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Abstract

Driven by today’s supercomputers, larger and larger sets of data are created during numer-
ical simulations of geoscientific applications. Such data often describes instationary processes
in three-dimensional domains in terms of multi-dimensional data. Due to limited computer
resources, it might be impossible or unpractical to store all data created during one simula-
tion, which is why several data reduction techniques are often applied (e.g. only every nth
time-step is stored). Intuitive scientific visualization techniques can help to better understand
the structures described by transient data. Adequate reconstruction techniques for the time-
dimension are needed since standard techniques (e.g. linear interpolation) are insufficient for
many applications. We describe a general formalism for a wide class of reconstruction tech-
niques and address aspects of quality characteristics. We propose an approach that is able to
take arbitrary physical processes into account to enhance the quality of the reconstruction.
For the eruption of the volcano Eyjafjallajkull in Iceland in the spring of 2010, we describe a
suitable reduced model and use it for model-based visualization. The original data was created
during a COSMO-ART simulation. We discuss the reconstruction errors, related computa-
tional costs, and possible extensions. A comparison with linear interpolation clearly motivates
the proposed model-based reconstruction approach.

1 Introduction

Nowadays, geoscientific phenomena such as global warming and the greenhouse effect are of pub-
lic interest and much research is done in these fields. Related questions interdisciplinarily refer
to several applied sciences such as meteorology, geochemistry, geomorphology, amongst others.
Therefore, a great diversity of models and corresponding solution procedures are used and large
data sets are typically created, often several gigabytes of data or considerably more. The ever-
growing computing power available in computing facilities accessible for researchers allows for more
complex models, higher accuracy in the computations, and also the creation of more data.

Most often, the analysis of such data requires a complex working sequence, and the recovery of
an intuitive and deep-going comprehension of the implicitly described features of interest is non-
trivial. Tailored imaging tools can facilitate this step of cognition by filtering existing data and
displaying only the important subsets with adequate techniques of scientific visualization (Bonneau
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Figure 1: Trajectory of a particle (red circle) and positions at time ¢ = 0,1,2,3 (left), the linear
interpolation of the trajectory based on the three positions at points in time ¢ = 0,1, 2,3 (middle),
and the trajectory calculated using an efficient, simplified model (right).

et al. 2006). Most often, the investigated data is multi-dimensional (i.e. multiple properties such
as temperature and wind are given) and defined on a three-dimensional domain. Transient physical
processes are typically represented by a description of the spatial state at a selection of points in
time within the time horizon. A common approach to keep the total data amount economically
justifiable is to store the state of the system only at a few points in time, e.g. one description per
hour. By this data reduction, a large portion of the data is eliminated irrecoverably, as long as the
same calculations are not repeated again.

If the time evolution of some process is described implicitly by a data sequence, the time
corresponding increments and number of time steps must fit the time-scale of the inspected feature.
If more data is needed (e.g. for comprehensible animated visualizations), additional data sets
must be reconstructed at intermediate time steps. Simple reconstruction methods ground on
interpolation techniques such as polynomial or spline interpolation. In this case, the interpolation
is calculated based on the information given in the data, only. In Fig. 1, an example of a rotating
particle is sketched. The linear interpolation of the particle’s trajectory shown in the middle panel
is piece-wise linear and only a very rough approximation of the physically correct circular trajectory
(see left panel). This is due to the very coarse time-resolution consisting of three time-steps during
one circular motion.

In this article, we describe an approach of data reconstruction that incorporates a physical
model additionally to the available data. By the consideration of such a model, a priori knowledge
can be exploited in contrast to purely interpolation techniques. In the right panel of Fig. 1, the
reconstructed trajectory of the particle assuming a reduced model is shown. The trajectory is
almost circular, but the end positions of the reconstructions indicated by green circles are not
located at the given particle positions (red circle). This gap between the reconstructed final state
and the given data arises from the fact that the deployed reduced model is only an approximation
of the original model. Certainly, this gap can be minimized by different techniques which will be
addressed later. While standard interpolation techniques can be applied universally, the model-
based reconstruction approach requires an adequate model. Obviously, the quality and also the
related computational costs of the reconstruction can be controlled by the specific choice of this
model. We describe the general reconstruction approach based on models that are given by means
of partial differential equations. Many phenomena in the geosciences can be modeled in terms of
instationary partial differential equations which makes this approach quite universal. High quality
can be achieved only if the applied reduced physical model is adequate for the phenomenon included
in the data.

As a proof of concept, we investigate the scenario of the eruption of the volcano Eyjafjallajkull
in Island in April 2010. Large amounts of volcanic ash was injected into the atmosphere and
was transported rapidly towards Europe. High-fidelity simulations of this scenario were calculated
with the on-line coupled model system COSMO-ART (Vogel et al. 2009) which will be described
in Sec. 3. During the numerical simulation run data files containing the wind and the distribution



of six different ash species in an one-hour stepping were stored. We propose a simplified physical
model for the reconstruction of the evolution of the ash distributions between these existing data
sets. In Sec. 4 we describe the details of the applied reduced model and the simplifications made.
With this system the reconstruction can be computed very efficiently on a desktop computer.
The results discussed in Sec. 5 clearly motivate the proposed approach of a problem-dependent
reconstruction-model.

2 Concept of reduced model for visualization

In this section, we give an abstract description of the data reconstruction task for visualization of
instationary data and discuss related quality characteristics. We demonstrate that the standard
approach of linear interpolation fits into this formalism and motivate the use of a reconstruction
approach that makes use of a physical model in addition to the given data.

