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Abstract. We investigate a patient specific blood flow simulation
through a transverse aortic arch with a moderate thoracic aortic coarc-
tation, where particular attention is paid to the blood pressure gradient
through the coarctation. The challenge in this context is the complex
geometry containing a stenosis, which results in complex flow patterns.
The fluid is assumed to be incompressible and Newtonian. Its dynamic is
usually described by an Navier-Stokes equation with appropriate bound-
ary conditions. Instead, we modeled the problem mesoscopically by a
family of BGK-Boltzmann equations those solutions reaches that of a
corresponding Navier-Stokes system in a certain limit. For discretiza-
tion we take advantage of lattice Boltzmann methods, which are realized
within the open-source library OpenLB. A realistic transient flow profile
of the cardiac output for a human at rest was used to specify the inflow
boundary condition at the aortic root, whereas the outflow at the de-
scending aorta was modeled by a pressure boundary condition. A short
introduction to lattice Boltzmann methods is provided and especially the
used boundary conditions are introduced in detail. The exact simulation
setup is stated and the obtained results are discussed.

1 Introduction

Patient-specific numerical simulations of human organs open new opportunities
for medical diagnosis and therapy. They are even more advantageous, if they do
not require additional radiating screenings, but are based on computer tomog-
raphy imaging from standard procedures. In the case of the human respiratory
system, numerical simulations of air flow have already proven to be accurate in
the United Airways project |1]. Therefore, an adaption of the concept to human
blood flow is highly appreciated.

An anomaly in the human cardiovascular system, such as a coarctation of
the aorta, obstructs the body’s supply of nutrients and stresses the heart. In
particular, the narrowing can lead to an intense drop in pressure, which directly



affects the health of the patient. This pathological case accounts approximately
one out of ten of all congenital heart defects, and is usually corrected surgically
or by use of a catheter.

A conventional measurement of the pressure drop under resting conditions
is an easy task for a clinician, but measuring the pressure gradient under ex-
ercise conditions is more challenging. Usually artificial stress is created by ad-
ministering a drug to increase heart rate and contractibility. As this may have
unwanted side-effects, it opens up a range of applications for CFD techniques.
By simulation of a section of the blood system mimicking the real situation, the
health-endangering measurements can be shifted into a virtual model. In this
paper we investigate to what extent the lattice Boltzmann method (LBM) is of
significance for the present medical case of an eight year old female patient. It
is worth mentioning that the used model is likely to be expanded by an elastic
model of the aorta geometry to achieve more realistic results.

2 Modelling

Let 2 ¢ IR® be a bounded domain representing the aorta, [t,t;] a considered
time interval and p : 2 X [to,t1] — IR denotes the physical pressure. We denote
by p € IR the mass density of the blood which is constant due to the incompress-
ibility of the fluid. And let € IR® be the viscosity of the blood. The aorta inlet
area is denoted by X;,, C 0f2 and the aorta outlet area is X,,; C 92 which con-
tains the outlet areas of the brachiocephalic artery, left common carotid artery,
left subclavian artery and aorta. The outer normal vector on 942 is denoted by n.
Shear rates in large arteries are typically sufficiently large to assume that blood
behaves as a Newtonian fluid, [2|. Therefore, blood flow in the thoracic aorta
and the three major branches is governed by the time dependent Navier-Stokes
equations, see below.

Problem 1. Find the fluid velocity uw € [L?(§2 x [tg,?1])]® and the pressure p €
L2(£2 x [to, t1]) that fulfill the incompressible Navier-Stokes equations

15} 1
8—2; + (u-V)u — plAu = —;Vp in £2 X [to, 1], (1)

Vu =0 in {2 X [to,tl], (2)
with the appropriate boundary conditions, where I denotes the unity matrix.

