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Scalability Study of HiFlow3 based on a Fluid

Flow Channel Benchmark

Vincent Heuveline∗, Eva Ketelaer†, Staffan Ronnas‡,
Mareike Schmidtobreick§, Martin Wlotzka¶

Engineering Mathematics and Computing Lab (EMCL)
Karlsruhe Institute of Technology (KIT)

Abstract: Exploiting the compute power of high performance com-
puting clusters efficiently is a key ingredient in order to solve large,
fully coupled systems modeled by partial differential equations with
high accuracy. We study strong and weak scalability properties of
the parallel Finite Element software package HiFlow3 for a challeng-
ing instationary 3D fluid flow problem. For this benchmark study,
we ran several simulations with up to 10 millions of unknowns us-
ing up to 512 cores on the bwGRiD cluster in Karlsruhe. For large
problem sizes, the software package showed good characteristics re-
garding efficiency and speedup.

1 Introduction

Numerical simulations often play a key role in the analysis of complex
physical and technical processes. Many real world phenomena can
be modeled mathematically by partial differential equations (PDEs).
Examples include the numerical simulation of tropical cyclones which
influence the global weather forecast, as well as computational stud-
ies of the human respiratory system. Performing accurate simulations
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often relies on computational resources only available on high perfor-
mance computing (HPC) platforms. Approximate solutions of the
underlying system of PDEs can be computed using appropriate nu-
merical discretization methods. A common discretization approach
is the Finite Element Method (FEM), which usually results in large,
sparse, and fully coupled linear systems with up to several millions
of unknowns. In order to be able to solve such large problems, it is
essential to use highly scalable finite element software.
In this paper we analyze weak and strong scalability properties of
the HiFlow3 Finite Element package [Heuveline2010] developed at
the Engineering Mathematics and Computing Lab (EMCL). This
software platform aims at providing efficient and accurate solvers for
complex models. The study is based on a 3D channel flow benchmark
problem defined by the DFG [Turek1996]. It is defined as a fluid flow
problem inside a rectangular channel containing a block-shaped ob-
stacle. This benchmark has previously been performed by a large
community using a variety of discretization methods and numerical
solvers with a strong emphasis on the accuracy of the solution. On
the one hand the benchmark is a challenging problem for numerical
simulations, and on the other hand there are published results giving
a point of comparison for the quality of our solutions. Our study was
carried out on the bwGRiD cluster located in Karlsruhe using up to
512 cores distributed over 64 nodes.
In Section 2, the mathematical problem, the solution method and
implementation are described. Additionally, in this section the setup
for the scalability study is presented. Section 3 is dedicated to the
presentation of the results, as well as their analysis. A conclusion
and outlook are given in Section 4.

2 Benchmark Formulation

In this section, we present the mathematical setup on which our scal-
ability study is based and depict how we validated the benchmark
implementation. The second part of the section gives an overview of
the test setup.



2.1 Mathematical Problem

The considered benchmark assumes a three dimensional instationary
flow around a block-shaped obstacle in a channel as described in
[Turek1996], see Fig. 1. We assume the liquid to be an incompressible
Newtonian fluid and model the flow by the Navier-Stokes equations

ut −ν∆u+(u ·∇)u+
1

ρ
∇p = 0, in Ω× [0,T ],

∇·u = 0, in Ω× [0,T ],

where u denotes the velocity field, p the pressure variable and Ω ⊂R
3

holds. At the inflow Γin (1a) we set the boundary condition to a
Poiseuille profile, at the outflow Γout (1b) we choose the natural or
do-nothing boundary condition and at the solid walls of the chan-
nel Γwall := ∂Ω\(Γin ∪Γout) (1c) we impose homogeneous Dirichlet
boundary conditions (no-slip conditions). As initial condition we set
the velocity to zero inside of Ω (1d).

u = g, on Γin × [0,T ], (1a)

(−Ip+ν∇u) ·n = 0, on Γout × [0,T ], (1b)

u = 0, on Γwall × [0,T ], (1c)

u = 0, in Ω×{0}, (1d)

where

g(0,y,z, t) =

(

16Umyz
(H −y)(H −z)

H4
,0,0

)⊤

.

The height and width of the channel H = 0.41m and the maximum
inflow speed Um = 2.25m/s are chosen as in [Turek1996], which yields
the Reynolds number Re = 100. We discretize this equation with an
FEM, see e.g. [Girault1986]. The channel is discretized by hexahedral
cells, resulting in the initial mesh covering the computational domain
which is shown in Fig. 1.



Figure 1: The initial mesh which is a coarse discretization of the compu-
tational domain with 96 cells.

The computations for the scalability study were done on meshes
resulting from different levels of global refinement applied to the ini-
tial mesh. The number of mesh cells and degrees of freedom resulting
from these refinements are given in Table 1.

The parallelization concept of HiFlow3 is based on domain decom-
position, as described in [Heuveline2011, Ronnas2011]. In this study,
the partitioning of the mesh was computed with the METIS graph
partitioner [Karypis2006]. For the spatial discretization of the model
problem, we applied a continuous Galerkin FEM. We used the Taylor-
Hood element pair, i.e. Q2-elements for the velocity and Q1-elements
for the pressure. These elements satisfy the discrete inf-sup condition,
and thus guarantee stability [Girault1986].