We assume that a physical process denoted by w : [0,7] — X should be visualized for the
interval [0,7]. Here, X denotes some arbitrary space in which the state of the system can be
described (e.g. X = R in case of a scalar-valued solution such as temperature). The physical
model that exactly describes the aforementioned process is denoted by F. In this case, the exact
model F, the initial state «(0), and the solution u fulfills the following relation:

Flu(0)](t) = u(t) Ve [0,T]. (1)

This equation states that model F' prolongates the state of the system from u(0) at time ¢t = 0
through time such that at time ¢ the determined state equals u(t). A very general description of
an approximative model can be given in a similar fashion. The approximative model ® fulfills the
relation

O(t) ~u(t) Vtelo,T). 2)

The definition of the approximative model ® can include several parameters (e.g. states u(t;) at
some points in time ¢;, physical parameters such as a viscosity parameter, and so forth).

The approximative model ® will be exploited as an interpolation between known states of
the exact model F. The usage of a physical model equation to determine the interpolation mo-
tivates the term model-based reconstruction. Important aspects of an approximation are its ac-
curacy, robustness and stability, parameter dependence, coupling, and computational effort. We
denote the interpolation operator for the solution u between time steps ¢;_1 and t; depending
on states u(t;—1) and u(t;) by ®[t;—1,t;, u(ti—1), u(t;)](t). Then, the accuracy of the approxima-
tive model can be analyzed using a suitable norm of deviation ||®[t;—1,t;, u(t;—1), u(t;)] — ul|. If
the solution is only available for specific states, a variant is to analyze at interpolated states
such as ||P[ti—1, i1, u(ti—1),u(t;iy1)](t;) — u(t;)|]. Since the approximate models are iterated
for each interpolation interval, for example in [¢t;_1,¢;), additional continuity conditions such as
@[ti,l,thu(ti,l),u(ti)](ti,l) = ’Lb(tifl) and @[ti,l,ti,u(ti,1)7u(ti)](ti) = u(tz) seem desirable,
but should not be overrated, since this is always achievable using simple interpolation schemes
that can decrease the overall accuracy. This motivates the use of approximation schemes based
on mathematical models for a simplified physical model, that is expected to outperform general
interpolation concepts. This expectation is based on the concept to provide more information to
the visualization than traditional approaches that only exploit data states. This additional infor-
mation is given by the simplified physical model, that now links the visualization to the numerical
simulation.

The aspect of robustness is mostly defined by the numerical method and numerical parameters
chosen for the approximation. We expect the approximative model to be solvable and stable for
any given valid or slightly disturbed state data, yielding valid results. The treatment of insta-
tionary boundary conditions, or other outer parameters of influences might need special treatment
to improve the robustness of the computed approximative model, as it will be discussed in the
following text.

The approximative models need state information for the computation. As simplified physical
models, we generally expect that only partial information of the full state is needed. This data
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Figure 2: Illustration of the effect of linear interpolation on iso-surfaces for scalar data. The correct
physical process is moving between the blue states, the intermediate state in red. The green state
denotes the interpolated intermediate state.

austerity decreases the amount of data that is to be managed for visualization, but in general we
cannot expect continuity if the final state information remains unused. This approach is used for
fast forward schemes. This is no great loss, since the results can be amended using simple linear
interpolation schemes late in the interval. Commonly, the amount of coupling within the inter-
polation scheme is an important issue for the computational effort, and espacially for a potential
speed-up using parallelization. While a linear interpolation can indeed provide a coupling from
starting state to the end, this is of course a trivial approach only applicable to slowly changing
phenomena, as we will see in the following, where we give examples of models that are covered by
this abstract formulation.

2.1 Linear interpolation reconstruction

A reconstruction based on linear interpolation is given by

u(tz) — u(ti_l)

Plinintp. [ti—1, tis w(ti—1), u(ts)](t) == u(ti—1) + P—
1 Uti—1

(t —tiz1). (3)

This function describes for any ¢ € [t;_1,t;] the linear interpolation between the two states u(t;—1)
and u(t;). By definition, it is guaranteed that the reconstructed data matches the two states at the
corresponding points in time. In the following, we will sometimes omit the arguments in squared
bracket for better readability. As illustrated by Fig. 2, the linear interpolation yields acceptable
results for slowly changing phenomena, but does not perform well in general. This limits the use of
this general approach to either slowly changing data, or as an amendment of near-accurate results,
as we expect to gain from approximate models.

2.2 Model-based reconstruction

Many physical processes can be considered as dynamical systems, described by means of an initial
state and an evolution law, i.e. initial-value problems. Often such evolution laws are given by
partial differential equations (PDE). In that case, the problem formulation on a spatial domain 2
and time interval [tstart ¢end] with ¢start < ¢end hag the form

F(u(t,z)) = [(t,z), (tx)€ [t ] xQ, @)
w(t*™t x) =U(z), 2xz€9Q,

with additional boundary conditions. The differential operator F, the external force term f, and
the initial state U are defined according to the considered scenario. We assume the problem
to be well-posed and apply a discretization method by means of a time-stepping scheme, given
on a partitioning 5%t = t(0) < (1) < ... < ¢t(N) = ¢end of the time interval. In that case,



an approximation u(® of the solution at time ¢(¥) can be calculated successively by means of a
corresponding solution-operator A® for any i =1,..., N:

w® =U, = A0 vi=1,... N. (5)

This is a standard approach for the solution of a parabolic problem and is typically combined with a
discretization in space by means of a finite element, finite difference, or finite volume method. This
concept is deployed in model-based reconstruction where for any point in time t() & [¢start gend]
the reconstructed state of the process is given by

e [U](tD) := u®, (6)

for any ¢ = 1,..., N. The sequence of approximations depends only on the initial state U and the
solution operator which does not take any future states into account. Therefore, this reconstruction
approach will not make sure that a given final state of the reconstruction interval will be achieved.

