
Bandwidth-Efficient Parallel

Visualization for Mobile Devices

A. Helfrich-Schkarbanenko, V. Heuveline, R. Reiner,

S. Ritterbusch

No. 2012-07

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)



Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2012-07

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu



Bandwidth-Efficient Parallel Visualization for Mobile Devices

Andreas Helfrich-Schkarbanenko, Vincent Heuveline, Roman Reiner, Sebastian Ritterbusch

Engineering Mathematics and Computing Lab (EMCL)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

{andreas.helfrich-schkarbanenko, vincent.heuveline, roman.reiner, sebastian.ritterbusch}@kit.edu

Abstract—For visual analysis of large numerical simulations
on mobile devices, we introduce a remote parallelizable visual-
ization method for low-bandwidth and high-latency networks.
Based on a mathematical model for multi-layered planar
impostor representation of arbitrary complex and unbounded
scenes, we derive optimal impostor placement from a derived
metric. Using stochastic usage models, we prove the optimal
bandwidth consumption order for choosing corresponding
viewport impostor sets, leading to bandwidth-efficient remote
visualization concepts for high performance computing simu-
lation results.

Keywords-

I. INTRODUCTION

Remote visualization becomes vital wherever local stor-

age, data transfer rates or graphical capabilities are limited.

Even though the capabilities of modern smart phones are

staggeringly increasing, many desirable applications are im-

peded by current hardware.

Image-based rendering techniques are widely used to

reduce the geometric complexity of virtual environments

by replacing parts of a scene with a textured representation

approximating the original geometry.

Since these so-called impostors have a significantly sim-

plified geometry, parallax errors occur on rendering the ap-

proximation. An impostor is generated for an initial viewport

(that is, a position and viewing direction) and is said to be

valid as long as the visual difference to the (hypothetically

rendered) original geometry is below a certain threshold.

In our application these impostors are rendered remotely

on render servers and streamed to a mobile device where

they are used to approximate the scene. One substantial

advantage of the impostor approach is, that the render time

on the device only depends on the number of impostors and

the resolution of the textures, not on the amount of data they

display. As long as servers can generate and transfer the im-

postor textures sufficiently fast, every scene can be displayed

remotely, regardless of its actual complexity. In this setting,

network bandwidth is the bottleneck and a careful analysis

of bandwidth consumption becomes mandatory.

We develop a mathematical model that allows to quantize

the display error and propose an approximation method that

proves to be optimal with respect to the derived error metric.

We can show, that our method significantly reduces the total

amount of image data that needs to be transferred. The key

aspects of our method are illustrated in Figure I.1.

II. RELATED WORK

A variety of image-based rendering techniques are re-

viewed in [1] and [2]. The first paper focuses mainly on

techniques using planar impostors but also mentions more

exotic approaches like depth images (planar impostors with

per-pixel depth information) and light fields. These and other

techniques like view morphing and view dependent textures

are examined in more detail in the second paper.

In the majority of cases planar impostors stacked with

increasing distance to the observer are used [3], [4], [5],

usually to approximate distant scene parts or single objects.

In contrast, our approach uses impostors to represent the full

scene.

For large objects, different parts of continuous surfaces

can end up on different impostors which makes them tear

apart when viewed from a shallow angle. Avoiding this

particular problem was one focus of the method developed

in [3]. Another interesting use of planar impostors is [6]

where the authors render volume data on mobile phones.

Several approaches using geometrically more complex

impostors can be found in [7], [8], [5]. In [1, Section 3.3]

so-called billboard clouds are used to approximate the shape

of an object using several intersecting planar impostors.

While the impostor creation process for this approach is

quite costly, the result allows examination from different

viewing directions.

A very current example is Street Slide [9] which was

presented at SIGGRAPH 2010 Street Slide sticks photos of

front facades of urban environments to “panorama strips”

that can be browsed by sliding sideways.

The need for accurate analysis of bandwidth and accuracy

estimates, is discussed in [4], [1] without further specifying

how to choose which viewports to load. A more in-depth

analysis on the subject of pre-fetching is given in [10] and

[11]. The former defines a so-called benefit integral indicat-

ing which parts of the scene – quality-wise – contribute most

to the final image, the latter deals with rendering an indoor

scene remotely. The task of remote rendering on mobile

devices is addressed in [12] and [13], mostly focusing on

the technical aspects of the server-client communication.