Refinement Level # Mesh Cells Problem size,

i.e. # DoFs

2 6,144 170,688

3 49,152 1,296,256

4 393,216 10,098,432

Table 1: Information on the number of cells and the number of degrees of
freedom (DoFs) that different meshes have. Hereby the mesh level describes
how often the mesh has been refined globally on the basis of the initial
mesh.



For the time discretization, we used the Crank-Nicolson method
applied to an equidistant partitioning of the time interval. We ap-
plied Newton’s method to the resulting discrete non-linear problems.
In each Newton step, we used a right-preconditioned GMRES-method
[Saad2003] to solve the linearized system. An incomplete LU-decom-
position from the ILU++ library [Mayer2007, Mayer2008] was em-
ployed as a preconditioner. The stopping criteria for both the non-
linear Newton solver and the linear GMRES solver were set to a
relative tolerance of 10−6. This ensures that the residual norm of
both the Newton iteration as well as the GMRES iteration decreases
by six orders of magnitude compared to the residual of the starting
solution, respectively.
The whole solution process was implemented using HiFlow3, besides
the already mentioned mesh partitioning and the preconditioner li-
brary.

For this benchmark no analytical solution and no experimental
data are available for comparison. In order to obtain a good indi-
cation for the accuracy of the benchmark implementation, we com-
pared the drag coefficient of the obstacle to the results of simula-
tions performed with other software by other researchers as listed in
[Turek1996]. We computed the drag coefficient in each time-step by
evaluating face integrals as described in [John2002]. The initial mesh,
see Fig. 1, was globally refined four times. The benchmark was solved
in the time interval [0s, 8s] with a time-step size of 0.025s, i.e. 320
time-steps. For the maximum drag coefficient we get 4.84 which lies
in the interval of [4.31, 4.88] from [Turek1996]. The authors of that
paper expected a time-periodic solution at a Reynolds number of 100.
Here, we made the same observation as in [John2002], namely that
the numerical solution tends to a stationary solution instead, which
is another indication that our benchmark implementation works cor-
rectly.



2.2 Setup of Scalability Tests

We study strong and weak scalability for the following benchmark
setup. As benchmark metric, we measure the total run-time of the
first ten time-steps of the solution process. The problem size is asso-
ciated to the successively globally refined meshes mentioned in Sub-
section 2.1. The refinement levels of the mesh and their resulting
problem sizes, i.e. the number of unknowns are listed in Table 1.

This benchmark was done on the local part of the bwGRiD-cluster
in Karlsruhe. This system is a x86-cluster featuring 10 Blade centers
each of which contains 14 HS21 XM Blades. Each node has two quad-
core Intel Xeon E5440 (Harpertown) processors with 2.83 GHz clock
frequency and 16 GB main memory. The nodes are connected via
Infiniband. The operating system is Scientific Linux 5.5.

We executed the simulation with up to 512 cores; for more details
see Table 2. Furthermore we took into account the following two
limiting factors with respect to the dependency between the refine-
ment levels and the number of cores. On the one hand the memory
available on a computing node is important: a minimum number of
nodes is needed to cover the memory required by the solver. On the
other hand, problem instances with lower refinement levels require
less computational effort, which makes the use of a large number of
cores meaningless.

3 Results and Analysis

We consider strong and weak scaling, which are the two common
concepts of scalability in HPC. In both cases, the total run-time on
different numbers of processors is compared. For the strong scaling,
the total problem size is fixed, while for the weak scaling the problem
size per process is kept constant.

3.1 Strong Scalability

For the strong scalability, we analyzed the speedup and efficiency for
each refinement level. The speedup S(p,N) of a parallel execution



Run-time [sec] # of GMRES iter.
Nodes x Cores Level 2 Level 3 Level 4 Level 2 Level 3 Level 4

1 x 1 2,391 27,517 438 778

1 x 2 1,470 14,076 1,239 2,376

1 x 4 906 8,078 1,664 2,510

1 x 8 605 5,887 2,155 2,819

2 x 8 345 3,074 2,657 2,976

4 x 8 226 1,644 3,306 3,214

8 x 8 1,027 10,752 4,133 5,306

12 x 8 6,923 5,234

16 x 8 5,539 5,520

32 x 8 3,023 5,770

64 x 8 2,007 6,652

Table 2: The run-time in seconds and the total number of GMRES it-
erations needed over the whole solution process. The benchmark was run
with different numbers of cores and different levels of refinement of the
intial mesh.

with p processors is defined as

S(p,N) =
T (p,N)

T (1,N)
,

where T (p,N) is the run-time for an execution with p processors and
problem size N . The efficiency is defined as

E(p,N) =
S(p,N)

p
.

Fig. 2 and Fig. 3 show the obtained speedup and Fig. 4 shows the
efficiency of our three test series. Note that for the level 4 test series,
these quantities are computed relatively to the execution with p = 64
processors, since it was not possible to run these tests with fewer
processors due to the limited memory of the computing nodes.

