
Simulation of Surgical Cutting in Soft Tissue
using the Extended Finite Element Method
(X-FEM)

Nicolai Schoch, Stefan Suwelack, Stefanie Speidel,

Rüdiger Dillmann, Vincent Heuveline

Preprint No. 2013-04

www.emcl.iwr.uni-heidelberg.de

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

Preprint No. 2013-04

The EMCL Preprint Series contains publications that were accepted for the Preprint

Series of the EMCL. Until April 30, 2013, it was published under the roof of the Karlsruhe

Institute of Technology (KIT). As from May 01, 2013, it is published under the roof of

Heidelberg University.

A list of all EMCL Preprints is available via Open Journal System (OJS) on

http://archiv.ub.uni-heidelberg.de/ojs/index.php/emcl-pp/

For questions, please email to

info.at.emcl-preprint@uni-heidelberg.de

or directly apply to the below-listed corresponding author.

Affiliation of the Authors

Nicolai Schocha,1, Stefan Suwelackb, Stefanie Speidelb,

Rüdiger Dillmannb, Vincent Heuvelinea

aEngineering Mathematics and Computing Lab (EMCL),

Interdisciplinary Center for Scientific Computing (IWR),

Heidelberg University, Germany
bInstitute for Anthropomatics, Karlsruhe Institute of Technology (KIT), Germany
1Corresponding Author: Nicolai Schoch, nicolai.schoch@iwr.uni-heidelberg.de

Impressum

Heidelberg University

Interdisciplinary Center for Scientific Computing (IWR)

Engineering Mathematics and Computing Lab (EMCL)

Speyerer Str. 6,

69115 Heidelberg

Germany

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.iwr.uni-heidelberg.de

Simulation of Surgical Cutting in Soft Tissue

using the Extended Finite Element Method

(X-FEM)

Nicolai Schoch, Stefan Suwelack, Stefanie Speidel,

Rüdiger Dillmann, Vincent Heuveline

December 02, 2013

Abstract

Modeling and simulation of the behaviour of elastic bodies is an important tool for medical en-

gineering. Most physics-based simulations use the finite element method (FEM) for simulating the

behaviour of deformable soft tissue under the effect of external forces. However, especially the task of

surgical cutting still remains an open challenge. Current methods which, e.g., require the adjustment

of the mesh topology in order to align elements with the cut, still suffer from performance and stability

issues. Opposed to this, the extended finite element method (X-FEM) provides a novel approach for

modeling discontinuities without creating new mesh elements, and thus minimizes the impact on the

performance.

We present the development of a 3D model for the simulation of cutting in soft tissue. The incor-

poration of a corotation-based formulation into a dynamic FEM simulation enables realistic material

behaviour even under larger deformations, and guarantees stability as well as computationally efficient

data structures and algorithms which allow for near-to-real-time frame rates.

On the basis of our elasticity simulation, we develop an extended model which allows for the simulation

of surgical cutting in soft tissue using the X-FEM. As a distinguishing feature our implementation

combines the corotational formulation and the implicit Newmark time integration method, which not

only allows for the realistic simulation of large cutting-induced deformations but also results in very

stable simulations of arbitrary cuts. For the X-FEM, too, the underlying data structures of our im-

plementation yield a great potential for outsourcing computationally expensive calculations from the

actual time-stepping scheme into a pre-computing part, and hence enhance the utility of this simulation

for real-time applications.

The evaluation of our methods uses commercial FEM software for comparison and shows the conver-

gence of our simulation results. The X-FEM even exhibits comparable accuracy in terms of DOFs with

respect to perfectly remeshed standard FEM. Along with good performance and stability properties,

this proves the applicability of the X-FEM-based cutting simulation, e.g., in surgery simulators.

1 Introduction and Motivation

1.1 Medical Context and Motivation

During the past decades, in the field of surgery assistence and simulation systems, a considerable number
of instruments and techniques have been developed in an effort to improve processes in the medical,

3

clinical and surgical context. Especially, modeling and simulation of the behaviour of soft tissue in the
human body opens up new opportunities. It not only allows surgeons to gain experience through virtual
reality surgery training simulators, but also offers support during the actual surgical process by providing
the surgeons via a virtual reality (VR) or augmented reality (AR) with 3D models of the body parts
which are operated on.

A wide range of VR and AR applications in the medical context are therefore currently improved
and extended by a substantial amount of additional features, which, e.g., allow the simulation of defor-
mations of soft tissue under the effect of external forces during cutting processes. However, particularly
the simulation of cutting still remains an open challenge, since most current methods suffer from both
performance and stability issues, impeding their application in the medical real-time context.

In this work, we present a 3D model and simulation of the behaviour of soft tissue subject to external
forces, which is based on the corotational formulation of the finite element method (FEM). It hence not
only allows for a realistic material behaviour even when given large deformations, but also turns out to
be computationally efficient anad stable. The simulation is extended by means of the extended finite
element method (X-FEM) in order to allow for discontinuities, thus representing cracks and cuts. The
implementation applies the implicit Newmark time integration scheme for time discretization and operates
on a novel data structure, which yields very good convergence properties and generally extremely stable
results in near-to-real-time frame rates.

1.2 Related Work and State-of-the-art of Science and Technology

There is a wide range of simulation applications in the field of medical engineering, that benefit from
physically-based modelling, most of which use the FEM for numerically solving the given elasticity prob-
lem. An essential feature of a present-day medical simulation system is the capability to simulate surgical
cuts. Yet, this still remains a challenging task, since the overall goal is to allow for arbitrary object
dissection without suffering from restrictions, such as performance and stability issues.

Most of the methods for simulating surgical cutting published so far require the elements to align
with the cut. In order to achieve this alignment, there are several options. Han-Wen Nienhuys and
his colleagues suggest approaches based on constraining the cut to the borders of existing elements, or
vice versa snapping the elements’ borders to the cut, compare [17]. These approaches do not create new
elements and therefore keep the computation simple, yet they mostly do not satisfy accuracy requirements
due to projection errors. Other methods suggest the elements which are cut to be subdivided, compare
e.g. Mazura [14]. The approach of Daniel Bielser and his colleagues subdivides elements according to a
set of predefined templates, [5]. The main drawback of these methods is the creation of small ill-shaped
elements (slivers) that cause numerical instability in the simulation. Moreover, since disproportionally
many new (sub)element nodes have to be introduced, the system matrices must be extended, too, which
causes an explosion of the amount of work needed for the calculations. Stephane Cotin and his colleagues
propose an approach, which consists of removing the elements touched by the cutting surface or by the
medical cutting tools, [8]. This approach does not harm the simulation stability, however, it violates the
mass conservation law, since the open space is not filled anymore, also leaving visually unpleasant artifacts.
Meshless methods, as presented by Belytschko, [3], allow the simulation of deformable objects including
topological changes such as arising from cutting. However, they are computationally significantly more
expensive than FEM. Summarizing, there are many approaches to model discontinuities representing
surgical cuts in medical simulations. However, the underlying problems and drawbacks have not been
solved satisfyingly yet.

Opposed to this, the X-FEM, proposed by Ted Belytschko and his colleagues, uses element enrichment
to effectively model discontinuity regions within an FEM mesh, [4]. The local enrichment, which is based
on the partition of unity concept, is introduced only in subregions with discontinuities. In combination
with an appropriate mass-lumping technique, the X-FEM provides a stable simulation regardless of the
cut location. Belytschko first developed the X-FEM for 2D linear elastic fracture mechanics in civil
engineering, considering a single crack. Subsequently, the method has been extended to many applica-
tions, such as dynamic crack growth, arbitrarily branched and intersecting cracks or holes, and even weak
discontinuities, in which the displacement is continuous but the displacement gradient contains a discon-
tinuity, such as when regarding material interfaces in solids and fluids. Its general applicability, along
with the fact that it does not require remeshing, let the X-FEM become a highly appreciated method for

the purpose of cutting simulations.
Finally, a research team around Lara Vigneron presents an X-FEM-based approach for modeling the

deformation of organs following surgical cuts, retractions, and resections where arbitrarily-shaped tissue
discontinuities are handled via the X-FEM without any remeshing, [18].

2 Basics of Elasticity Theory and Soft Tissue Simulation

In a brief overview of elasticity theory, we will provide the reader with the necessary biophysical principles
and general modeling techniques used for the simulation of the behaviour of soft bodies under the effect
of external load as far as it is relevant for this work, and show a specific mathematical formulation for the
so-called elasticity problem, which later allows for calculating the deformation of the elastic body using
finite element methods (FEM). For further information we refer to [6] and [7].

2.1 Basics of Elasticity Theory

In elasticity theory (or generally in continuum mechanics) a body is seen as a continuum, i.e., a set of
material points in space that are linked to each other, and its configuration is observed under the impact
of external forces. In particular, we measure strains and stresses caused by deformations. The essential
components of the elasticity theory are the kinematics, the equilibrium equations and the constitutive
(material) laws.