(a) 32 impostor sets with one layer each (b) Four impostor sets with three layers each (c) One impostor set with five layers

Figure I.1. An impostor representation is only valid inside a small region around the initial viewport for which it has been originally created. For observer
viewports within this validity region (indicated by the dotted line) the display error does not exceed a given maximum value. To faithfully approximate
the scene for all observer viewports inside the shaded area, several impostor sets have to be transmitted.
The validity regions can be enlarged (while keeping the maximum error unaltered) by increasing the number of layers per impostor set. As the number of
required impostor sets drops faster than the number of layers per set increases, this significantly reduces the total number of layers needed to approximate
the scene within the given error.

Usually, depending on the complexity of the approxima-

tion, an impostor is either easy to generate but only valid

inside a small region and thus needs to be updated very

often, or it is valid inside a large domain but complex and

difficult to generate and display [2]. Since the former strains

bandwidth and the latter strains render speed, any image-

based rendering approach is usually a trade-off between the

available capacities.

III. VISUALIZATION MODEL AND ERROR METRICS

To begin with, a mathematical model describing viewports

and projections thereon needs to be established, with which

the rendering and approximation processes can be described.

This yields an error function describing the maximum paral-

lax error of a scene as a function of the observer movement,

called domain error.

Finally, building the observer movement as a probability

distribution, we can describe the expected value of this error.

This interaction error will be the cost function that we intend

to minimize.

A. Perspective projection

Using homogeneous coordinates and projective transfor-

mations [14], we can express perspective projection as a

4× 4 matrix multiplication on the projective space P
3:

Definition III.1. The perspective projection onto the plane

x3 = d towards the origin is a function

πd :

{

P
3\{(0, 0, 0, 1)⊤} −→

x 7−→

P
3

Pdx

with the parameter d > 0 defining the proximity of the

projection plane.

From the intercept theorems one can easily see that

the perspective projection of a point v = (v1, v2, v3)
⊤ ∈

R
3, v3 6= 0 onto the plane x3 = d is given by

( d
v3

v1,
d
v3

v2, d)
⊤ which, using homogeneous coordinates,

equals (v1, v2, v3,
v3

d )⊤. This yields the projection matrix

Pd :=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0







.

B. Viewports

Any viewport can be described

by five values c1, c2, c3 ∈ R,

ϑ ∈ [−π/2, π/2], ϕ ∈ [−π, π), defining an affine

transformation χ, which is the combination of a translation

by the vector (c1, c2, c3)
⊤ followed by a rotation around

the x1-axis with the angle ϑ and a rotation around the

x2-axis with the angle ϕ (cf. Figure III.1). Actually there is

a sixth value which represents a rotation around the viewing

direction. Such a rotation, however, does not change the

image besides rotating it. We assume the rotation to be

lossless, which is why we do not need it for our purposes.

Figure III.1. The angles ϕ and ϑ of a viewport χ

We condense all five values into a single vector

c := (c1, c2, c3, ϑ, ϕ)
⊤. When describing viewports, we



will use this vector c and the associated transformation

χc interchangeably. In particular, we will identify sets of

viewports with subsets of R5:

Definition III.2. The set

X := R
3 × [−π/2, π/2]× [−π, π) ⊂ R

5

will be called viewport set. For all practical purposes,

however, we want to restrict to viewports inside a given

set of feasible viewports Λ ⊂ X .

Projective matrix representations of χc and its inverse are

Qc =




Bϑ,ϕ Bϑ,ϕc

0 1



 and Q−1
c =




B⊤

ϑ,ϕ −c

0 1





where

Bϑ,ϕ :=





cosϕ − sinϕ sinϑ − sinϕ cosϑ
0 cosϑ − sinϑ

sinϕ cosϕ sinϑ cosϕ cosϑ



 .

We can now calculate a matrix representation of a projec-

tion onto an arbitrary viewport, by combining the matrices

above with the matrix representations of the default projec-

tion πd.