For any two states corresponding to the points in time ¢;_; and t; of some given data, a
partitioning can be inscribed and approximate solutions can be calculated as previously described.
Since the underlying PDE and its discretization can be arbitrarily chosen, this reconstruction
approach is very generic and can be applied to many problems. In the next section, we will give
an example based on the convection diffusion problem.

3 Scenario of volcano ash data

In this section, we present the scenario of the eruption of the volcano Eyjafjallajkull in Island in
April 2010. The details related to the model system that was used to calculated the high-fidelity
simulation are given. Subsequently, the resulting output data of the volcanic ash that is starting
point of the model-based reconstruction is described.

3.1 The simulation in the model system COSMO-ART

The COSMO model is the operational weather forecast model of the German weather Service DWD
(Deutscher Wetterdienst). It is a non-hydrostatic regional model and is based on the thermo-hy-
drodynamical equations describing compressible flow in a moist atmosphere. Details about the
dynamical core and the numerical scheme can be found in (Steppeler et al. 2003; Baldauf et al.
2011).

COSMO-ART (Vogel et al. 2009; Bangert et al. 2012) is an extension of COSMO, where ART
stands for Aerosols and Reactive Trace gases. It is a comprehensive model system to simulate the
spatial and temporal distributions of reactive gaseous and particulate matter. The model system
is mainly used to quantify the feedback processes between aerosols and the state of the atmosphere
on the continental to the regional scale with two-way interactions between different atmospheric
processes.

The model system treats secondary aerosols as well as directly emitted components like soot,
mineral dust, sea salt, volcanic ash and biological material. Secondary aerosol particles are formed
from the gas phase. Therefore, a complete gas phase mechanism is included. Modules for the
emissions of biogenic precursors of aerosols, mineral dust, sea salt, biomass burning aerosol and
pollen grains are included. For the treatment of secondary organic aerosol (SOA) chemistry the
volatility basis set (VBS) was included (Athanasopoulou et al. 2013). Wet scavenging and in-cloud
chemistry are taken into account (Knote and Brunner 2013). Processes as emissions, coagulation,
condensation (including the explicit treatment of the soot aging), deposition, washout and sedi-
mentation are taken into account. In order to simulate the interaction of the aerosol particles with
radiation and the feedback of this process with the atmospheric variables the optical properties of
the simulated particles are parameterized based on detailed Mie-calculations. New methods to cal-
culate efficiently the photolysis frequencies and the radiative fluxes based on the actual aerosol load
were developed based on the GRAALS radiation scheme (Ritter and Geleyn 1992) were developed
and are implemented in COSMO-ART. To simulate the impact of the various aerosol particles on



the cloud micro-physics and precipitation COSMO-ART was coupled with the two-moment cloud
micro-physics scheme of (Seifert and Beheng 2006) by using comprehensive parameterizations for
aerosol activation and ice nucleation.

The advantage of COSMO-ART with respect to other models is that identical numerical
schemes and parameterizations are used for identical physical processes as advection and tur-
bulent diffusion. This avoids truncation errors and model inconsistencies. COSMO is verified
operationally by DWD, the model system can be embedded by one way nesting into individual
global scale models as the GME model or the IFS model. All components of the model system are
coupled on line with time steps on the order of tenth of seconds. Nesting of COSMO-ART within
COSMO-ART is possible. Typical horizontal grid sizes vary between 2.8 and 28 km.

For the simulation of the volcanic ash the model domain is consistent with the domain covered
by the operational weather forecast of Deutscher Wetterdienst for Europe. This means 665 x 657
x 40 grid points. The horizontal resolution is 0.0625°, in the vertical the resolution is between
20m close to the surface up to several 100 m at the top of the domain in 20 km height. The time
step is 40s. The reference simulation was performed for 120 hours. The volcano emissions were
represented by 6 classes of particles with a diameter between 1 and 30 um. Details about the
parameterization of the source height and the source strength can be found in (Vogel et al. 2013).
Sinks for the ash particles are wet and dry deposition as well as sedimentation. The initial and
boundary conditions for the meteorological variables were taken from the operational runs of the
GME. Since the output of one time step is in the order of 1 GB it is restricted to hourly output.

The numerical simulation of this scenario was calculated on the HP XC3000 computer system
hosted at the Steinbuch Centre for Computing (SCC) at the Karlsruhe Institute for Technology
(KIT). On this machine, the calculation using 64 CPUs (Intel Xeon 64-bit, 2.53 GHz, Quad-Core)
takes about 16 hours.

3.2 Description of the model output

The output data of the COSMO-ART simulation that is stored for visualization purposes contains
six ash particle concentrations and the wind field

p:QxI—RE, v:QxI— R (7)

given in the atmospheric domain 2 over a time period of five days I = [0,120] in units of hours.
There is one snapshot given at ¢, = n, (n =0,...,120), with an one-hour stepping.