In an abstract view of elasticity theory, we consider a body’s stress-free reference configuration Ω and
a deformation ϕ which transforms it into its deformed configuration Ω̃ as follows

ϕ :

{
Ω→ Ω̃ ⊂ R3

x 7→ ϕ(x) = x̃
. (1)

The behaviour of a body can be described by the relationship between the four physical quantities
displacement, strain, stress and force. In kinematics, the displacement u of a body’s particle at point
x, which hence corresponds to u = ϕ − id, is linked to the internal deformation measure strain ε, a
second-order tensor, by kinematic compatibility conditions

ε(∇ϕ) =
1

2

(
(∇ϕ)T (∇ϕ)− I

)
, or ε(u) =

1

2
(Du+DuT) +

1

2

∑
DuDuT , (2)

where ∇ϕ is the deformation gradient. When neglecting quadratic terms, this yields the following ap-
proximation, known as the linearized Cauchy strain tensor

εlin(∇ϕ) =
1

2

(
(∇ϕ)T +∇ϕ

)
− I , or εlin(u) =

1

2
(Du+DuT) . (3)

The internal force measure stress σ is linked to the strain ε by constitutive (material) laws via a
response function C as follows

σ(x) = C(x, ε(x)), x ∈ Ω. (4)

In this work, we restrict our considerations to linear isotropic materials, which are characterized by a
linearized relation between stress and strain, and by the feature that the properties of all material points
in all space directions are equal. Moreover, we assume the material to be homogeneous, which means that
the material properties do not explicitly depend on the concerned point x of the object. By exploiting
symmetries and geometric relations, these simplifications, i.e., the use of linear isotropic materials, allow
to reduce the number of coefficients of the forth-order tensor C from originally 81 entries to only two
independent entries in its matrix representation. The restrictions of this so-called linear elasticity theory
are not only due to reasons of simplicity and suitability for real-time applications, but also recommendable
from the modeling point of view, as the isotropic case preponderates for small deformations in reality,
where non-linear phenomena usually do not yet occur. However, we will also show the limits of these
assumptions later in this work and present a solution based on co-rotation.

In the linear elasticity theory, the relation of stress and strain, the so-called linear material law of
Hooke, reads as

σlin = λ tr(εlin)I + 2µεlin, (5)

where λ and µ are the Lame constants, which account for characteristic material properties and allow to
influence the behaviour of the material which is modeled. Alternatively, one could employ the engineering
constants E (the elasticity or Young modulus) and ν (the transverse contraction or Poisson ratio).

Using Voigt notation, equation (5) can be written in a matrix form, where the second-order tensors
σlin and εlin are rearranged as 6-component vectors and the forth-order tensor response function C is
represented by the so-called material matrix C as follows

σlin =

σx
σy
σz
τxy
τxz
τyz

 =

2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

︸ ︷︷ ︸

=C

εx
εy
εz
γxy
γxz
γyz

 = C εlin , (6)

where

εx = εxx , εy = εyy , εz = εzz , γxy = εxy + εyx , γxz = εxz + εzx , γzy = εzy + εyz .

Finally, the stress σ is linked to the external load b by the equilibrium equations. Forces and displace-
ments can be observed and measured as external factors which can be prescribed by defining boundary
conditions (BC), corresponding, e.g., to the fixing of a part of an object (displacement or Dirichlet BC)
or the application of an interaction force (force or Neumann BC). The acting forces can be completely
traced back to forces which act on surfaces (surface forces, e.g. the load on the abdominal organs which is
produced by the lungs when expanding during the process of breathing) and forces which act on volumes
(volume forces, e.g. gravity).

Strain and stress are internal mathematical tools to measure the effect of deformations, i.e., displace-
ments and forces, respectively. The relationship between stress and strain is what determines the actual
physical behaviour of the body as a continuum. This work is based on the linearized consideration; In
the following, we will, however, not differentiate between the notations of the normal and the linearized
versions of strain and stress anymore.

2.2 Differential and Variational Formulation of the Elasticity Problem

Based on the above introduced assumptions, conditions and dependencies, we can now define the so-called
boundary value problem (BVP) of elasticity theory according to the Theorem of Cauchy :

Find the displacement u = ϕ− id ∈ C2(Ω) ∩ C1(Ω) such that

− div(σ(x)) = b(x) , x ∈ Ω , (7)

u(x) = u0(x) , x ∈ ΓD , (8)

σ(x) · n(x) = s(x) , x ∈ Γ 6=0
N , (9)

where b : Ω → R3 denotes the volume force acting on whole Ω, s : Γ6=0
N → R3 stands for the surface

force in direction of normal vector n on the boundary part Γ6=0
N (Neumann BC), and finally ΓD is the

boundary part where the displacement u0 : ΓD → R3 is given (Dirichlet BC). We define ΓN = ∂Ω\ΓD,

so we need s(x) = 0 , x ∈ ∂Ω\(ΓD ∪ Γ 6=0
N), such that ΓD ∩ ΓN = ∅ holds.

For a simplified formulation we define the following spaces V B(Ω,f) = {u| − div(σ)|Ω = f},
V N (ΓN ,f) = {u|(σ · n)|ΓN

= f}, and V D(ΓD,f) = {u|u|ΓD
= f} for an arbitrary function f , as

well as V := C2(Ω) ∩ C1(Ω) ∩ V B(Ω, b) ∩ V N (ΓN , s) ∩ V D(ΓD,u0), such that the above formulation of
the elasticity problem now presents as:

Find the displacement u = ϕ− id ∈ V .
By means of the definition of a suitable test function space according to V , multiplication with test

functions, integration over Ω, and the integration theorem of Gauss, the differential formulation of the

BVP can then be transformed into the weak or variational formulation, which considers a system’s total
energy Π, and finally claims its stationarity with respect to the deformation ϕ or the displacement u
wanted.

The system’s total energy Π of the deformed configuration can be composed of the total internal
energy W and the sum of all external (volume and surface) forces acting on the body. Using the Frobenius
Product1 we find

Πstat(u) =

∫
Ω

ε(u) : σ(u) dΩ︸ ︷︷ ︸
=W stat(u)

−
∫

Ω

uT b dΩ︸ ︷︷ ︸
volume force

−
∫

Γ1

uTs dΓ︸ ︷︷ ︸
surface force

, (10)

in the static case, and – additionally accounting for viscous stress and inertia contributions –

Πdyn(u) =

∫
Ω

ε(u) : σ(u) dΩ︸ ︷︷ ︸
stiffness

+

∫
Ω

ε̈(u̇) : σv(u̇) dΩ︸ ︷︷ ︸
viscosity

+

∫
Ω

1

2
ρ | ü2 | dΩ︸ ︷︷ ︸
inertia︸ ︷︷ ︸

=Wdyn(u)

−
∫

Ω

uT b dΩ︸ ︷︷ ︸
volume force

−
∫

Γ1

uTs dΓ︸ ︷︷ ︸
surface force

, (11)

in the dynamic case, with the damping tensor σv and the mass density ρ.
Following physical laws, a system always aims to reach a state of minimum energy:

Π(u)
!
= min . (12)

Subsequently carrying out a variation and solving δΠ = 0 according to Hamilton’s Principle yields the
so-called Equation of Virtual Work :

δΠdyn =

∫
Ω

δεelast : σ dΩ +

∫
Ω

δεvisc : σvisc dΩ +

∫
Ω

δuT ρ ü dΩ

−
∫

Ω

δuT b dΩ−
∫

Γ

δuTs dΓ = 0 . (13)

This variational formulation of the elasticity problem finally serves for solving by means of numerical
methods, such as the Finite Element Method (FEM). More information on methods for the solution of
mathematical models of systems in continuum mechanics can be found, e.g., in [1].

3 Numerical Solution of the Elasticity Problem using FEM

This section presents a strongly simplified view of the FEM, and sketches the corresponding quantities
and data structures applied in the implementation of the elasticity simulation in a way which is sufficient
to understand this work. More details on the FEM can be found in standard FEM books, e.g., in [1], [21].

3.1 FE discretization based on linear and quadratic elements

In order to numerically solve the variational formulation of the elasticity problem in V , a subspace
with finite dimensions has to be defined. Using a Ritz-Galerkin method, the discretization arises from a
continuous partitioning of the domain into finitely many elements2 with locally defined shape functions3

Φi : R3 → R3 that interpolate the vertices P , P̃ ∈ Rn×3 (before and after the deformation) and the

1The Frobenius inner product is defined as: A : B = tr(ATB) =
∑

i,j AijBij .
2In this work: tetrahedra.
3For standard definitions of FE shape functions, see, e.g., [1].

corresponding nodal displacements U = P̃ − P ∈ Rn×3, where n is the number of element nodes. We
find the displacement u(x) of an arbitrary point x given as

u(x) =

n∑
i=1

U iΦi(x) , (14)

where the Φi satisfy the partition of unity
∑n
i=1 Φi = 1 and the Kronecker delta property Φi(P j) = δij .

We state
∇u(x) = U∇Φ(x) , ∇ϕ(x) = ∇u(x) + I = U∇Φ(x) + I . (15)

For our implementation we provide so-called isoparametric shape functions Φi, and – even more
common – the corresponding isoparametric finite elements, which means that both, the transformation
function for the mapping from a real global element to a local reference element – as will be explained
below –, and the shape functions for the interpolation of the deformation are of the same degree. Using
these isoparametric elements for the FE formulation allows the achievement of a relationship between the
element displacement at any arbitrary point and the element nodal point displacements directly through
the use of the shape functions for interpolation.

On the element level, isoparametric elements were implemented by the example of linear and quadratic
tetrahedra, hence P ∈ R4×3 or P ∈ R10×3. Linear basis functions are obviously easier to handle with
respect to computing and implementation, however, in engineering applications, the use of linear basis
functions is usually avoided, firstly, since they only achieve weak convergence, caused by ∇ϕ being
constant and consequently – as will be explained below – also the stiffness matrix being constant on the
whole element, and secondly, since in case of almost incompressible materials – which we deal with during
our simulations – linear elements suffer from so-called numerical locking effects.

Using quadratic shape functions, we reduce approximation errors inherent to methods based on linear
finite elements. In comparison to linear isoparametric elements they not only offer better numerical
accuracy by means of quadratic shape functions but also superior geometric approximation by means of
their quadratic element geometry, even with a much smaller number of elements, compare [16].