Definition III.3. Let χ be a viewport with an associated

matrix representation Q and let πχ denote a projection onto

the viewport χ. Then, a matrix representation of πχ is given

by Pχ,d = QPdQ
−1, where Pd is the perspective projection

matrix defined in Definition III.1.

C. Rendering process

Let renderable objects be located in a domain Ω. We aim

to simplify the scene by dividing Ω into m disjoined parts

Ωi called cells, replacing each with a planar representation

of their contained objects. These so-called impostors, will be

created for the same initial viewport(s), that is, for a certain

viewport we will create an impostor set with one impostor

per cell, all for that particular viewport. This will be done

for n initial viewports resulting in n impostor sets with m
impostors each.

As long as the current viewport matches the initial view-

port for which the impostors have been created, the impostor

representation coincides with the image of the actual scene.

Changing the viewport, however, will introduce parallax

errors, since depth information has been lost in the impostor

creation process.

To determine this error, we will first regard a single cell

Ωi and a single vertex v ∈ Ωi. For a fixed initial viewport χ1

we calculate the impostor representation v of the actual point

v. Then we assume changing to another variable viewport

χ and calculate the screen coordinates v′ of v and v′ of v
as functions of the viewports χ and χ1 (cf. Figure III.2).

Figure III.2. Rendering process for changed viewport

D. The domain error

For every point in Ω, if we perform the procedure above,

we obtain two images. One image of itself (v′, depending on

χ) and one of its impostor representation (v̄′, depending on

both χ and χ1). The screen distance of these two, measured

in (sub-)pixels is called the screen space error. As we are

hardly interested in the error of a single point, but rather in

error functions expressing the error of the entire scene, for

example the mean error or the maximum error, we aggregate

the screen space error over all point in Ω. As the distribution

of vertices inside Ω is supposed to be unknown, we assume

a uniform distribution and integrate the screen space error

over the entire domain Ω. We will be using the maximum

error which replaces the integral with a supremum.

Definition III.4. Denote the number of cells with m. For

an initial viewport χ1 we define the domain error

D(χ, χ1) := sup
v∈Ω

∥
∥v′(χ)− v̄′(χ, χ1)

∥
∥
2

= max
0≤i≤m

{

sup
v∈Ωi

∥
∥v′(χ)− v̄′(χ, χ1)

∥
∥
2

}

.

This domain error depends on a variable observer view-

port χ and a fixed viewport χ1, for which the displayed

impostors have been initially created. Dependence on χ
implies, that we can not evaluate our impostor approximation

without knowledge of the observer movement. Clearly, we

want to optimize our setup a priory for what reason we need

to find a way to evaluate it without knowledge of χ.

E. The interaction error

Assume we have n impostor sets at hand for viewports

χ1, . . . , χn ∈ Λ ⊂ X and, as before, denote the observer’s

viewport with χ ∈ Λ. Since we can choose from several

impostor sets, we display that set whose initial impostor χk

satisfies

Dp(χ, χk) = min
1≤j≤n

Dp(χ, χj ).



For 1 ≤ k ≤ n let Ξk denote that subset of Λ, on which

Dp(χ, χk) is the smallest of all domain errors, that is,

Ξk :=
{
χ ∈ Λ

∣
∣Dp(χ, χk) = min

1≤j≤n
Dp(χ, χj )

}
. (III.1)

Next, we define a probability distribution P with an asso-

ciated probability density function µ on Λ, for instance, a

uniform distribution over Λ or a normal distribution around

the current viewport χ. These distributions represent the

probability for the respective viewport “to happen”, thus

modeling the expected observer movement. We can then

calculate the expected value of the error by integrating the

domain error Dp over Λ with respect to the probability

distribution P .

Definition III.5. Let n ≥ 1. We define the interaction error

Ip : Λn → R, where

Ip(χ1, . . . , χn) :=

∫

Λ

min
1≤j≤n

Dp(χ, χj ) dP (χ) (III.2)

=

n∑

j=1

∫

Ξj

Dp(χ, χj ) dP (χ).

We expect that the interaction error will decrease as we add

more viewports. We prove this assumption in

Lemma III.6. Let χ1, . . . , χn ∈ Λ. Then

Ip(χ1) ≥ Ip(χ1, χ2) ≥ · · · ≥ Ip(χ1, . . . , χn).