The atmospheric domain is given as a discrete grid in a geographical coordinate system in units
of longitudinal and latitudinal degrees from 20°00’0” .S, 18°00'0” W to 21°00'0” N, 23°30°'0” E. The
height above sea level is given in pressure levels. For values near to the earth’s surface the pressure
levels are aligned to the orography. The ash and wind fields are given on this grid in the GRIB
data format (Wor 2003). Figure 3 shows a visualization of the ash plume developping over Europe.

The evaluation and interpretation of the model output is usually done using two dimensional
horizontal or vertical cross sections. However due to the huge amount of data and due to the time
dependency of the atmospheric processes only a small fraction of the data can be really looked
at. This limits the understanding of the interaction of the atmospheric processes with the ash
plume. With three-dimensional visualizations as shown in Fig. 3, complex spatial structures can
intuitively be experienced. For instationary processes, new methods for displaying the data within
a reasonable time-frame are urgently needed. Such a method for the reconstruction of the time
evolution is described in the following.

4 Low-fidelity model for the dispersion of a volcano plume

In the previous section, a model for the evolution and dispersion of the Eyjafjallajkull plume was
presented. The density distributions of different particle species and wind fields calculated using
this model were exported into files, one file per hour. In the following, we present a low-fidelity
model for the reconstruction of the ash plume dispersion from this hourly data. While in the
introductive example (see Fig. 1) the trajectory of one single particle was reconstructed, we are



Figure 3: Snapshots of the volcano ash cloud after one, two, three, and four days of development.
Visualization of the COSMO-ART simulation data using ParaView (Henderson 2007). Ash particle
concentrations are represented by iso surfaces, the wind field as arrows at an average height of
4.8 km, the vertical axis is scaled by a factor of 75.

interested in the distribution of the particle densities and apply a partial differential equation to
describe its development. Firstly, we describe the structure of the COSMO-ART output data
which is the starting point of the model-based reconstruction. Subsequently, we give details of this
method related this scenario including the physical model for the dominating processes.

4.1 Conversion of the mesh structure

For simplicity, we transform the grid structure, described in Sec. 3.2, into a structured grid with
rectilinear Cartesian coordinates. The horizontal components of the geographical coordinates ¢, ;
in units of degrees are converted to plane Cartesian coordinates x;; := wReaTthcﬁij /180° in units
of kilometers. Regarding the vertical dimension, each pressure level k is assigned to its average

height z(k), see Fig. 4. This results in the following discrete representation {2 of the domain
Q = [0,4610] x [0,4550] x [0,22.2] in units of kilometers:

39
Q= J %, Q% :={(z,y,2(k) : (x,y) =@y, i € (0,664), j € (0,656)}.
k=0

We use a corresponding data file format of the Visualization Toolkit (VTK) project (Avila 2004)
since this can easily be opened in many standard visualization tools.

4.2 The continuous model

In this section, we describe a simplified continuous model that we use in the following to reconstruct
the motion of the volcano ash distribution. This model is represented by a parabolic partial
differential capturing effects of advection and diffusion. One major simplification is that the three-
dimensional domain €2 is replaced by a set of horizontal slices 2, which are independently regarded.
This makes it possible to calculate the additional snapshots very efficient on a workstation computer
instead of a high-performance parallel computer.
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Figure 4: Average height above sea level of each pressure level.

The dispersion of the volcano plume is mainly driven by advection due to the wind. Assuming
small vertical wind, the reduced model accounts for the horizontal wind only. Fig. 5 shows the
horizontal and vertical winds on a representative vertical layer. The horizontal wind has almost
everywhere values of more than 10m/s, on some regions even about 60 m/s, while the vertical wind
is comparably small. The different scales of the horizontal and vertical wind motivate to neglect the
vertical wind component and regard the ash dispersion in independent horizontal layers. Obviously,
the influence of gravity is ignored which will be reflected in the numerical results as described later.

The reduced model contains artificial diffusion which is included not only to represent molecular
diffusion. The diffusion represents mixing effects due physical processes that are not resolved such
as turbulence and the omitted vertical advection. In a numerical point of view, the problem is
more stable due to the higher diffusion. It must be noted that the correct level of diffusion is not
known a priori. Instead, it is a model parameter on which the approximation quality and also the
related computational costs will depend on. For the numerical tests described later, we determined
a good choice for this parameter by the solution of an optimization problem.

The volcano as the only source of particles should get particular attention. It spreads ash
particles into the atmosphere continuously in time, which is described indirectly by the given
COSMO-ART output data. For the reduced model, the effect of the volcano eruption should be
considered. On the one hand, the reconstructed ash distributions should correspond to the given
data as closely as possible, on the other hand, the particle distribution should be governed by the
model equation. One way to include this effect in the reduced model would be by means of a source
term for the ash. Since no additional information related to the volcano should be used for the
reconstruction, we include a localized interpolation and smoothing step into the discrete model.

The resulting reduced model including effects of advection and diffusion and an abstract force
term is stated in the following. The evolution of the vector of six ash particle species, denoted
by p, in each horizontal layer is described by a two-dimensional convection-diffusion problem. For
the reconstruction in the time interval I,, the particle density p, is initiated by the respective
snapshot at time t¢,,. The partial differential equation for each horizontal level k£ and time interval
I,, has the form:

Op+v-Vp—vAp =f in Qp x I,
p =0 in 0Q x I, (8)
p(tn) = pn in Q,

with the artificial viscosity v. The zero boundary conditions can be justified by the vanishing ash
densities at the domain boundary at all times in the COSMO-ART data. The wind field © is
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Figure 5: Magnitude of horizontal wind (left) and vertical wind (right) in units of m/s at pressure
level 20 with an average height of 4.3km on April 18, 2010, at 10pm.

calculated from the snapshots by linear interpolation in time

B(t) = Prinintp. [fns ot 1, V(tn ), V(tnt1)] (). 9)

4.3 Discretization

In this section a standard finite difference discretization based on the explicit Euler scheme of
problem (8) is described. The resulting algorithm allows for efficient calculation of the particle
concentrations at intermediate points in time between t¢,, and t,1. The numerical scheme is easy
to implement and leads to a fast algorithm. Details can be found in (Hindmarsh et al. 1984).