3.2 Discretization of Elastic Force Density, Inertia and External Force Den-

sities

Based on the introduced notation and the hence arising data structures to be used in the implementation,
we can proceed with the discretization of elastic forces, inertia and the external load as given in the
variational formulation of the elasticity problem (13). We consider (13) elementwise.

Starting with the stiffness part, the integrand is transformed as follows

δε : σ
symmetry of σ

= (∇ϕT∇δu) : σ
∇u=UT∇Φ

= (δUT∇Φ) : (∇ϕσ)
F :=∇Φσ∇ϕT

= δU : F , (16)

with the element force matrix F ∈ Rn×3, which holds the n nodal force densities at the element vertices
of the isoparametric tetrahedron. It can be shown that the ordering of the factors is crucial for an efficient
computation, and that by choosing

F =

[
3∑
k=1

∇ϕjk
3∑
l=1

∇Φilσlk

]
i=1...n, j=1...3

, (17)

the smallest number of floating point operations is obtained, compare [15]. An analogue treatment of the
inertia term results in

δuT ρ ü = ΦT δU ρ ÜT
Φ

M:=ρΦΦT

= δU : (MÜ) , (18)

with the symmetric element mass matrix M ∈ Rn×n. Assuming the external body and surface forces to
be dead loads, i.e., independent of the deformation ϕ, we can derive

δuT b
B:=Φ bT

= δU : B and δuT s
S:=Φ sT

= δU : S , (19)

where the body and surface force matrices B, S ∈ Rn×3. Finally, the damping term is transformed using
the approach of Rayleigh, which suggests the damping matrix D to be a linear combination of the above
calculated elastic force and mass matrices F and M as follows

D := αM + βF , (20)

where the coefficients α and β (Rayleigh coefficients) can be determined experimentally. This simplifica-
tion also allows for a more compute and time efficient implementation.

3.3 The Virtual Work ODE

Summarizing the above results yields

δΠdyn =

∫
V

δU : F dV︸ ︷︷ ︸
stiffness term

+

∫
V

δU : D dV︸ ︷︷ ︸
damping term

+

∫
V

δU : MÜ dV︸ ︷︷ ︸
mass term

−
∫
V

δU : B dV −
∫
A

δU : S dA︸ ︷︷ ︸
external load term

= 0 , (21)

where the variation does not depend on the integrals, and which must hold for any δU , such that we can
equivalently rearrange the equation into the second order ODE

0 =

∫
V

F dV +

∫
V

D dV +

∫
V

MÜ dV −
∫
V

B dV −
∫
A

S dA

=: F (U) +D(U̇) +M Ü −B − S . (22)

In the FE theory, due to the elements’ compact supports and the C0 continuity of the tetrahedral-
ization, the volume integrals can be evaluated element-wise, and the resulting element matrices can be
merged into a single global matrix with three coordinates per mesh vertex by means of lexicographical
rearrangements. In other words, for the entries F lj of the global stiffness matrix F we find

F lj =
∑
k

∫
Vk

F ij dVk , where l = 1 . . . N, i = 1 . . . n, j = 1 . . . 3, (23)

i.e., the sum of nodal elastic forces F ij from all the elements k containing the vertex l in any i-th row.
Again, in our notation n denotes the number of nodes per element, N denotes the object’s total number
of nodes, and the factor 3 accounts for the 3D space.

3.4 Volume Integration

In order to achieve near-to-real-time simulation through a fast set-up of the system matrices and hence
the above equations, it has to be taken care of an efficient numerical volume integration of the element
matrices first. Today’s standard FEM codes generally trace the computation of an integral over an
arbitrary element in a global context back to the calculation of this integral over a (local, mostly simple)
reference element, which in case of linear elements is done by means of an affine transformation ϕ̂.
Subsequently, the cubature is based on the standard Gauss-Legendre integration rule. This allows for the
best possible precision with respect to a given number q of integration points ζi, i = 1...q (compare [1]),
where in this work we use q = 4 for mass matrices, and q = 1 for stiffness matrices:∫

V

f(x) dV
transformation & approximation

≈
q∑
i=1

ωi f(ϕ̂(T , ζi)) det(∇ϕ̂(T , ζi)) . (24)

It is recommended to consider the precomputation of the transformation determinants
det(∇ϕ̂(T , ζi)), shape functions Φ(ϕ̂(T , ζi)) and their derivatives ∇Φ(ϕ̂(T , ζi)) with respect to the
reference tetrahedron for each cubature point in a preprocessing step once and storing them for later use,
which allows for efficiently updating the matrices. Concerning the computation of the element stiffness
matrices, it is important to mention, that even when using linear shape functions and hence all terms in
F are constant on the whole tetrahedron, vol(T) and ∇Φ are still worthwhile for preprocessing.

Addressing the computation of the element mass matrices, we consider the subsequent time integration,
where the inverse of the mass matrix is needed. Knowing this, it would be convenient to have a diagonal
– and hence invertible – mass matrix, allowing for stable simulations. Yet, a diagonal mass matrix means
that the mass is concentrated at the mesh vertices, which contradicts the idea of continuum mechanics
and finite elements, where the mass distribution is continuous. Therefore, for efficiency and applicability
reasons, the use of orthogonal basis functions can be recommended, since the local mass matrices then
directly result in diagonal matrices, which implies that this also holds for the global mass matrix. In
contrast, when using the above introduced nodal shape functions, the diagonalisation has to be conducted
seperately by means of so-called mass lumping methods.

3.5 Time Integration

In an interactive simulation when we are interested in the behaviour of a deformed body over time, the
simulation has to be based on the dynamical description as given in the second order ODE (22). This
hence requires time integration in addition to space discretization.

After summing up the element force matrices B and S to F ext, and lexicographically re-sorting the
element matrices F ext, Ü , U̇ and U for all elements into vectors fext, ü, u̇ and u (each ∈ R3N), we can
rewrite (22) using matrix-vector-notation, which results in

Mü+ Du̇+ Ku = fext , (25)

where M is the global mass matrix, D is the damping matrix, K is the global stiffness matrix, M, D, K ∈
R3·N×3·N , u is the vector of nodal displacements, and f ext ∈ R3N is the external load vector, including
both body and surface loads. The global matrices are added up from the element matrices elemM, elemD
and elemK (each ∈ R3·n×3·n) component-by-component at the lexicographically corresponding entry. In
detail, for the [3× 3] components of the element matrices, we have

elemMij := ρ

∫
V

ΦiΦj dV (26)

and retrieve

elemKij := (∇UF)ij , (27)

where according to (22) F corresponds to the entries of the nodal elastic forces with respect to their
global lexicographical order.

Rearranging equation (25) in terms of the acceleration yields

a = ü = M−1 (f ext − Du̇−Ku) , (28)

which can be integrated in time twice in order to obtain the nodal displacements u.
The choice of the numerical time integration method has to meet the specific requirements of an

interactive medical simulation application. The most essential of these requirements are the simulation’s
accuracy, stability and real-time capability, the latter of which is dependent on the amount of work of the
simulation steps. So-called direct integration methods, which are subclassified into explicit and implicit
time integration methods, are considered most efficient with respect to these requirements.

Explicit methods are generally easy to implement, as in each time step only the information from
previous steps is used. However, a major disadvantage of these techniques is their conditional stability,
meaning that the time steps ∆tstep are limited by a critical simulation time step ∆tcrit, above which they
become unstable. However, for a stable computation of the new values of acceleration and displacement,
∆tstep must be larger than the time needed to compute these and transfer them ∆tcompute. In other words,
∆tcompute < ∆tstep and ∆tstep < ∆tcrit must hold for a real time simulation. Hence, if, for the sake of
stability, ∆t becomes too small, even a method with a simple single step can become too computationally
expensive for real time applications.

Therefore, in biomechanical simulations, we rather employ implicit methods, which can offer uncondi-
tional stability such that the time step ∆tstep can be chosen a lot larger than in explicit methods. However,
in comparison to explicit methods, they require a by far larger amount of work for their computations
due to the fact that in every time step a system of equations has to be solved for the evaluation of partial

derivatives of the deformation forces and thus for the assembly of the tangent stiffness matrix. However,
in case the stiffness matrix is constant, which it is in linear elasticity, the derivatives do not change in
time either, which means that the time-consuming part of their calculation is not required at run-time.
It is performed once only before the actual time stepping at the beginning of the simulation.

In our simulation, we apply the so-called Newmark implicit integration method, for the basic integration
scheme of which we refer to [1]. We remark, that we make efficient use of precomputable entities such
as mentioned above in a preprocessing part in order to minimize the computational overhead for the
iteration steps whenever a new stiffness matrix is needed, and that visualization is generally outsourced
into a seperate postprocessing part.

3.6 Calculation and Assembly of the Elasticity Stiffness Matrix

In order to allow for optimal performance and stability, we consider the process of assembling and cal-
culating the system matrices, in particular the stiffness matrix K as given in equation (25). Hence, from
equation (27) we find the [3n× 3n] element stiffness matrix

elemK = ∇UF =
∂F
∂U =

∂F
∂P̃

, (29)

which can be derived by means of inserting the definition of the displacement U(P) = (ϕ−id)(P) = P̃−P ,
or U(P̃) = P̃ −P (where P is a constant), respectively.