Proof: For 1 ≤ k ≤ n, it is

Ip(χ1, . . . , χk) =

∫

Λ

min
1≤j≤k

Dp(χ, χj ) dP (χ)

≤

∫

Λ

min
1≤j≤k−1

Dp(χ, χj ) dP (χ)

= Ip(χ1, . . . , χk−1).

IV. IMPOSTOR PLACEMENT AND ERROR BOUNDS

The efficiency of the proposed method is based on an

optimal choice of initial viewports for the impostor sets, as

well as an optimized cell partition for each set.

Theorem IV.1. Given renderable objects located in

Ω :=
{
(x1, x2, x3, 1)

⊤∈ P
3
∣
∣ 0 < a0 < x3 < am+1 ≤ ∞

}
,

the optimal cell boundaries for viewport translations are

given by ai = (1/a0 − δi)
−1

, i = 1, . . . ,m for a suitable

δ(m) > 0, and the optimal impostor placement with respect

to the error metrics is

di =
2aiai+1

ai + ai+1
.

Note, that m is finite even for domains with infinite depth,

that is, when am+1 = ∞ for which dm = 2am.

Proof: For viewport translations the minimum of the

domain error D with respect to the projection plane distance

d ∈ [a, b] can be found analytically. For details see [15,

Theorem 3.2].

With this impostor placement, we have the following error

asymptotics with respect to viewport translations:

Theorem IV.2. For a fixed maximal screen space error

ε > 0, the radius r of maximal permissible viewport change

is proportional to the number of impostors per set m.

Proof: This property emerges during the proof of The-

orem IV.1. For details see [15, Remark 3.5].

This Theorem shows, that increasing the number of

impostors per set will strongly decrease the interaction

error, but the number of displayable impostors is bound by

the graphical capabilities of mobile devices. Due to such

limitations, several impostors sets have to be transmitted.

Denote the number of impostor sets with n. Under certain

assumptions we can show that the inspection error can be

bounded by

C1n
−1/5 ≤ I(χ1, . . . , χn) ≤ C2n

−1/5,

for constants C1/2 = C1/2(Λ,m). Proofing these bounds

will be the endeavor of the next section.

V. MODEL EVALUATION

Proposition V.1. Using the R
5-parametrization of the view-

port space, we can regard the domain error D(χ, χk) as a

continuous function f : R5 × R
5 → R which, for moderate

viewport changes, behaves almost linear. More precisely, we

can find positive constants a1, . . . a5 and ā1, . . . , ā5 such that

‖A1(x− y)‖ ≤ f(x, y) ≤ ‖A2(x− y)‖ (V.1)

where A1 := diag(a1, . . . , a5) and A2 := diag(ā1, . . . , ā5).

Proposition V.2. The matrices A1 and A2 depend on the

number of cells m. For viewport translations they are pro-

portional to m−1 as a direct consequence of Theorem IV.2.

Before proceeding, we need the following Lemmata.

Remark V.3. In the following A = B+C means that the set

A is the direct sum of the sets B and C, that is, A = B∪C
and B ∩ C = ∅. In particular, vol (A+B) = vol (A) +
vol (B) .

Similarly, A = B − C means that B = A + C, that is,

C ⊂ B and vol (B − C) = vol (B)− vol (C).

Lemma V.4. Let G be a bounded, measurable, d-

dimensional subset of Rd and let B be a d-dimensional ball

(with respect to a norm ‖·‖) of equal volume (cf. Figure

V.1a). Then ∫

G

‖x‖ dx ≥

∫

B

‖x‖ dx.

Proof: Denote the radius of B with R. Due to G =
G∩B+G\B and B = G∩B+B\G, we can express G as



G = (B −B\G) +G\B. As the volumes of G and B are

equal, this also implies vol (G\B) = vol (B\G). Moreover,

all points in G\B have a radius larger than R and all points

in B\G have a radius smaller than R. Hence,
∫

G\B

‖x‖ dx ≥

∫

G\B

R dx = R vol (G\B)

and, conversely,
∫

B\G

‖x‖ dx ≤

∫

B\G

R dx = R vol (B\G) .

