectrum of A is denoted by o(A). We write z — A instead of zI — A, where I denotes



the identity on X. For z ¢ o(A) we have the inequality ||(z — A)71|| > (dist(z, o(A4))) ™"

Therefore, we set as convention |(z — A)~Y| = oo if z € 0(A). Then, for any ¢ > 0 the
e-pseudospectrum of A is equivalently defined by

0:(A) ={z € C: [[(z = A)7H| > 71}, (3)
={2z€C:ze€0(A+ AA) for some bounded operator AA with ||[AA| <e}, (4)
={z€C:|(z— A)ul < e for some v € X with |Ju| = 1}, (5)

see [17].

A lower bound for [|e4|| reflecting that the spectrum gives sufficient information about
instability is given by
4] > o), (©)

where the spectral abscissa is defined as usual by a(A) = sup.c, () Rez. However, the
information retrieved by the spectrum of A does not tell the full story. As we will show in
the following Theorem, if the spectrum lies in the left half-plane and the pseudospectrum
of A protrudes significantly into the right half-plane, there is a transient growth which
is not indicated by (6). Here, let a:(A) = sup.c,.(4)Rez denote the e-pseudospectral
abscissa.

Theorem 3.1 Defining the Kreiss constant by

ac(4)

K(A) =sup —— = sup (Rez)|/(z—A)7"
e>0 € Re z>0
we have that
sup [l > K(A). (7)
>0

Ifa=Rez>0 and L =Rez||(z — A)7L|, then

tA Ta e’ —1
sup [le”’]| > e 1+ (8)
0<t<t L

In order to evaluate pseudospectra numerically, we employ finite element methods
which are already well established for incompressible fluid flow problems. For elliptic
operators there exists a spectral approximation theory [2, 4, 13, 14]. It is based on the
results of the spectral approximation theory for compact operators by considering the
compact inverse of the operator. Since the evaluation of pseudospectra with respect to
the two-norm results in a singular value problem, we apply these results to obtain the
same convergence rate as for eigenvalues, namely

for all 7 > 0.

O(hQ(rfm)/a)’

see [16]. Here, r — 1 is the polynomial degree of the finite element approximation, 2m is
the order of the elliptic operator, and « is the ascent of the singular value.

Following the definition of pseudospectra, we define the spectral portrait (with respect
to the two-norm) of a matrix A by the plot of the map

z > sp(ay(2) =logyg [[I(z — A) 2] = —logyg [smin(z — A)], (9)



Algorithm 1 Draw spectral portrait of a matrix pencil

function DRAW_PORTRAIT(A, (21, z2), (y1, y2), nx, ny)

_ zp—x _ Y2—Y1.
ha = nz—1"7 hy — ny—-1°

1:

2

3 z =1r1 + Y1

4: for j=1,....nx do

5 for k=1,...,ny do

6 Compute Spin(z — A) with the Davidson method;
// Start with the previous computed singular subspace
z = z+ihy; // Next line

8: end for

9: z =z —ihy + hg; // Next column

10: hy = —hy; // Change sweep direction along the column
11: end for

12: end function

where $,,in,(z — A) denotes the smallest singular value of the matrix z — A.

For large sparse matrices a complete singular value decomposition induces high com-
putational costs and high storage requirements. Furthermore, we are only interested in
the smallest singular value. Since Spin ((z — 4)?) = Apin ((z — A)7(z — 4)), one may
apply an efficient sparse symmetric eigenvalue solver on (z — A)(z — A). In this context
the Davidson method [7, 8] was successfully employed [5, 11, 15].

To draw the spectral portrait of a matrix A in a rectangular domain [z, z2] X [y1, y2] C
C we choose a grid of nz *ny points (nz in the horizontal, ny in the vertical) and compute
the smallest singular value s, (2 — A) for any z on the grid with the Davidson method.
For two neighboring grid points z; and zs, we expect the matrices z1 — A and zo — A to have
close singular values and close singular vectors. Therefore, to improve performance, for a
given grid point we start the Davidson algorithm with the singular subspace computed in
the last step. The complete solution procedure is outlined in Algorithm 1, see [5, 11].

For different grid points the computation of singular values is completely independent,
which allows an easy way to parallelize Algorithm 1. However, this implies that a copy of
the needed matrices is available to each process. In order to avoid high storage costs in
the case of large matrices, we utilize a parallel linear algebra [1, 12] as well.