As stated above, we assume that only small deformations occur, and thus employ the linear elasticity
theory, exploiting the modeling and computational advantages arising through the afore-mentioned set
of simplifications. Thus, we let F lin = ∇Φσlin, which was derived in the same way as F = ∇Φσ∇ϕT ,
however, using linear relations for εlin and σlin. The components of the linearized element stiffness matrix

elemKlin, i.e., the linearized version of the force derivatives ∂F lin

∂P̃ , then read as

∂F lin
ip

∂P̃jq

= µ∇Φiq∇Φjp + µδpq

3∑
l=1

∇Φil∇Φjl + λ∇Φip∇Φjq =
∂F lin

jq

∂P̃ip

. (30)

A step-by-step derivation of this result can be found in the appendix 7.1.
From the above equation (30) we see that in case the shape functions Φ are linear, their derivatives

∇Φ and hence the stiffness matrix ∂F/∂P̃jq are constant on the whole element, which allows for crucial
optimization of the algorithm. Complex parts of the time-stepping become suitable for precomputing at
the beginning of the simulation, and can be omitted at run-time.

Furthermore, in FEM codes, the sparsity pattern of the system matrices corresponds to the elements’
connectivity. A matrix block (i, j) is non-zero if and only if both nodes i and j share the same tetrahedron.
A global matrix can thus be assembled by simply adding the contributions of the element matrices while
considering the global node numbering. The resulting global matrix is a sparse, symmetric, positive
definite matrix of the size [3N × 3N].

Even though applying the linearized force derivatives in the implementation allows for better computa-
tional efficiency, and thus, is of high importance for the practical computation in applications in everyday
use, there is a substantial disadvantage: This is traded for accuracy. Especially when the deformations
become significantly larger and the displacements grow too much, the simple application of the linear
strain tensor εlin does not produce satisfying results anymore. Unrealistic deformations become noticable
when so-called ‘ghost forces’ cause the deformed object to blow up unnaturally (see Figure 1a).

The reason for the unrealistic behaviour can be found in the generally non-linear systems of the
elasticity problem and therefore in the fact that the elastic forces F (U) as in (22) generally non-linearly
depend on U , due to the actual geometric non-linearity of the strain tensor ε even if the response function
C, is linear, i.e., represents a linear relation between stress and strain, which we assume in the linear
elasticity theory. As soon as significant deformations occur, simply using the linear strain tensor εlin does
not produce satisfying results anymore.

Therefore, when simulating large displacements more advanced methods have to be applied. A very
elegant solution is given by the ‘corotational method ’, which treats the rigid rotation and the deformation
of the elements separately while still using the linear strain tensor εlin, and hence still being based on the
above derived linearized version of the stiffness matrix. As opposed to the above example, the corotational
method shows visually pleasent and realistic results, compare Figure 1b.

(a) The results of the simulation for the

linearized version.

(b) The results of the simulation for the

corotational version

Figure 1: Linearization- and Corotation-based Simulation results for the deformation of a beam

under the effect of external traction forces and prescribed displacement boundary conditions.

3.7 The Corotational Method

The corotational method is based on the linear FEM with Cauchy’s linear strain εlin, however, aligns the
elements with their reference configuration prior to the force computation. This means that the rotational
part of the deformation is ‘extracted’, i.e., factored out in order to rotate the attached global coordinate
frame into the reference frame, before an almost rigid transformation is applied and followed by the
actual computation of the forces with respect to the non-rotated reference frame. The deformation forces
computed for the aligned configuration are then rotated back to the current configuration afterwards.

The quality of such a corotation-based elasticity simulation is strongly influenced by the time efficiency
and robustness of the estimation of the rotation matrices R. In this work, we rely on the suggestion of
Higham and Schreiber (compare [11]), who use the (right) polar decomposition of the deformation gradient
∇ϕ,

∇ϕ = RT∇ϕCR , (31)

with the orthogonal rotation matrix RT , and a unique symmetric, positive definite (SPD) rotation-
free (co-rotated, CR) deformation gradient or stretch matrix ∇ϕCR = R∇ϕ = ∇(Rϕ). This yields
stable and visually pleasing results. Since for a quadratic tetrahedron a single rotation matrix R is not
enough to rotate it into a configuration that leaves a rotation-free deformation gradient R∇ϕ, a separate
transformation and a separate polar decomposition of ∇ϕ has to be applied for each cubature point.

For the calculation of the corotated force derivatives, we consider the strain and stress first. As can
be seen in the following, the strain tensor ε fully cancels out the rotation

ε (∇(Rϕ)) = ε(∇ϕCR) =
1

2

(
(∇ϕCR)T (∇ϕCR)− I

)
=

1

2

(
(R∇ϕ)

T
(R∇ϕ)− I

)
=

1

2

(
∇ϕTRTR∇ϕ− I

)
= ε(∇ϕ) . (32)

Hence, we conclude that the rotation-free deformation gradient allows for obtaining a small-strain ap-
proximation with the linearized strain tensor εlin

εlin(∇ϕCR) = εlin(R∇ϕ) =
1

2

(
R∇ϕ+∇ϕTRT

)
− I =: εCR(∇ϕ) . (33)

Along with the rotation-invariant stress tensor

σCR(∇ϕ)RT = C εCR(∇ϕ)RT = C εlin(R∇ϕ)RT = σlin(R∇ϕ)RT = σlin(∇ϕCR)RT (34)

we find (according to (16)) that

δεCR : σCR = δU :

=F lin(∇ϕCR)︷ ︸︸ ︷
∇Φσlin RT︸ ︷︷ ︸

=:FCR

= δU : FCR , (35)

which analogously to the above results suggests the shape function gradients ∇Φ to be precomputed for
every cubature point, and that

FCR = F lin
(
∇ϕCR

)
RT ∇ϕCR=R∇ϕlin

= RF linRT . (36)

According to the derivation of the linearized version of the stiffness terms, we can now summarize the
symmetric ‘corotated force derivatives’ ∂FCR/∂U , or ∂FCR/∂P̃ , respectively, i.e., the co-rotated stiffness
terms,

∂FCR
ip

∂P̃jq

=

3∑
k=1

∂FC
ik(∇ϕCR)

∂P̃jq

RT
kp =

3∑
k=1

Rkp
∂FC

ik(∇ϕ)

∂P̃jq

RT
kp

=

3∑
k=1

Rkp

(
µ∇Φiq∇Φjk + µδpk

3∑
l=1

∇Φil∇Φjl + λ∇Φik∇Φjq

)
︸ ︷︷ ︸

=
∂Flin

ik
∂P̃jq

=:F lin
i,j

Rpk =
∂FCR

jq

∂P̃ip

. (37)

Concluding, for the co-rotated element stiffness matrix elemKCR = ∇UF
CR = ∂FCR/∂P̃ , we find

that the co-rotated gradient FCR
i,j of the i-th nodal force (i = 1 . . . n) in the direction of the j-th node T̃ j

(j = 1 . . . n) reads as

elemKCR
ij =

(
∇UF

CR
)
i,j

= FCR
i,j = RF lin

i,jR
T ∈ R3×3 . (38)

The fact that elemKCR
ij only depends on the current rotation R and on the constant matrices F lin

i,j ,

obviously recommends the constant [3×3] blocks F lin
i,j (i, j = 1 . . . n) to be precomputed at the integration

points and moreover to therein exploit symmetries, as stated for the linearized calculation above. This
not only brings along higher efficiency, but also, due to corotation, it yields stable and realistic simulation
results, for both linear and quadratic tetrahedra.

Finally, regarding the equilibrium equation (25) with respect to the whole (dynamic) system, we find
that, using matrix-vector-notation again with u = x̃− x = (ϕ− id)(x), it is transformed into

Mü+ Du̇+ K(x̃− x) = fext , (39)

allowing us to retrieve the corotational version which reads as

Mü+ Du̇+ RKlin (RT x̃− x) = fext , (40)

therein linearizing the stiffness term.

4 Simulation of Cuts – Modelling Discontinuities using X-FEM

In the field of medical engineering, there is a wide range of simulation applications that benefit from
biomechanical modeling of soft tissue, however, in particular the capability to simulate surgical cuts, which
is an essential feature of a present-day medical simulation system, still is a challenging task. Even though
a number of different approaches has been presented, the problems have not yet been solved satisfyingly,
meaning that most of the recently developed methods suffer from both performance and stability issues.
As opposed to this, the Extended Finite Element Method (X-FEM) seems to be very promising, as it
effectively models discontinuities within an FEM mesh without creating new mesh elements and thus
significantly reduces the impact on the performance of the simulation.

4.1 Different Approaches to Model Discontinuities

Most current methods for simulating the cutting of virtual objects published so far require the objects’
elements to align with the cut. In order to achieve this alignment there are many options, however, even
the most representative approaches reveal difficulties in their application.

A very basic and intuitive method simply removes the elements which were touched or intersected
by the cutting surface from the mesh. New elements are not created, so this method does not harm the
simulation’s stability, however, it violates the mass conservation law since the open space is not filled
anymore, compare [8].

Other methods suggest the cutting surface to be constrained to the borders of existing elements in the
body, or – the opposite way around – nodes of existing elements to be snapped to the cut’s trajectory,
see [17]. The latter one of these approaches does not create new elements either and therefore keeps the
computation simple, however, the mesh topology needs to be updated if the snapping distance becomes
too large. Opposed to this, constraining the cut to element borders most often does not satisfy accuracy
requirements since the cut is not actually going through where it should go, and thus produces projection
errors.

Several research papers therefore suggest a subdivision of the elements that are intersected by the
cutting surface, e.g., [14]. The algorithm is typically broken down into three simpler steps: element
removal, element subdivision, and element addition. These, however, fundamentally modify the object’s
mesh structure. As a consequence, there are not only computationally expensive topology updates to be
executed, but also, the increased number of element nodes leads to an extended dimension of the system
matrices, which have to be reassembled with respect to the new topology. Yet, the main drawback of
this method is the creation of possibly ill-shaped, ill-conditioned elements (slivers) that cause numerical
instability in the simulation.