The Laplace-operator and the convection term are each approximated by a central difference
quotient. The time derivative is approximated by a forward difference quotient. For given time-
step size d; > 0, the following scheme has to be solved for each point in time 7}, = t,, + md; with
m=1,2,...,M, where M := (t, 11 — t,)/:

ﬁlfm(wi,j7 T’rﬁ—i—l) = plfm(wi,j7 T:rlb)

_E(ﬁl(ww’ 7o) (Prem (Ti1,5, 7o) — Prem (Ti1,5, 7))

A . (10)
_E(v2(ww’ 7o) (Prem (T 1, 7o) — Prem (Tij—1,Tp0)))

Ot
+ 53V (Ot (Tize1, Ton) + A1 (g1, i) — A1 (g, 7o) -
No force term is considered in this scheme, i.e. f = 0, since the effect of the volcano eruption is
considered in a subsequent interpolation and smoothing step described later. The density at all
boundary nodes are fixed to be zero and are not changed in any state of the procedure during the
numerical simulation.

4.4 Stability

The stability of the numerical scheme (10) for the explicit Euler method for problem (8) can be
studied by means of a von Neumann analysis, see e.g.. (Hindmarsh et al. 1984). Two stability
conditions restricting the time-step size can be obtained

h? 4y
and & < ——.
[[v]?

0y <
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Figure 6: Discrete Gaussian used as interpolation coefficients represented as a stencil of the size
11 x 11. Each pixel refers to one grid point in the discrete domain

Although these conditions guarantee stability of the discrete solution, they do not guarantee the
ash concentrations to remain non-negative over the simulation time. Unphysical negative values
may occur if the Péclet number P = ||v||h/(2v) is greater than one. Obviously, P does not depend
on the time step size §;, but on the velocity field v as well as on the grid spacing A which in our
case should not be changed (e.g. by grid-refinement). Therefore the Péclet number can only be
changed by means of the viscosity v. A viscosity high enough to guarantee the Péclet number to be
smaller than one would lead to a very strong mixing effect. This mixing would be much stronger
than needed and would lead to non-physical, overemphasized smoothing of the particle densities.
Therefore, we apply a post-processing procedure in which the negative particle concentration values
are increased to zero.

4.5 Discrete volcanic particle injection model

We mimic the source of ash due to the volcano eruption by adopting the time-interpolated particle
concentrations in each time step within a small neighborhood of the volcano. The integration of
this interpolated data into the discrete solution calculated by the low-fidelity model is guaranteed
to have a smooth spatial transition. In the horizontal layer k, the linear interpolation in time of
the particle concentration at the volcano’s position m"“/ € Qy is given by

ﬁ(ﬂfv, t) = Pjin intp. [tnv tnt1, P(tn)a P(tn+1)] (mVa t)- (12)

Setting the interpolated particle concentration only at the volcano’s position would lead to high
gradients and numerical oscillation in the surrounding domain. For a smooth and stabilizing
transition, we use a weighted linear combination of p and the particle concentration pigy, determined
by the low-fidelity model. The weighing coefficients w;; represent a discretized Gaussian bell
function on a 11 x 11 stencil. This stencil is located at the volcano position and covers a sub-domain
denoted by Qk. At the grid points x;; € Qk the weights are defined by w;; := exp(—%7 |33ij —a:v|2) €
[0,1] and tend to zero at the boundary, see Fig. 6. In each time step, after the solution has been
updated according to equation (10), this solution is modified by

Prem (T, T0) 1= wig P, 7)) + (1 — wij) prgm (Tig, 7)), for @5 € Q. (13)

4.6 Implementational aspects

We implemented a discrete model of the previously described scenario in C+4. The conversion of
the original COSMO-ART data from the GRIB format to a structured VIK format was done in
a preprocessing step. The work-flow for the reconstruction of the particle concentration between
any two successive time steps t,, and ¢, is listed in Algorithm 1.

For this scenario, in each snapshot of the original data at least one half of the domain has
vanishing particle concentrations. Taking this fact into account, the computational costs for the
reconstruction of the densities can significantly be reduced. The computational costs scales linearly
with the number of nodes that have to be updated in each time-step. In our implementation,
we determined the smallest rectangle in each horizontal layer that contains all non-zero particle
concentrations within the initial and the target snapshot (one hour later). We applied the numerical
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Read initial snapshot p(t,) using VTK library
Determine highest stable time step size due to equation (11)
Setup stencil for discrete scheme
for m =1...N do
Update ash particle concentration pig, (7)) in any horizontal layer
if mmod N,;s == 0 then
Visualize pigm (7))
end if
end for
Calculate error ||pigm (73) — p(tn+1)|| if required

Algorithm 1: Work-flow of the implementation.

scheme only to the nodes in these sub-domains which led to a fraction of the original computational
costs. In particular for the first intervals I,, with n < 50 the ash particles are localized very strongly.