This implies
∫

G

‖x‖ dx =

∫

B

‖x‖ dx−

∫

B\G

‖x‖ dx+

∫

G\B

‖x‖ dx

≥

∫

B

‖x‖ dx−R
(
vol (B\G)− vol (G\B)
︸ ︷︷ ︸

=0

)
.

(a) Lemma V.4. (b) Lemma V.5.

Figure V.1. Accompanying illustrations for the lemmata.

Lemma V.5. Let B and B1, . . . , Bn be d-dimensional balls

(with respect to a norm ‖·‖), such that the volume of B is

the arithmetic mean of the volumes of B1, . . . , Bn. Then

n∑

k=1

∫

Bk

‖x‖ dx ≥ n

∫

B

‖x‖ dx.

Proof: We first regard the case n = 2. Without loss of

generality, let R1 ≥ R ≥ R2.

We define G := (B1 − B) + B2. Then, vol (G) =
vol (B1) − vol (B) + vol (B2) = vol (B) and Lemma V.4

yields
∫

B

‖x‖ dx ≤

∫

G

‖x‖ dx

=

∫

B1

‖x‖ dx−

∫

B

‖x‖ dx+

∫

B2

‖x‖ dx.

From this, the general case follows by induction.

Lemma V.6. Let B be a 5-dimensional ball with radius R.

Then ∫

B

‖x‖2 dx =
4

9
π2R6.

Proof: Straightforward calculation using 5-dimensional

polar coordinates.

With these Lemmata, we can proof the following estima-

tion to the inspection error:

Theorem V.7. Let Λ be bounded and assume a uniform

distribution. Then, the interaction error can be bounded from

below by

I(χ1, . . . , χn) ≥ C1n
−1/5,

with the constant

C1 :=
5

6

(
15

8π2
det(A1)vol (Λ)

)1/5

,

where A1 := diag(a1, . . . , a5) with constants ai > 0 as in

Proposition V.1.

Proof: Let us first recall (III.1) and (III.2). Assuming a

uniform distribution µ(χ) = vol (Λ)
−1

we can rewrite (III.2)

as

I(χ1, . . . , χn) = vol (Λ)
−1

n∑

k=1

∫

Ξk

D(χ, χk) dχ. (V.2)

On the right-hand side, we have to evaluate n integrals of

the form
∫

G
f(x, y) dx. Using (V.1) we define a transforma-

tion of coordinates Φ(x) := A1(x − y) (which is the same

for all n integrals!) and obtain
∫

G

f(x, y) dx ≥

∫

G

‖Φ(x)‖ dx =
1

det(A1)

∫

Φ(G)

‖x‖ dx.

Applying this to (V.2) yields

I(χ1, . . . , χn) ≥ (det(A1)vol (Λ))
−1

n∑

k=1

∫

Φk(Ξk)

‖x‖ dx.

(V.3)

Using Lemmata V.4 and V.5 (with d = 5) we obtain

n∑

k=1

∫

Φk(Ξk)

‖x‖ dx ≥

n∑

k=1

∫

Bk

‖x‖ dx ≥ n

∫

B

‖x‖ dx,

where

vol (B) =
1

n

n∑

k=1

vol (Bk) =
1

n

n∑

k=1

vol (Φk(Ξk))

=
1

n
det(A1)vol (Λ) . (V.4)

With this, we can continue with our estimation (V.3) and

obtain

I(χ1, . . . , χn ≥ (det(A1)vol (Λ))
−1

n

∫

B

‖x‖ dx

Now, we choose to use the Euclidean norm ‖·‖ = ‖·‖2 for

which a 5-dimensional ball with radius R has the volume

vol (B) = 8
15π

2R5. Then, (V.4) implies

R =

(
15

8nπ2
det(A1)vol (Λ)

)1/5

.



Hence, using Lemma V.6,

∫

B

‖x‖ dx =
5

6n
det(A1)vol (Λ)

(
15

8nπ2
det(A1)vol (Λ)

)1/5

.

Inserting this into (V) we finally obtain

I(χ1, . . . , χn) ≥
5

6

(
15

8nπ2
det(A1)vol (Λ)

)1/5

.

This Theorem has proven, that the efficiency of any choice

of impostor sets can not be better than the given estimate.