Dirichlet condition
u=g on Xin X [to, t1], (3)

”do nothing” condition
(=Ip+pVu) - n=0 on Yoyt X [to, t1], (4)

no — slip condition
u=0 on O\ X U Xt X [to, t1]. (5)



The non-linearity of the problem w.r.t. w comes from the term (w - V)u in the
PDE (1). According to [3], [4] in case of stationarity and a sufficiently smooth
right hand side there exists at most one strong solution for the velocity wu,
whereas the solution for the pressure is only defined up to an additive con-
stant [5].

3 Lattice Boltzmann Method

The subclass of lattice Boltzmann methods considered here enables the simu-
lation of the dynamics of incompressible Newtonian fluids which is usually de-
scribed macroscopically by an initial value problem governed by a Navier-Stokes
equation. Instead of directly computing the quantities of interests, which are
the fluid velocity w = w(t,r) and fluid pressure p = p(t,r) where r € 2 and
t € [to,t1] € R, a lattice Boltzmann numerical model simulates the dynamics
of particle distribution functions f : [to,t;] x £ x R* — IR>( in a phase space
2 x R?® with position r € 2 and particle velocity v € IR3. The continuous
transient phase space is replaced by a discrete space with a spacing of Ar = h
for the positions, a set of ¢ € IN vectors v; € O(h™1) for the velocities and a
spacing of At = h? for time. The resulting discrete phase space is called the
lattice and is labeled with the term Dd(@q. To reflect the discretization of the
velocity space, the continuous distribution function f is replaced by a set of ¢
distribution functions f; : [to,t1] X 2 — IR>o (¢ = 0,1,...,¢ — 1), representing
an average value of f in the vicinity of the velocity v;. Detailed derivations of
various LBM can be found in the literature, e.g. in [6]. The iterative process in
an LB algorithm can be written in two steps as follows, the collision step (6)
and the streaming step (7):
1

I — f I _ e
Filtor) = filtsr) = g (i) = M) ) L (@
filt + 12,7 + h2v;) = fi(t,7) (7)
fort=0,1,...,q — 1, where
Mt r) = %pﬁ <1 +3h% v; - uy, — ghzui + gh4 (v; - Uf¢)2> ,

is a discretived Mazwell distribution with moments p and w which are given
according to

q—1 q—1
pi= ZfZ and pu = Z’szz
i=0 i=0

Here the variable wu is the discrete fluid velocity and p the discrete mass den-
sity. The kinematic fluid viscosity v = u/p is assumed to be given, and the
terms w; /w, v;h (i =0,1,...,q — 1) are constants depending on the used lattice
Boltzmann method. For more detailed information concerning lattice Boltzmann
methods we refer to |7]. The discrete fluid velocity w and the discrete mass
density p can be related to the solution of a macroscopic initial value problem
governed by an incompressible Navier-Stokes equation as shown in [8].



4 Numerical Study

4.1 Simulation setup

A given surface 92 of an aorta with a moderate thoracic aortic coarctation is
voxelized by 5 different resolutions, reaching from 235 x 118 x 402 to 1168 x 582 x
2002 voxels (¢f. Figure 1). Recorded data of 20 measurements of the ascending
aortic flow is interpolated by cubic splines with periodic boundary conditions. A
smooth start-up phase is added to suppress undesired pressure fluctuation. The
resulting function is illustrated in Figure 2. A velocity boundary condition, as
introduced by Skordos in [9], with a Poiseuille flow profile reflecting the measured
flow volume is set at the ascending aortic opening. The blood flow through
the upper branch vessels was experimentally measured as a percentage of the
ascending aortic flow. Therefore the flow through the left carotid artery is set to
be 11.3 % of the aortic flow, whereas the flow through the left subclavian artery is
set to be 4.26 %. For the right carotid and the right subclavian only a combined
value of 25.6 % was available. Hence the flow through these two arteries was
calculated depending on the areas of the openings and chosen to be 10.9 % and
14.7 %, respectively. The boundary conditions at the descending aorta is set as
pressure condition, i.e. the pressure is fixed to 0 mmHg for all times. A full-way
bounce back condition is assigned to the remaining surface. The blood is assumed
to be Newtonian with a density of p = 0.001 g]r/mm3 and a dynamic viscosity
of p = 0.004gr/mm/s. A D3Q19 BGK-Lattice Boltzmann Method, supported
by a Smagorinsky turbulence model with constant Cs = 0.12, was used. The
simulations were executed using the open-source library OpenLB?. Computation
times vary between approx. 1.5 hours on 64 Intel Xeon X5650@2.67GHz cores
for the smallest resolution and 6 days occupying 512 AMD Opteron@2.6GHz
cores for the highest resolution.