Apart from these approaches, Ted Belytschko and his colleagues introduced meshless methods using
a set of particles without a fixed neighbourhood relationship to represent the simulated object. Those
methods allow topological changes, however, they are computationally more expensive than FEM, and
require additional structures to identify topologically separated particles, see [3].

4.2 The X-FEM Approach to Model Discontinuities

Most of the classical remeshing-based methods suffer from stability problems when a small part of a
tissue is separated. The reasons for the instability are twofold: firstly, depending on the specific way of
subdividing the element, remeshing can create ill-shaped sub-elements, and secondly, the masses of the new
elements can become too low, such that mass ratios vanish and the matrices become singular. Simulation
results hence are biased. As opposed to that, the X-FEM approach does not require remeshing. The
cut – represented as a discontinuity – is modelled by means of additional discontinuous nodal enrichment
functions. Moreover, the choice of an appropriate mass-lumping technique helps to stabilize dynamic
simulation, regardless of the cut location.

The Extended Finite Element Method (X-FEM) is a numerical technique that extends the classical
FEM approach by extending the solution space for solutions to differential equations with discontinuous
functions. It was developed in 1999 by Ted Belytschko and collaborators, to help alleviate shortcomings
of the FEM, and has been used, in particular, to model the propagation of both strong and weak dis-
continuities, meaning, e.g., cracks or material interfaces. This paragraph, which strongly builds on the
work of [12], is to give a short introduction into the X-FEM, and we will show its suitability for cutting
deformable objects in virtual environments. For more information on the X-FEM, we refer to [9] or a set
of other relevant papers and books.

The basic idea of the X-FEM consists in enriching the elements by splitting their basis functions
along the desired discontinuity. This effectively doubles the elements’ degrees of freedom (DOFs) and
decouples the solutions on either side of the discontinuity. In an elasticity simulation, this allows a single
element to be cut or fractured into two (or more) independent parts. The X-FEM therefore modifies
the functional representation on a subelement level, as clearly opposed to the above mentioned methods,
which are changing the topology of the element mesh and also of the system matrices by means of complex
remeshing and subdivision of existing elements into smaller elements in order to resolve the geometry of
the cut. Moreover, since it models discontinuities within an FEM mesh without creating new mesh
elements, this implies a small impact on the performance of the simulation

Looking back to the standard FEM, displacement fields are generally approximated using a mesh of
elements connected at nodes. The object’s deformation is given by the displacement of the nodes according
to external and internal forces. These forces balance each other to a certain degree, as from where a
deformation compensates for all surplus forces. Shape functions Φi ∈ R3 interpolate the deformation

ϕ(x) ∈ R3 and the displacement u ∈ R3 within an element from the nodal displacements ui ∈ R3, such
that the displacement u(x) ∈ R3 of an arbitrary point x ∈ R3 can be computed as

u(x) =

n∑
i=1

Φi(x)ui , (41)

with the number n of element nodes.
When a discontinuity, i.e., a crack or cut, is added, the surrounding mesh nodes are enriched by an

additional global, discontinuous enrichment function multiplied by shape functions with a local support,
thereby again leading to a local discontinuous enrichment. The corresponding number of nodal DOFs is
added and the displacement u(x) of an arbitrary point x within an element is now computed as

u(x) =

n∑
i=1

Φi(x)ui +

n∑
j=1

Φ∗j (x)Ψj(x)aj , (42)

where Ψj ∈ R3 is the discontinuous enrichment function, and aj ∈ R3 is an added nodal DOF. The
shape functions of the added DOFs Φ∗j ∈ R3 do not necessarily need to be identical to the standard shape
functions Φi of the corresponding nodes, such that, e.g., higher order shape functions Φi might be used
with linear enrichment shape functions Φ∗j , in order to better fit the current requirements. However, in
this work and the appendant implementation, we let Φ∗j = Φi. Finally, the Φ∗j generally build a partition
of unity in local parts of the domain, as the X-FEM is based on the concept of the partition of unity
method (PUM).

The enrichment function Ψ(x) can be any arbitrary discontinuous function, provided that it is dis-
continuous along the crack or cut domain. Arguably the simplest choice is given by the (generalized)
Heaviside function H(x) also known as the sign() function, which assumes the value of +1 on the one
side of the cut and −1 on the other side

Ψ(x) = H(x) =

{
+1 above the crack

−1 below the crack
. (43)

Thus, according to the above formula (42) for the calculation of the displacement of an arbitrary point
x, we can now realize the splitting of the (original) basis functions Φi by adding the enrichment basis
functions ΦiΨi, weighted with their corresponding DOFs ai. However, the node enrichment impacts
all elements sharing the enriched nodes – specifically, one ring of neighbours of the element containing
the cut. Moreover, because of the additional term in (42), the shape functions together with the local
enrichment functions generally do not have the Kronecker delta property anymore, and the enriched nodes’
displacement is computed as a sum of the components ui + Ψiai as opposed to just ui.

Taking this disadvantage as a reason for enhancements, [20] proposes – instead of using the generalized
Heaviside function H(x) –, to apply the so-called shifted enrichment functions Ψi(x), which are zero at
all nodes and keep the enrichment local

Ψi(x) =
H(x)−Hi

2
, (44)

where Hi is the value of the generalized Heaviside function H(x) at the i-th node, and the division by
2 ensures the Kronecker delta property. The shifted enrichment function Ψi vanishes at its associated
node i, and the nodal basis function Φi vanishes at all nodes other than i, such that the enrichment
basis functions ΦiΨi vanish at all nodal positions, and the displacement at each node i is fully defined
by ui alone. The contributions of ai are only needed to determine the displacement within the cut (i.e.,
enriched) element, which also implies that the physical meaning of the ui as the nodal displacements is
restored. For the plotting of the simulation results, this is of high importance, and moreover, it simplifies
the implementation of Dirichlet boundary conditions, as the displacement of a node can be fixed to a
specific value by constraining a single DOF. Regarding the implementation, we introduce the concept of
the so-called level set method later, which allows the definition of subspaces, which in terms of the cut
object correspond to the two cut element parts above and below the cutting plane.

See Figure 2 for a 1D illustration of the two different enrichment approaches. On the left, the en-
richment basis functions extend to all elements incident to the enriched node, as opposed to the right

(a) Standard FEM: standard basis functions Φi.

(b) X-FEM: Generalized Heaviside enrichment

function Ψ(x) = H(x).

(c) X-FEM: Shifted enrichment function

Ψi(x) = 1
2

(H(x) −Hi).

(d) Generalized Heaviside enrichment approach:

product of standard shape functions and enrich-

ment functions.

(e) Shifted enrichment approach: product of

standard shape functions and enrichment func-

tions.

Figure 2: The comparison of the two different enrichment approaches: using either the generalized

Heaviside enrichment Ψ(x) = H(x) (left column) or the shifted enrichment Ψi(x) = 1
2 (H(x)−Hi)

(right column).

side showing the shifted enrichment functions, the support of which comprises the cut element only. This
locality simplifies the implementation and calculation enormously and also improves the stability of the
simulation. Note that the shifted enrichment basis functions together with the original basis functions
still span the same space as in the case of the unshifted enrichment functions.

The principle of enrichment functions is general, and thus can be used with any type of finite elements
and any type of constitutive model. It allows the simulation of both strong and weak discontinuities.
Strong discontinuities exist, e.g., as cuts or cracks, where parts of material are separated, whereas in a

weak discontinuity, such as in a material interface, the displacements are continuous, however, they contain
a kink, making the displacement gradient discontinuous. By means of including optional enhancements
such as a corotational formulation or mass lumping techniques, the X-FEM not only surpasses most
currently used remeshing methods in both performance and stability, but also becomes suitable for very
complex, interactive simulations of large deformations.

4.3 Simulation based on Linear and Corotational X-FEM

When an element is cut and a discontinuity added, the X-FEM doubles the number of element DOFs in
order to decouple the solutions on both sides of the discontinuity. Hence, when assembling the system
matrices and vectors, the increased number of DOFs has to be considered.

Based on the above notation in formula (42), the new DOFs are appended to the element displacement
and force vectors u and f :

elemu
X = [u1 . . . un a1 . . . an]

T
, (45)

elemf
X = [f1 . . . fn f

a
1 . . . f

a
n]
T
, (46)

where the ui represent the usual standard nodal DOFs (i.e., the standard FEM nodal displacements),
and the ai denote the additional nodal DOFs.

Concerning the system matrices, we found that a [3n × 3n] standard FEM element stiffness matrix

elemK is computed by adding up the n2 [3×3] components elemKij with respect to their node numbering,
as in (27). Using Voigt notation, the components elemKij can be retrieved as

elemKij =

∫
V

BTi CBj dV , (47)

where C denotes the [6× 6] stress-strain material matrix as in (6), and the Bi represent the [6× 3] strain-
displacement matrices, which – by means of the shape function derivatives – account for the element
geometry and the chosen strain measure. The indices i and j refer to the respective element nodes.

Assuming a static problem, i.e., regarding the time-independent versions of (39) and (40), this allows
us, for the linearized version, to calculate the components of the force vector as

f i =

n∑
j=1

elemKijuj =

n∑
j=1

(∫
V

BTi CBj dV
)
uj , (48)

or for the corotational version as

f i = R
n∑
j=1

elemKCR
ij (RTxj − x0j

) = R
n∑
j=1

(∫
V

BTi CBj dV
)

(RTxj − x0j
) , (49)

respectively.
For the X-FEM, the structure of the system matrices of the standard FEM can simply be transferred.