The following Theorem constructively proves, that a choice

of impostor sets with the desired asymptotics exists, that is,

that this estimate is actually achievable.

Theorem V.8. Let Λ be bounded with a uniform distribution

and let Λ̃ ⊃ Λ be an enclosing cuboid. Then, there is a set of

viewports χ1, . . . χn for which the interaction error satisfies

I(χ1, . . . , χn) ≤ C2n
−1/5,

with the constant

C2 :=
π2

36

(max{ā1, . . . , ā5}diam(Λ̃))6

det(A2)vol (Λ)
,

where A2 := diag(ā1, . . . , ā5) with constants āi > 0 as in

Proposition V.1.

Proof: To begin with, we will proof the assertion for

those n which are the fifth power of a whole number, that

is, for n1/5 ∈ N. The general case will be derived from this

case later.

First, a bounded Λ can be embedded into a cuboid Λ̃.

For an n as above, there is a regular decomposition of Λ̃
into five-dimensional cuboids Ξk with initial viewports χk

at their respective centers.

Using the estimation f(x, y) ≤ ‖A2(x− y)‖ = ‖Ψ(x)‖
with the same arguments as in the proof of Theorem V.7,

we obtain

I(χ1, . . . , χn) ≤ vol (Λ)
−1

n∑

k=1

∫

Ξk

D(χ, χk) dχ

≤ (det(A2)vol (Λ))
−1

n∑

k=1

∫

Ψk(Ξk)

‖x‖ dx

≤ (det(A2)vol (Λ))
−1

n

∫

B

‖x‖ dx, (V.5)

where, in the last step, we used that all cuboids Ψk(Ξk)
are identical and can be embedded into a ball B. For this

the radius needs to be at least

R =
1

2
diam(Ψk(Ξk)) ≥ max{ā1, . . . , ā5}

diam(Λ̃)

2n1/5
.

With this and Lemma V.6 we finally obtain from (V.5)

I(χ1, . . . , χn) ≤
π2

72

(max{ā1, . . . , ā5}diam(Λ̃))6

det(A2)vol (Λ)
n−1/5.

Now, for the general case, we divide Λ̃ into ñ :=
⌊n1/5⌋5 ≤ n cubes. This is possible because ñ is the fifth

power of a whole number (ñ1/5 ∈ N). Moreover,

ñ−1/5

n−1/5
=

n1/5

⌊
n1/5

⌋ ≤

⌊
n1/5

⌋
+ 1

⌊
n1/5

⌋ = 1 +
1

⌊
n1/5

⌋ ≤ 2,

that is, ñ−1/5 ≤ 2n−1/5. Hence, by this and Lemma (III.6)

I(χ1, . . . , χn) ≤ I(χ1, . . . , χñ)

≤
π2

72

(max{ā1, . . . , ā5}diam(Λ̃))6

det(A2)vol (Λ)
ñ−1/5

≤
π2

36

(max{ā1, . . . , ā5}diam(Λ̃))6

det(A2)vol (Λ)
n−1/5.

Remark V.9. As stated earlier, the matrices A1, A2 depend

on the number of cells m. With the assumptions in Propo-

sition V.2, it follows that I = O(m−1n−1/5).

VI. CONCLUSION

In this text, we developed a mathematical model which

allows to measure, analyze and optimize the display error

of image-based approximation techniques. The error asymp-

totics derived for our method based on parallelized rendering

shows a clear advantage over traditional remote visualization

concepts like Virtual Network Computing (VNC) which,

under ideal conditions, represent the scene by one image

m = 1. In contrast to this, m = 10 impostors with n = 1
viewport cover the same volume of permissible viewports,

as m = 1 impostors for n = 10000 optimally chosen

viewport sets. Considering the bandwidth O(mn) needed for

transmission of impostors compared with the error contribu-

tion O(m−1n−1/5), the method offers significant decrease of

bandwidth consumption, and low latency rendering for the

user.

The proposed method strongly benefits from graphical

capabilities of clients, such as mobile devices, and will

increase its efficiency for each new generation providing

increased graphical performance. Due to the parallelization

of server-sided image generation, and the proven efficiency

thereof, the method is applicable to large and distributed data

sets for visualization on mobile devices and thin clients.
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