4.2 Results

Two cardiac cycles have been simulated and the pressure drop at the aortic
coarctation was determined by calculation of the spatial pressure average in two
planes 71 and 75 (cf. Figure 1). The absolute pressure over time at the ascending
aorta and the pressure drop around the coarctation are shown in Figures 3 and
4 for different spatial resolutions. It is found that with increasing resolution the
resulting curves become less smooth. This effect is more pronounced in the graphs
of the pressure drop and may be due to the fact that with increasing resolution
small turbulence become more significant, which otherwise are smoothed.

Figure 1 shows streamlines representing the flow and velocity w at the time
of highest inflow. As expected the velocity increases in the coarctation. The flow
is predominantly laminar except for turbulence in the areas before and after the
coarctation.

In Table 1 the peak and mean pressure difference around the coarctation, the
flow splits through the upper arteries and the descending aorta as a percentage

% http://www.openlb.org
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Fig. 1: Voxelized geometry (2, of the aortic arc with spacial resolution of 235 x
118 x 402 voxels and flow visualizations at the point of time of highest flow rate.
Color indicates the flow velocity ||u|.
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Fig. 2: Cubic spline interpolation of the provided flow information at the ascend-
ing aorta [ml s~!/s]. The marked points represent the measured data.



of the flow through the ascending aorta and systolic and diastolic pressure in the
ascending aorta are listed for all simulations. As the pressure is only determined
up to an additive constant when solving the Navier-Stokes equations in our
context, the values of the absolute pressure at the ascending aorta have been
shifted to fit the measured systolic and diastolic pressure of 115mmHg and
65 mmHg. It is found that the pressure is decreasing with increasing spatial and
time discretization.

Assuming the measured systolic pressure of 115 mmHg as solution, we obtain
the experimental order of convergence (EOC) for 0 < hy < hg, which is defined
by
In (errpy/errpe)

In (hl /hz)
where erry, = p;?® — 115 is the error of the computed systolic pressure with
respect to the measured value for a given spacing h.

EOC (hl, hg) =

ha 2 [EOC
1/402  |1/802  [1.413
1/802  [1/1202  |1.436
1/1202  [1/1602  |1.261
1/1602  [1/2002  [1.008

From this table we see that this lattice Boltzmann method yields a systolic
pressure p;”" of linear order. For the highest spatial and time resolution we
obtain p;¥® = 116.97 mmHg.

5 Conclusion

In this paper, we presented how lattice Boltzmann methods can be used for
hemodynamic simulations in an aortic model. Here, a discrete Boltzmann equa-
tion is solved to simulate a Newtonian fluid on a mesoscopic scale. Since the
numerical solution depends on the spatial discretization (note that the temporal
resolution is coupled to the spatial resolution ¢f. Section 3), we have experimen-
tally found a linear convergence of the solution p in h. The numerical inves-
tigations have shown that this approach may well be used for patient-specific
simulations, because for high temporal and spatial resolution of the solution
space, we obtain realistic values for the pressure (see right column of Table 1).
These results could be further improved by extension of the underlying model,
e.g. by a Windkessel approach.
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Fig. 3: The absolute pressure over time at the ascending aorta is shown for differ-
ent spacial resolutions. The upper graph shows the resulting curve for the higher
time resolution. The according time-step sizes can be found in Table 1.
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Fig.4: The pressure drop between the planes m; and 7y around the coarctation
are shown for different spatial resolutions. The upper graph shows the resulting
curve for the higher time resolution. The according time-step sizes can be found
in Table 1.
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