Hence, using the enriched strain-displacement matrix BX given by

BX = [B1 . . . Bn Ψ1B1 . . . ΨnBn] , (50)

we accordingly find

elemKXij =

∫
V

BXTi CBXj dV , (51)

for the [3× 3] components of the enriched stiffness matrix.
Having a closer look at the matrix BX , when dealing with linear tetrahedra, we can further transform

this equation. Due to the fact that the enrichment functions Ψi(x) take on constant values over the
domain above (Va) and below (Vb) the cut plane, and only change values from one to another, we can
split the above volume integral into two parts

elemKXij =

∫
Va

BXTi CBXj dV︸ ︷︷ ︸
Volume above the cut plane

+

∫
Vb

BXTi CBXj dV︸ ︷︷ ︸
Volume below the cut plane

. (52)

Next, according to the above representation of the X-FEM vectors elemu
X and elemf

X , we also divide
the X-FEM element stiffness matrix into four parts

elemKX =

[
Kuu Kua
Kau Kaa

]
(53)

where Kuu corresponds to the standard FEM element matrix with the original DOFs, whereas Kua, Kau
and Kaa correspond to the added DOFs.

Note that these specifications can cause problems when dealing with partial cuts. In case a cutting
surface intersects the body, yet stops inside the element, the above analysis does not hold anymore, and
a subdivision into subelements above and below the cut is not well-defined. In this work, however, we
only consider complete cuts. Therefore, we let a cutting surface which partially intersects an element
continue through it, such that the affected element is fully cut into two parts above and below the cutting
plane. Of course, when given a higher refined mesh around the cutting front line, the thus caused variance
from the original geometry of the cut gets smaller, such that as from a certain refinement level it can be
neglected.

In what follows, we show the actual formulations of the mass and stiffness matrices for the linearized
and corotational method, therein relying on the results of [13] and explaining possible future enhance-
ments, such as the application of quadratic elements.

4.3.1 Linear X-FEM

After substitution of equation (50) into equation (52), and when thereby assuming a constant matrix B,
the element stiffness matrix components become

Kuuij = Kij (54)

Kuaij =

(
Va
V

Ψaj +
Vb
V

Ψbj

)
Kij (55)

Kauij =

(
Va
V

Ψai +
Vb
V

Ψbi

)
Kij (56)

Kaaij =

(
Va
V

ΨaiΨaj +
Vb
V

ΨbiΨbj

)
Kij . (57)

Here, Kuuij denotes a matrix component of which none of the element nodes contributes with additional
DOFs, Kuaij symbolizes a component of which node i contributes with its usual standard FEM part and
node j with its additional X-FEM part, vice versa for Kauij , and finally, Kaaij is a component where both
nodes contribute with their additional DOFs. Moreover, Ψai denotes the value of the function Ψi(x)
above the cut plane, and Ψbi stands for the function’s value below the cut.

Note that Kuu is identical to the original element stiffness matrix of the non-enriched element, whereas
for Kua, Kau and Kaa parts of the original stiffness matrix are multiplied by constant factors which only
depend on the size of the dissected volumes and the cut side of the given node (above or below). This
structure of the element matrices thus allows to essentially simplify their calculation, since when cutting
an element, there is no need for additional integration points for the numerical volume integration, but
instead the use of volume ratios will do. This is to be pointed out as a very special feature and will be
discussed in detail in the implementation section.

A further enormous simplification is achieved when applying the shifted enrichment. Inserting

Ψaj =

=+1︷︸︸︷
Haj −Hj

2
=

{
0 if Hj = Haj = +1 above the crack and on the crack line

+1 if Hj = Hbj = −1 below the crack
(58)

Ψbj =

=−1︷︸︸︷
Hbj −Hj

2
=

{
−1 if Hj = Haj = +1 above the crack and on the crack line

0 if Hj = Hbj = −1 below the crack
(59)

into the above equations (54 – 57) instead of the generalized Heaviside enrichment yields – after rear-
rangement – the following element stiffness matrix components

Kuuij = Kij (60)

Kuaij =

{
−Vb

V Kij if Hj = +1

+Va

V Kij if Hj = +1
(61)

Kauij =

{
−Vb

V Kij if Hi = +1

+Va

V Kij if Hi = −1
(62)

Kaaij =

+Vb

V Kij if Hi = Hj = +1

+Va

V Kij if Hi = Hj = −1

0 if Hi 6= Hj

. (63)

In our implementation, the computation of the volumes V, Va, Vb is processed by simply adding up
the weighted determinants of the concerned subelements, respectively above or below the cutting surface.
Note that these results hold for quadratical elements, too, thus allowing for a simple adjustment as soon
as the cutting surface inside the elements is determined. For an analysis of the computational overhead
of an enriched element over a standard element, we refer to [12].

As mentioned before, the linear FEM is the simplest FE model as the stiffness matrix remains constant
during the simulation. For X-FEM applications, the same feature applies: the enriched stiffness matrix
can be computed once the position of the discontinuity is known and it remains constant afterwards,
which is of great value with respect to computation time. However, as for the standard FEM, in the
linear X-FEM case the annoying phenomenon of ghost forces also occurs when cuts and cracks grow
wider and displacements become too large. In particular, when a cut element is rotated or when parts of
an object are dissected and fall apart this leads to disturbing artefacts, which is why more sophisticated
methods such as the corotation-based X-FEM must be applied.

4.3.2 Corotational X-FEM

In the corotational formulation, the linearization-based computation of the deformation is extended by
the idea of separating a rigid rotation from the actual deformation. However, the application of the
corotational formulation in an X-FEM simulation requires an additional essential circumstance to be
considered: When an element is cut, the aligning rotations for the two parts above and below the cutting
surface are obviously different, which hence requires two rotation matrices to be computed, compare
Figure 3.

As presented in the implementation chapter, our algorithm subdivides a tetrahedral element’s two
(with the exception of plane cutting surfaces) arbitrarily shaped subelements on either side of the cut,
such that they yield a set of tetrahedral subelements again. Hence, we actually have to compute the
rotation matrices for all these subelements separately, accounting for the fact that we integrate over
each of these subelements separately, too. However, for reasons of simplicity, we neglect this in the
below notation and handle two (sub)elements only (one on either side of the cut), each of which has one
integration point.

The deformation forces (compare equation (49) for the standard FEM) in an enriched element are
hence computed as follows

fXi =

n∑
j=1

Ra
(∫

Va

BXTi CBXj dV
)(

RTaxXj − xX0j

)
︸ ︷︷ ︸

above the cut plane

+

n∑
j=1

Rb
(∫

Vb

BXTi CBXj dV
)(

RTb xXj − xX0j

)
︸ ︷︷ ︸

below the cut plane

, (64)

where Ra and Rb are the rotations of the element parts above and below the cut plane, respectively, and
the X-FEM vector xX = xX0 + uX . Inserting the generalized Heaviside enrichment functions, we find
that the deformation forces for the standard DOFs (0 ≤ i ≤ n) read as

f i =
Va
V

Ra
n∑
j=1

Kij
(
RTaxaj − x0j

)
+
Vb
V

Rb
n∑
j=1

Kij
(
RTb xbj − x0j

)
, (65)

Figure 3: The dissected parts Va, Vb of an element undergo generally different rotations Ra, Rb

and deformations FCR
a , FCR

b . The displacement of an arbitrary point within an element can be

determined using equation (42). Especially, all points that are above or below the cut in the (non-

deformed) reference configuration will remain on the same side of the cut in the deformed state,

which also allows to determine the rotation matrices Ra, Rb.

where
xaj = x0j

+ uj + Ψajaj and xbj = x0j
+ uj + Ψbjaj , (66)

was derived from xj = x0j + uj + Ψjaj .
Accordingly, for the additional DOFs (n+ 1 ≤ i ≤ 2n) the deformation forces read as

fai =
Va
V

RaΨai

n∑
j=1

Kij
(
RTaxaj − x0j

)
+
Vb
V

RbΨbi

n∑
j=1

Kij
(
RTb xbj − x0j

)
. (67)

Again, applying shifted enrichment yields essentially simplified results for the deformation forces. For
a standard DOF (0 ≤ i ≤ n), we retrieve

f i =
Va
V

Ra
n∑
j=1

Kij
(
RTaxaj − x0j

)
+
Vb
V

Rb
n∑
j=1

Kij
(
RTb xbj − x0j

)
, (68)

with

xaj =

{
x0j

+ uj if Hj = +1, i.e., if Ψaj = 0

x0j
+ uj + aj if Hj = −1, i.e., if Ψaj = +1

(69)

xbj =

{
x0j

+ uj − aj if Hj = +1, i.e., if Ψbj = −1

x0j
+ uj if Hj = −1, i.e., if Ψbj = 0

(70)

For the added DOFs (n+ 1 ≤ i ≤ 2n), we find

fai =

{
−Vb

V Rb
∑n
j=1 Kij

(
RTb xbj − x0j

)
if Hi = −1, i.e., if Ψai = 0 and Ψbi = −1

+Va

V Ra
∑n
j=1 Kij

(
RTaxaj − xaj

)
if Hi = +1, i.e., if Ψai = +1 and Ψbi = 0

. (71)

The hence resulting corotation-based X-FEM simulation produces satisfying and versatile results,
which are not only stable, computationally efficient, and accurate with respect to the simulation error
compared to benchmark results, but also visually pleasant, even for application scenarios that include
large deformations, see Figure 4.

(a) Step 0. Standard FEM visualization. (b) Step 0. Special X-FEM visualiza-

tion.

(c) Step 10. Standard FEM visualiza-

tion.

(d) Step 10. Special X-FEM visualiza-

tion.

(e) Step 20. Standard FEM visualiza-

tion.

(f) Step 20. Special X-FEM visualiza-

tion.