The presented low-fidelity model is an approximation of the original COSMO-ART model and
therefore its (exact) solution is already related to some error as discussed in the next section.
Therefore it is justifiable to calculate only approximative solutions with moderate accuracy to
increase the performance additionally. In numerical tests we verified that the reconstructed data
based on single precision accuracy computations are related to errors in the order of 0.01 % com-
pared to those with double precision accuracy. This motivates to utilize very performant hardware
for the data reconstruction (e.g. GPUs) that can exploit the highest performance using single
precision accuracy.

5 Numerical results

In this section, we investigate the results of numerical test series with respect to the quality
and also the related computational costs. We compare data reconstructions calculated by linear
interpolation and by the low-fidelity model approach both qualitatively and quantitatively.

5.1 Qualitative comparison

We consider three successive time-steps and evaluate the reconstructions of the two-hour interval.
The intermediate time-step (after one hour) serves for purposes of error evaluation only. In Fig.
Ta, the reconstruction error of a linear two-hour interpolation is shown. The white line sketches
the structure of the ash distribution as given in the original data at time step n = 97. At that
state, the linear interpolation corresponds to the mean average and therefore contains features of
both snapshots at n = 96 and n = 98. The physical evolution process is not captured correctly.
High particle concentrations are reconstructed only at places where both the initial and the final
snapshot have such high concentrations. In contrast, the reconstruction by means of the low-
fidelity model can structurally reproduce the evolution process, see Fig. 7b. A simulation started
at m = 96 indicates good agreement with the original data at n = 97 and even at n = 98.

The aforementioned property of the interpolation approach that the highest function values
are not necessarily preserved has disadvantages as the following 3D visualization shows. Figure 8
shows an ash distribution reconstructed by the interpolation approach and also by the low-fidelity
model. The ash particle concentrations are indicated by means of an iso surfaces visualization. In
the original data at n = 80 (left) and at n = 81 (right), the two small separated ash clouds clearly
can be seen. Regarding the model-based visualization, the iso surfaces continuously move from the
start position to the target position. This is indicated by the visualization after half of the interval
time, n = 80.5, in the lower panel. In contrast, the concentration values computed by the linear
interpolation at that time fall below the iso value for the visualization. This physically incorrect
artifact leads to a vanishing ash cloud in the upper panel of fig. 8.
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(a) Linear interpolation of the ash particle concentrations of time step
n =96 and n = 98.

(b) Result of the low-fidelity simulation from time step n = 96 to n = 98
plotted for n = 97 and n = 98.

Figure 7: Comparison of the reconstructed and linearly interpolated particle concentration of
the ash species with lightest particles of the weight 1.0 - 1075 ug at the mean height of 9.8 km.
The white line represents high particle distributions as described in the original data. For the
reconstruction, a viscosity of v = 0.01km?/s was applied.

_—r Linear Interpolation
n = 80.5

\ Y/

Snapshot n = 80 Snapshot n = 81

Figure 8: Iso surface visualization of the ash particle concentrations. The linear interpolation at
n = 80.5 does not correctly capture the ash transport since only one of the two ash clouds are
visualized.
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As additional material a 3D animation of this scene can be found on the SpringerRefer-
ence website http://www.springerreference.com. It shows a comparison between the original non-
interpolated data, the reconstructed data by linear interpolation, and the data reconstructed using
the low fidelity model. The ash particle concentrations in the animation are represented by iso
surfaces, similarly to Fig. 3. The wind is indicated by colored arrows at an average height of
4.8 km above sea level. For clarification purposes the vertical axis is scaled by a factor of 75 of the
original height above sea level. The linear interpolation in time gives the impression of a pulsating
ash dispersion, arising from the artifact described in the previous paragraph. The model-based
visualization shows a flowing transition from one snapshots to the next with the exception of a
small correction at the end of each construction interval. For the animation and Fig. 8, a viscosity
of v = 0.005km? /s was applied, which seems to be a good choice as described in the following
section.

5.2 Quantitative comparison

For the quantitative examination of the reconstruction quality, we introduce an error measure
which represents the error of all particle species s = 1,...,6 and the snapshots n = 8,...,120 by
means of one scalar value. The first snapshots are neglected since no ash particles are contained
therein. The error measure is defined as the mean value of the relative L2-error E,(pS, .) =

||pfnode(t’ﬂ) - pfiata(t’ﬂ)||/||p3ata(tn)|| and has the fOI‘HlI

120 6

Erode = ﬁ Z Z En(pfnode)’ (14)

n==8 s=1

This error measure is the basis of the following quantitative evaluation.

We expand the simulation time period again from one hour to two hours such that the error of
the linear interpolation Ejpierpotation, €valuated at the intermediate time-stamp, can be computed.
The low-fidelity simulation is initialized at the time step ¢,, and the convection field as well as the
particle concentrations for the volcano model are identified by linear interpolation between t,, and
tpeo. Thus, we compute the error with respect to the original data at t,11 (denoted by Fifm1)
and t,4o (denoted by Ejpynz). It is reasonable that the linear interpolation has its greatest error
at the intermediate time-stamp ¢,,+1. For the low-fidelity reconstruction one can assume that the
error grows in time and therefore the error is maximal at the end of the considered interval at
tnt2. Figure 9 shows the results for this artificial set-up. The general error of the interpolation
amounts to Ejnterpolation =~ 0.43. The errors obtained for the low-fidelity model are for both the
intermediate Figyp and the final error Eigy,o smaller as long as the viscosity v is sufficiently small.
For high viscosities the resulting mixing effects are too high for the model to correctly describe
the evolution of the ash plume. With decreasing viscosity the results gain the required sharpness
and the error at intermediate time falls down to Ejg,1 &~ 0.27 and at the final time step reaches a
slightly higher value of Ejgne =~ 0.30. Here the error curves indicate the existence of a minimum,
where the mixing effect seems to capture the physics at best. To conclude for this scenario, the
low-fidelity model with a suitable choice for the viscosity is superior to the linear interpolation.