There are two aspects which generally degrade the efficiency of our
test runs as the number of processors is increased. First, for solving



Figure 2: The speedup of the benchmark is plotted for levels of refinement
2 and 3. As reference point the sequential run is used.

Figure 3: The speedup of the benchmark is plotted for the level 4 refine-
ment. The test run with the lowest possible core number (64 cores) is used
as reference point.



the linear systems, communication and synchronization is necessary
in every iteration of the GMRES solver, since the systems are fully
coupled. The computational domain is divided into the same num-
ber of subdomains as the number of processors used. Second, the
incomplete LU factorization is applied as a block-Jacobi precondi-
tioner. This means that the couplings from different subdomains are
neglected in the preconditioning step. Therefore the preconditioner
becomes less effective the more subdomains we have, since more in-
formation about the couplings between the unknowns is ignored. In
consequence, the GMRES solver needs to perform more iterations to
achieve the desired stopping tolerance, which can be seen by compar-
ing the number of GMRES iterations in Table 2.

Figure 4: The efficiency of the benchmark for three levels of refinement.

The efficiency of the test run with the lowest possible core number is set

to 1, the other tests are based on these, respectively.

The problem sizes of the level 2 and 3 series are small enough
to run the tests on one processor as a basis for the evaluation of
the efficiency. The efficiency decreases to less than 50% for these
two series when increasing the number of processors to 32 and 64,



respectively. In addition to the effects regarding the linear solver and
preconditioner mentioned above, the computation to communication
ratio decreases when using more processors, and therefore the level
2 series with the smallest problem size yields the lowest efficiency.
For the level 3 series we observe a better efficiency due to its larger
problem size.

The level 4 series shows a better efficiency than the other two se-
ries, but it should be kept in mind that this is measured with respect
to a different reference, and therefore not directly comparable. For
96 processors, we even observe a superlinear speedup, which corre-
sponds to the fact that fewer GMRES iterations are needed on 96
cores compared to 64 cores. When increasing the number of pro-
cessors to 128 and 256, the efficiency remains at high values of 97%
and 89%, respectively. For a decomposition onto 512 processors, the
computation to communication ratio is lowered so that the efficiency
decreases to 67%.

3.2 Weak Scalability

For the weak scalability, we want to keep the problem size per core
constant. Hence, we increase the problem size, namely the number of
DoFs N , and the number of cores p by the same factor s and compare
the run-times T (p,N):

R :=
T (s ·p,s ·N)

T (p,N)
.

To evaluate the weak scalability, we compare the run-times from
Table 2 of runs where the number of cores are increased by a factor
of eight, and the number of DoFs are increased by a factor of about
7.7, which we obtain naturally by the global mesh refinement.

For example, we can compare the run-time of T (2 × 8,L3) =
T (16,1.3 ·106) and T (1×2,L2) = T (2,0.17 ·106) which gives R = 2.09.
Assuming a perfect scaling the run-time should remain constant, so
that R = 1. Results for selected comparisons from Table 2 are shown



Figure 5: Comparison sequences of the run-times of jobs in order to obtain

a measure for weak scalability, where the number of cores and DoFs are

increased by a factor of 8 and 7.7, respectively.

in Fig. 5. Each curve stands for a sequence of run-times where the
number of cores is multiplied by 8 from level to level. The number of
cores for level 2 is taken from {1,2,4,8}, respectively, for each line.
The run-times increase by factors varying from 1.70 to 2.46 when
comparing level 2 and 3 and from 1.80 to 1.95 when comparing level
3 and level 4. However, as mentioned in Subsection 3.1, the workload
is not completely determined by the number of unknowns, due to
the increase in the number of GMRES iterations with an increased
degree of parallelization.

3.3 Scalability Results

The obtained results for the strong and weak scalability show a de-
crease in speedup and efficiency as well as a non-constant behaviour
of the ratio R. This can be explained by two aspects. Firstly, the
main influence results from the mathematical characteristics of the



block-Jacobi preconditioner as described in Subsection 3.1. Secondly,
one cannot expect much better efficiency with a large number of pro-
cessors for the small problem sizes of the level 2 and 3 test series.
Due to memory limitations of the cluster, it was not possible to run
the tests with a refinement level higher than level 4, i.e. number of
DoFs N = 10,098,432.

4 Conclusion

In this paper we presented the mathematical setup of the scalability
benchmark implemented with the HiFlow3 Finite Element package.
We executed different tests with varying numbers of cores and dif-
ferent problem sizes. Based on the run-times, the weak and strong
scalability were analyzed. Our conclusion is that both the weak and
the strong scalability are highly satisfactory and correspond to the
expected behaviour of a mature parallel FEM software package. It
turns out that the behaviour of the block-Jacobi preconditioner has a
strong impact on the decrease of the scalability. Improvements with
respect to more efficient preconditioning techniques are planned and
will be included in a new release of HiFlow3. An extension of this
benchmark on larger machines considering larger problems will be
the subject of further research.
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