Figure 4: Dissection of a beam. A complete cut is performed and the effects of gravity make the slice

fall apart. The left side shows the original elements using a standard FEM visualization. The right

side shows the separated elements as represented when using a special X-FEM visualization. Note:

When applying the simpler linear X-FEM, disturbing ghost forces would blow up the dissected

parts, especially when gravity causes the dissected slice to rotate while falling.

4.3.3 Assembly of global matrices

So far, only the structure of the (local) element X-FEM matrices and vectors with respect to a single
enriched element has been addressed. In the following, we give some notes on their global structure, for
what it is necessary to first determine the object’s total number of enriched elements, i.e., the number
of elements that are intersected by the cutting surface. For this purpose, a so-called level set function is
introduced. In the implementation, we make use of the signed-distance function Λ given by

Λ(x) = ± min
x∗∈Γcut

‖x− x∗ ‖ , x ∈ Ω , (72)

where ‖ · ‖ denotes the Euclidean norm, x∗ is the closest point on the cut surface Γcut to x, and Ω is
the object’s domain. For a discretized domain, the values of the level set function are typically stored at
the nodes Λi = Λ(xi), where i = 1, . . . , N . In this way, the level set method not only allows to define
interfaces implicitly by means of the zero-level of a scalar function within the domain, but also facilitates
the construction of enrichment as follows: Whether or not an element is cut by the discontinuity is
determined on the element-level by means of the level set function Λ. The set of cut elements is

MΛ =

{
k ∈ {1, . . . , Nel} : min

i∈Ik
(Λ(xi)) ·max

i∈Ik
(Λ(xi)) < 0

}
, (73)

where Nel denotes the total number of elements in the domain Ω, and Ik stands for the element nodes
of the k-th element. In other words, the implementation is based on a simple if-else decision, computing

whether or not the considered element’s nodes lie on different sides of the cut, i.e., are afflicted with
different signs (±1) by the signed-distance function Λ. Subsequently, based on the determination of the
enriched elements, a vector is set up, which contains the enriched nodes; each node listed only once. From
the number of additional DOFs, we can derive the structure of the global X-FEM vectors and matrices.
A global X-FEM vector then reads as

globalu
X = [u1 . . . uN a1 . . . aNenr

]
T
, (74)

where, again, N denotes the object’s total number of nodes, and Nenr identifies the total number of
enriched nodes in the object, with Nenr ≤ N . Note that since we work in 3D space each entry actually
consists of three components. As mentioned before, when applying shifted enrichment functions, the
nodal displacements of both enriched and non-enriched nodes are stored directly in the ui, whereas the
contributions of the ai are only needed to determine the displacement within an enriched element, such
that the physical meaning of the nodal displacements is remains preserved. A global X-FEM matrix can
again be divided into four submatrices as follows

globalKX =

[
KX1 KX3
KX2 KX4

]
, (75)

where the dimensions of the submatrices correspond to the vectors’ dimensions: KX1 ∈ R(3N×3N) cor-
responds to the standard FEM matrix with the standard DOFs, whereas KX2 ∈ R(3Nenr×3N), KX3 ∈
R(3N×3Nenr) and KX4 ∈ R(3Nenr×3Nenr) correspond to the additional DOFs.

4.4 Dynamical Simulation

In order to dynamically simulate the behaviour of soft tissue after a cut has been fully executed, the
biomechanical model has to account for inertia and energy dissipation, and hence must consider mass and
damping factors, as alredy explained for the standard FEM.

Similarly to the enriched element stiffness matrix, the enriched element mass matrix has the form

elemMX =

[
Muu Mua

Mau Maa

]
. (76)

The components of the consistent element mass matrix of an enriched element are defined as

Muu
ij = ρ

∫
V

ΦiΦj dV , (77)

Mua
ij = ρ

∫
V

ΦiΦjΨj dV , (78)

Mau
ij = ρ

∫
V

ΨiΦiΦj dV , (79)

Maa
ij = ρ

∫
V

ΨiΦiΦjΨj dV . (80)

Yet, as mentioned before for the standard FEM, problems during the simulation usually arise re-
garding the numerical stability. Most often, small sliver elements falling apart from the object have a
negative impact on the numerical accuracy and stability of both explicit and implicit methods. When
applying explicit methods, the choice of a proper mass-lumping technique can essentially improve simula-
tion stability, which is why a number of different techniques have been developed. Generally, the lumped
submatrices Mua

ij and Mau
ij are zero, since they do not share any entries with the element matrices’ di-

agonal. Opposedly, for Muu
ij and Maa

ij we need to distinguish between different lumping techniques. The
most well-known technique achieves diagonalization by means of row summation. Alternatively, there are
weighted diagonalization techniques. A third type of mass lumping techniques specific to the X-FEM is
presented in [12], proposing

Muu

ii =
m

n
(81)

Maa

ii =

(
Va
V

Ψ2
ai +

Vb
V

Ψ2
bi

)
Muu

ii (82)

where n again denotes the number of element nodes. A stability analysis with respect to different mass
lumping techniques for an enriched element using the shifted enrichment function can be found in [12].

Summarizing, the X-FEM and our implementation along with the underlying data structures proved
their suitability for cutting deformable objects in a virtual environment. Most of the drawbacks of other
approaches to model discontinuities are surpassed in both performance and stability. In our implemen-
tation, an interactive performance of a progressive cut during run-time is not yet possible, as this would
include a permanent updating process of the element structure and of the system’s reaction to external
and internal forces changing in time. As opposed to this, our implementation performs a dynamic sim-
ulation of the soft tissue behaviour after a cut has been fully executed, which is optimized in terms of
reducing the computational costs during the actual time-stepping part in the simulation by means of ex-
ecuting specific parts of the calculation of the system matrices in precomputing steps. However, referring
to [12], the X-FEM shows to be suitable even for interactive real-time virtual reality simulations. The
next chapter will spotlight implementation and data structure of the simulation, whereafter an evaluation
of the simulation results will follow.

5 Notes on Implementation and Data Structures

Starting from an existing 2D static FEM implementation4 in MATLAB5 for the simulation of the be-
haviour of an elastic body, we developed a 3D dynamic, corotation-based simulation, which allows for
modelling the behaviour of soft tissue – in particular in the medical context – under the effect of external
and internal forces. Both linear (Tet4) and quadratic (Tet10) elements furnish the implementation, pro-
viding better performance and higher accuracy in the simulation. In a subsequent step, the simulation
capabilities were extended by means of incorporating the X-FEM in order to allow the simulation of
surgical cuts.

Below, we will highlight the most important aspects of our MATLAB implementation prototype and
the underlying data structures. Additional information can be found in the source code.

5.1 FEM Implementation

Given the standard structure of a general-purpose FEM code, in our simulation prototype we partic-
ularly focus on providing computational efficient and accurate algorithms aiming for near-to-real-time
simulations. There is a great potential for optimization, whereof we consider the following points:

Assembly of the System Matrices. As mentioned above, complex parts of the time-stepping can be
precomputed at the beginning of the simulation, especially with respect to reducing the overhead whenever
a new stiffness matrix is needed. For instance, if the shape functions Φ are linear, their derivatives
and the stiffness matrix are constant on the whole element, such that their calculation can be omitted
at run-time. When applying the corotational method, we find that the current step’s stiffness matrix
only depends on the current rotation and constant stiffness matrices, the latter of which are therefore
precomputed at the cubature points. Moreover, using a nodal basis as introduced above involves specific
sparsity patterns of the system matrices, which correspond to the element’s connectivity. An efficient
volume integration that maps arbitrary (real) elements into local (reference) unit elements additionally
accelerates the precomputing part by allowing to easily obtain all local geometric information by simply
scaling mapped volume information.

Implicit Time Integration. In order to make the simulation feasible for real-time applications, we
combine the corotation-based algorithm with the implicit Newmark time integration scheme, which en-
forces the simulation’s almost unconditional stability. For an implementation of the Newmark algorithm
we refer to a pseudo-code excerpt in [1].

4SolidMechanics.org offers useful information on the FEM implementation as well as sample FE codes on:

http://solidmechanics.org/.
5MATLAB is a numerical computing environment and fourth-generation programming language, see

http://www.mathworks.de/products/matlab/.

http://solidmechanics.org/
http://www.mathworks.de/products/matlab/

Incorporation of Boundary Conditions (BCs). While surface traction forces (natural Neumann
BCs) are already incorporated in the weak formulation (13), geometric constraints (Dirichlet BCs) have
to be considered separately. Common techniques in engineering include Lagrangian Multipliers [19] which
link additional algebraic equations to the system, or Penalty Methods [21] which add additional forces on
individual nodes. We build on directly including the Dirichlet boundary nodes into the right hand side
(force) vector of the system, and correspondingly adapting the remaining system.

5.2 X-FEM Implementation

Generally, there are three major differences in an X-FEM code as compared to a classical FEM code: First,
the cubature has to consider the special character of the enrichment, second, the enrichment functions have
to be implemented and incorporated, and third, the code must be able to deal with a variable number of
DOFs per node, which holds on the element-level (the element matrices have different dimensions) as well
as for the overall system matrix (which is of the dimension [3N + 3Nenr]). Furthermore, the visualization
has to be adjusted in order to allow the representation of inner-element discontinuities. In the following
we describe an implementation for linear tetrahedra, yet the code is kept flexible for future extensions to
quadratic tetrahedra and other element types. Subsequently, these items will be described with respect
to their order in the whole simulation workflow.

1. Preprocessing Steps. Given an object’s tetrahedralized geometry as well as material properties
for each element, the simulation input consists of displacement (Dirichlet) and force (Neumann) BCs and
the definition of a cut, represented by a simple 2D plane in 3D space. Currently, the cutting plane is
implicitly given by means of the level set method, allowing for the calculation of the level set values of all
nodes, i.e., the oriented distances between the cutting plane and the object’s nodes. Future enhancements
might allow the definition of a more flexible cutting surface, e.g., represented by formulations based on
differential geometry.