Next we regard the set-up for the actual reconstruction of the ash particle concentration within
each time interval. Here the simulations are supposed to reconstruct the evolution from one
time step t, to the next t,,1. In contrast to the validation set-up described above the data of the
convection field and the volcano model is now interpolated between one and the following snapshot.
Figure 9 indicates that the best reconstruction with an error of Ejg, &~ 0.19 can be expected for a
viscosity of v = 0.005km?/s. This was the parameter of our choice for the final reconstruction of
the evolution. Within a range of 0.003 km? /s <v <0.01 km?2 /s the low-fidelity simulations show
similar sizes of the error. However, the computational costs increase with decreasing viscosity. This
effect is explainable by the direct connection between the viscosity and the stability condition on
the time-step size, see equation (11). Choosing the expectably highest stable time step size, we get
an expression for the number of needed iterations N = T'||v||?/(4v), i.e. the viscosity reciprocally
governs the computational costs. The dashed lines in Fig. 9 and 10 refer to the computational
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Figure 9: Validation set-up: The solid lines
show the errors of the interpolation and the
low-fidelity reconstruction. The dashed line
represents the average computational costs in
seconds for the reconstruction of the evolution
from ¢, to t,42.
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Figure 10: Reconstruction set-up: The con-
tinuous lines represent the errors of the inter-
polation and the low-fidelity simulation. The
dashed line shows the average computational
costs in seconds for the evolution reconstruc-
tion from t,, to t,41.

costs by means of the average computing time in seconds and approximately show a linear relation
on the logarithmic scales in correspondence to the formal relation. Theses results were obtained
in sequentially run simulations on a desktop workstation with an Intel i7-3770K CPU @ 3.50GHz
with 8 cores. Hence, depending on the available hardware in purpose of the data reconstruction,
a compromise has to be found between accuracy and costs.

5.3 Sources of errors and extensions

As described previously, the orography-following mesh structure of the original data, given in a
geographical coordinate system, is converted to a regular Cartesian mesh in a preprocessing step.
This conversion involves an error due to the different mesh structures which leads to a smoothing
of the data. This interpolation error was accepted since it allows for simple mesh data structures
that facilitate the implementation of the numerical scheme.

One major simplification is the reduction of the three-dimensional domain into a set of inde-
pendent two-dimensional slices. This implicates the downward movement of particles due to their
weight not to be considered. Figure 11 shows a plot of the reconstruction error for the different
ash particle species. It can clearly be seen that the error is larger for the ash distribution of the
most weighty particles. This might be caused by the disregarded effect of the gravity force which
would allow an error reduction of approximately 5% for the largest particles if the gravity force
would be accounted for.

Although the vertical wind is small compared to the horizontal wind, it is not zero, as shown in
Fig. 5, and would transport ash particles in the vertical direction. Also the mixing effects in the
atmosphere have contribution in the vertical direction. The consideration of the three-dimensional
effects of advection and diffusion would require a fully-coupled three-dimensional discrete model.
This would lead to much higher computational costs compared to the presented layer approach.

A fundamental component of the proposed reconstruction approach is the model equation
describing the physical processes considered during the calculation. We used a 2D-version of a
convection-diffusion model to account for the transport due to wind and diffusive mixing. In
Sec. 3.1 we described the COSMO-ART model used to simulate the evolution of the volcano
plume. Besides the ash particle densities and the wind field, several quantities were additionally
(e.g. aerosols, soot, mineral dust, sea salt) considered to account for atmospheric processes that
might be important for this scenario. These quantities and corresponding equations depict possible
extensions for the low-fidelity model. Important components of this full description need to be
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Figure 11: Error of reconstructed concentration data for the different species of ash particles,
calculated based on the viscosity of = 0.005km? /s. The most weighty particle species correspond
to the largest reconstruction error.

identified which typically requires deep knowledge about the models. The quality and performance
efficiency of the model-based reconstruction method essentially depends on the considered model
variant, simplifications made, and the discretization.

Reconstructions based on the fully coupled three-dimensional problem are computational ex-
pensive in general but might be efficiently be applied by means of model reduction approaches.
One simple data reduction strategy is given by neglecting a portion of the available grid points,
e.g. use only every nth grid point in any space direction. This results in a data reduction by a
factor of n3. However reduced spatial resolution is in general related to a strong loss of details and
quality (e.g. the data reduction of the original COSMO-ART data was reduced by this technique
with respect to the time structure). For many applications, very efficient reduced models can be
defined by means of an orthogonal basis of the space spanned by the available snapshots. Using the
proper orthogonal decomposition method (POD) (Kunisch and Volkwein 1999, 2002, 2008), many
problems with very high number of unknowns can be approximated very accurately with less than
100 unknowns only. An important aspect is that the only costly calculations (the determination of
the reduced model) need to be done only once which can be done on a power-full computer system.
For this type of model-reduction a model equation describing the physical behavior is required as
well. For the reconstruction of the volcano ash plume based on POD techniques, the proposed
convection-diffusion model, even with 3D-effects of advection and diffusion, could be deployed.