This approach is referred to as hybrid parallelism. We partition the domain of grid
points in C into k subdomains of the same size. Then p processes are mapped to each of
these subdomain of grid points building k groups, provided that we have k X p processes
available. Within each group the system matrices and vectors are spread among the
processes in order to perform a parallel computation of the smallest singular vector, see
Figure 1.

In the following Sections we present spectral portraits of fluid flow problems, i.e. for
given z € C we plot logyg (Sh,min(2)) Where ¢ min(2) is the smallest eigenvalue of

(ZMh — Ah)H(ZMh — Ah)xh = §}2L MhHMhCEh. (10)

Here, A denotes the stiffness matriz and My, the mass matriz of the finite element
discretization. For details we refer to [16].
For each benchmark we listed the essential parameters:

e The integer n denotes the number of unknowns resulting from the finite element

4
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Figure 1: The left figure shows a decomposition of the domain €2 which is used to perform
parallel linear algebra operations. The right figure depicts the distribution of grid points
in [z1,22] X [y1,y2] C C.

approximation scheme chosen.

e The region in the complex domain where the spectral portraits are plotted.

e The grid in the complex domain and the resulting number of computed singular
values. Please note that the spectral portraits considered here are symmetric along
the real axis.

e The plotted contour lines of the spectral portraits, i.e. the pseudospectra.

e The Reynolds number Re = V L/v with characteristic velocity V', characteristic
length L, and kinematic viscosity v.



4 Numerical Results

4.1 Lid-driven Cavity

The investigation of viscous flow in rectangular cavities is of great theoretical importance.
But it is also widely used to benchmark numerical methods approximating incompressible
fluid flows, see [3] and references therein. In this setup we consider the two-dimensional
case with the fluid confined in an unit cube with rigid boundaries at the left, at the
right, and at the bottom. The top lid moves uniformly resulting in the inflow condition
Vin = (1,0)T at the upper boundary I',.

o n — 148,739
e Region in C: [—1.3,0.2] x [—0.5,0.5] (Re x Im)

e Grid in C: 152 x 101 = 15,352 singular values (7,752 computed)

e Plotted contour lines: € € {—0.5,—1,...,—-3.5}
Fin
1| Drigia Lrigia
Frigid
1

Figure 2: Geometry of the flow region.



Figure 3: Steady flow of the lid-driven cavity benchmark with Re = 100 (left) and Re =
1,000 (right).
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4.2 A Zig-zag Benchmark

The fluid flow considered in this benchmark is a modification of the two-dimensional
Poiseuille flow. In our case we added some triangles to the pipe geometry of the Poiseuille
problem, see Figure 4. We prescribe a parabolic inflow condition v;, with peak velocity

Vinaz = V.
e n = 241,059
e Region in C: [-2.2,0.2] x [-1.2,1.2] (Re x Im)
e Grid in C: 152 x 121 = 15,488 singular values (7,808 computed)

e Plotted contour lines: ¢ € {—1,-2,..., -6}
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Figure 5: Steady flow in the zig-zag geometry with Re = 100 (upper), Re = 500 (middle),
and Re = 1,000 (lower).
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4.3 Flow over a Backward Facing Step

We consider a steady fluid flow over a backward facing step as depicted in Figure 6. This
setup is originated from a well-known optimization problem where the vortex behind the
step is to be reduced, see e.g. [6]. Here, vy, is a parabolic inflow with peak velocity

Vinaz = V.

Frigid

e
T

2 Tout
1 I Frigid .

Frigid
Y 14
20

Figure 6: Geometry of the backward facing step benchmark.

4.3.1 The Two-dimensional Case

e n = 259,971

Region in C: [—0.6,0.2] x [—0.5,0.5] (Re x Im)

Grid in C: 88 x 101 = 8,888 singular values (4,488 computed)

Plotted contour lines: € € {—7, —6,...,—1}

Figure 7: Stationary flow in the two-dimensional backward facing step geometry with
Re =100 (upper), Re = 500 (middle), and Re = 1,000 (lower).
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4.3.2 The Three-dimensional Case
o n = 143,484
e Region in C: [-0.6,0.2] x [—0.5,0.5] (Re x Im)

e Grid in C: 88 x 101 = 8,888 singular values (4,488 computed)

e Plotted contour lines: € € {—7,—6,...,—1}

Figure 8: Stationary flow in the three-dimensional backward facing step geometry with
Re =100 (upper) and Re = 500 (lower).
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