The starting point of the low-fidelity model described in Sec. 4 is a parabolic partial differential
equation which accounts only for the initial state of each interval. However, it is not guaranteed that
the calculated data at the end of the reconstruction interval will correspond to the given original
data at that time. In general there will be some error due to the use of the low-fidelity model as
we discussed in Sec. 5. This error can be minimized by fitting existing model parameters (e.g.
the viscosity v) such that the saltation-like change at the end of the reconstruction interval is as
small as possible. Of course this non-smooth behavior can be eliminated by some post-processing
operation of smoothing or interpolation, but these approaches lead to additional errors again.
Such problems can be avoided by an alternative problem formulation that takes both states at the
beginning and also at the end of the reconstruction interval into account. This can be achieved
adding mixing effects related to the time-structure. This can modeled by adding temporal viscosity
(e.g. a term of the form —uv; - 92p with viscosity 14 > 0) leading to an elliptic problem formulated
in the space-time domain. The solution of such a fully coupled system can no longer be done by
means of time-stepping schemes as presented before, since all unknowns within the reconstruction
interval are fully coupled. Such problems are typically tackled by means of sparse linear equation
systems and related solution approaches (e.g. direct or iterative linear system solvers). Although
the computational efforts to solve such a problem might be higher than the described time-stepping
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scheme, this approach can be desirable in many applications since the reconstructed data will catch
all states given in the original data. To reduce the costs, adequate model reductions (e.g. POD
techniques) might provide remedy.

6 Conclusion

In this article, we investigated methods for the reconstruction of time-depending processes which
are described at a finite number of points in time only. We gave a general description of such
reconstruction methods. We discussed linear interpolation as one of the standard approaches and
proposed a model-based reconstruction method. In addition to the given data, the latter takes
a physical model into account that approximately describes the underlying processes. For the
eruption of the volcano Eyjafjallajkull in Island in the spring of 2010, we proposed such a low-
fidelity model based on the convection-diffusion equation. We described the discrete model in detail
and presented reconstructions of the evolution of the volcano plume by means of six species of ash
particles. The reconstructions based on linear interpolation and the model-based approach were
compared to the original data, calculated by a COSMO-ART model. Although the low-fidelity
model was only a rough approximation of the original one, it lead to much smaller reconstruction
errors compared to linear interpolation. Such results motivate the use of corresponding low-fidelity
models for various fields of applications for purposes of scientific visualization or post-processing
in general. Finally, some possible extension to the model for the volcano scenario were discussed.

The definition of an adequate low-fidelity model may be non-trivial since a detailed knowledge
about the physics, discretization, and also software programming are needed. The better the recon-
struction model suits the original problem, the less data is needed to achieve a high reconstruction
quality. In that sense, powerful reconstruction approaches allow for substantial reductions of the
needed amount of data to represent simulation results. While the original numerical simulations
usually are conducted on large parallel computer systems, the data reconstruction might be calcu-
lated even on a standard desktop computer. Such efficient reconstruction techniques are essential
for interactive visualization purposes.

The specific selection of a model equation is certainly a key point since it constitutes the physical
processes that will be considered during the reconstruction. On the one hand, it must be able to
describe the relevant features given in the data in an appropriate spatial and temporal scale, on the
other hand, the model should not be too complex both with respect to software engineering and the
computational costs. In the various fields of science and engineering a great diversity of physical
features are considered for which many reconstruction strategies are required. Reduced models for
standard processes (such as the convection-diffusion equation) could be defined universally, at least
for certain problem classes. For highest efficiency, the reduced model might require adaptation to
the particular application or at least existing model parameters might need to be adjusted.

By the freedom to choose an arbitrary low-fidelity model, the user can control the quality of the
reconstruction and also the related computational costs. This allows to define highly performant
methods for applications in which real-time availability or interactivity of the reconstructed result
is relevant. Such methods could be integrated into visualization systems such as Amira (Kon
2009), EnSight (Com 2006), or ParaView (Henderson 2007). In case of ParaView, an extensive
variety of filters exists that can be included into the visualization pipeline to manipulate the
data. In particular, an often-used filter for the linear time-interpolation exists. Model-based
reconstruction methods could be integrated by simply adding an additional filter which can easily
be done since ParaView is an open-source development. If not high performance but high quality
of the reconstruction is needed for some point in time, a more complex model — in the extreme
case the original model — could be applied for reconstruction.

In recent years, numerical methods have been developed which make use of different physical
model equations at the same time, see e.g. (Oden and Prudhomme 2002; Braack and Ern 2003;
Bales et al. 2009). This is often realized by a posteriori estimations of the error related to the
applied models and their control by switching between a selection of available physical models of
different complexities, known under the term model adaptivity. Such developments motivate to
think no more of the numerical simulation and the reconstruction as two separate steps. Instead,
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a model system can be seen as some abstract mechanism that describes the physics in a given
scenario up to some (needed) accuracy. From that perspective, a desired visualization of some
process serves as initiating impulse causing the calculation of a numerical simulation of the cor-
responding scene. Visualization is then no more a post-processing step of the simulation, but is
part of the model system. Such a combined simulation and visualization system would allow for
physical-aware visualizations of zoomed views based on more complex physical models instead of
purely interpolated images. The discretization (spatial mesh and time partitioning) as well as the
complexity of the physical model could be adjusted automatically by means of mathematical error
estimators to guarantee high accuracy of the result.
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