Considering a situation where the local enrichment functions have jumps within the elements, the
standard Gauss cubature does not deliver satisfying results anymore, since it requires smoothness of the
integrands. For this reason, the X-FEM requires a decomposition of the elements into subelements that
align with the discontinuity. Each of these subelements requires a separate integration, which involves
new integration points in the subelements, as can be seen in Figure 5.

Figure 5: The distribution of the integration points in an element (2D linear triangular element)

before and after a cut. The orange line represents the cut, the vertices above the cut are denoted

by (+), the ones below the cut by a (−). The blue points denote the integration points in the

original element before the cut. The red points illustrate the distribution of the integration points

in the subelements resulting from the subdivision of the original element after the cut.

The actual element subdivision is based on the determination of the intersection points of the cutting
plane and the element edges. In case of linear elements this step simply follows the rules of the intercept

theorems using the level set values of the current element’s nodes. In case of quadratic or higher order
elements it becomes more complex and computationally expensive, too.

Once the intersection points are known, the element subdivision process has to be started: First, the
respective element is mapped into a reference element as explained above. Second, a case-by-case analysis,
differentiating according to the values of the level set function in the original element nodes, is responsible
for subdividing the element into two subelements, one above the cutting plane and one below it. Figure
6 shows 3 examples out of 8 different ways in which a tetrahedral element can be cut, 4 of which actually
leave the element only touched along an edge or a face, thus ”uncut”.

(a) Case (0 + −−) / (0 − + +).

Cut through one vertex and two

opposite edges.

(b) Case (+ − −−) / (− +

+ +). Cut through three element

edges.

(c) Case (+ +−−) / (−−+ +).

Cut through four element edges.

Figure 6: Case-by-case analysis as implemented in the simulation. It shows the different ways in

which a tetrahedral element can be cut. We denote the vertices above the cutting plane by (+),

those below it by (−), and the nodes which are directly intersected by the cut by (0), according to

the sign of the level set values. Hence, the cases can be identified by quadruples of these symbols,

such that, e.g., (+ − 0−) denotes an element where node 1 lies above the cut, nodes 2 and 4 lie

below it, and node 3 lies on the cut. Of course, any arbitrary permutation is possible.

Obviously, the two subelements obtained from this subdivision process are not necessarily tetrahedra
anymore, which is why we choose to again subdivide these subelements until they represent smaller
tetrahedra, such that on the subelement-level we can apply the same functions on them as on the element-
level.

Note that in order to prevent the element subdivision process from producing ill-conditioned elements
which cause numerical instability, we define a minimum distance between an element node and a cut,
until which we define the element not to be cut.

The result of the element subdivision process is a set of new subelements above and below the cut,
which then have to be occupied by integration points and the respective integration weights, again based
on the above-mentioned mapping on a reference element. This allows us to finally compute the element
and subelement stiffness blocks elemKXij under consideration of the cut in a last preprocessing step before
the actual simulation. When applying linear shape functions, which results in constant stiffness matrices,
since the shape function derivatives are constant, and using shifted enrichment functions, this allows for
maximally reducing the simulation overhead, which leads to a highly-optimized performance.

In general, considering the assembly of the system matrices, we notice that our X-FEM code must
be able to deal with a variable number of DOFs per node, which holds both, on the element-level since
the element matrices have different dimensions ([3n × 3n] or [2 · 3n × 2 · 3n], depending on whether
or not the element is enriched), as well as for the overall system matrix (which is of the dimension
[3N + 3Nenr × 3N + 3Nenr]).

Hence, the above presented features require a number of adaptations and extensions to the standard
FEM data structure. In the following, we therefore list our new X-FEM data structure and the respective
additional entities with respect to the element level:

• double LevelSetValues: A vector containing the current element’s nodal level set function
values.

• boolean ElementEnrichedYesNo: A boolean variable indicating whether or not the element is
cut, i.e., intersected by the cutting plane, and hence must be enriched. According to the above-
described case differentiation, it moreover differentiates between an element that is just touched (in
a vertex, edge or face) and an element which is really cut through.

• int NumberOfSubelements: A scalar variable, which is calculated by the element subdivision
algorithm, which indicates an element’s number of subelements.

• double SubelementCoordinates: A matrix containing the coordinates of the subelements of
the current element.

• array SubelementIntegration: An array containing information about the integration over the
subelements, such as the number, coordinates and weights of integration points (as a consequence of
the number of subelements which had to be generated), or the partial sub-volumes of the subelements,
above and below the cut.

• array ShapefunctionsAndDerivativesFEM and ShapefunctionsAndDerivativesXFEM:
Matrices containing the precomputed standard and enriched element shape functions Φi and ΦiΨi,
and their respective derivatives.

• double ElementMassMatrix and ElementStiffnessMatrix: Matrices containing the pre-
computed element mass and elemenet stiffness blocks, possibly being updated in every Newmark
time step.

As soon as the cut is defined, the data structure is filled in a preprocessing step and can be used for all
subsequent calculations. Note that this works for pre-defined cuts only, however, does not hold anymore
when dealing with progressive cutting.

2. The Main Algorithm for the Solution of the Elasticity and Cutting Problem. The main
algorithm deals with the actual dynamic elasticity and cutting simulation, which is executed by means of
the implicit Newmark time integration scheme in order enforce the simulation’s stability. In comparison
to the classical FEM code, there are only few adaptations to be made for the X-FEM.

As the X-FEM code must consider a variable number of DOFs per node, with respect to both, the
solution vectors, as well as the system matrices. Therefore, case distinctions must be made for dealing
with enriched and non-enriched elements.

Concerning the incorporation of boundary conditions into an X-FEM-based simulation, again, the
imposition of Neumann boundary conditions is straightforward and can be realized as in the classical
FEM by evaluating corresponding integrals in the weak form along the Neumann boundary. Opposedly,
Dirichlet conditions generally require further efforts due to the doubled number of DOFs, compare, e.g., [2].
However, when applying shifted enrichment functions, we can again directly transfer the results from the
classical to the extended FEM, since the nodal displacements are directly stored in the standard FEM
part of vector u as explained in the previous section, which hence allows for fixing a node to a specific
value by simply constraining a single DOF.

Given the fact that cutting strongly affects the deformation of soft tissue, it obviously makes sense to
incorporate the corotation-based formulation in the X-FEM simulation for the purpose of more accurate
results, too. In a dynamic simulation, this involves the calculation of the rotation matrices in every time
step, since – as we found in the matrix assembly section – the current step’s stiffness matrix and its
stiffness blocks only depend on the current rotation and on constant force derivatives, the latter of which
are suggested to be precomputed. As previously shown, different rotations have to be computed for the
subelements above and below the cutting plane. Again, this is performed by extracting the rotation from
the deformation gradient tensor ∇ϕ using polar decomposition. However, we cannot use the original
elements’ nodal points anymore, but instead must take the vertices of the subelements above and below
the cutting plane, and their respective displaced positions as given in equation (42).

3. Postprocessing Steps: Simulation Output and Visualization. In a postprocessing step, and
generally when an output is needed for the visualization, the X-FEM requires special adjustments, too.
Besides from nodal displacements which – when using shifted enrichment functions – are directly stored in
the ui just like in the standard FEM, there are the contributions of the ai, which account for inner-element
displacements and hence the discontinuities.

(a) Standard FEM Visualization of a cutting sce-

nario using Matlab.

(b) X-FEM Visualization of a cutting scenario

using ParaView.

Figure 7: Visualization of a cutting scenario using standard FEM and special X-FEM visualization

methods.

Figures 7a and 7b show a cutting scenario applying a standard FEM visualization method (Figure
7a), and a special X-FEM visualization method (Figure 7b). In the standard visualization, both the
enriched (yellow) and the non-enriched (white) elements are visualized as uncut tetrahedra defined by
their nodal points and continuously connected without any visible gap in between. By contrast, in the
adapted X-FEM visualization, the cut becomes visible as the postprocessing considers the contributions
of the ai and hence the inner-element displacements.

(a) First Part of the X-FEM Visualization show-

ing the non-enriched elements only.

(b) Second Part of the X-FEM Visu-

alization showing the subelements of

the enriched elements only.

Figure 8: Details of the X-FEM Visualization with respect to the cutting scenario presented in

Figure [7].

Figures 8a and 8b show the underlying X-FEM data structure, which differentiates between enriched
and non-enriched elements. Non-enriched elements are represented as in the standard FEM, however,
enriched elements are represented by their subelements above and below the cut such that a gap opens
up.

6 Evaluation

The presented simulation is evaluated by means of a convergence analysis and with respect to stability
issues. We define application-relevant simulation test cases and compare our simulation results to the ap-

proved reference results of standard software. Moreover, we consider the impact of applying the linearized
and the corotation-based formulations in static and dynamic simulations with respect to the stability.

6.1 Notes on the Evaluation Methods

Reference Solutions. In order to perform the evaluation, we compare our simulation results to ap-
proved reference solutions. Using Abaqus6, we obtain a solution for the linearized calculations when
modifying the program’s parameters in a way such that the material properties represent the linear,
isotropic material of our soft tissue. Since Abaqus does not support the corotational method, we have to
apply custom-implemented methods and applications provided as part of the SOFA7 simulation frame-
work in order to produce reference solutions for the corotation-based simulation. Concerning the cutting
simulation, our strategy for enabling comparison and error calculation consists in providing Abaqus and
SOFA with input files where the cut is already perfectly remeshed, i.e., where the elements on either
side of the cut are disconnected and aligned with the cut’s course. In this way, the reference calculation
operates on a pre-cut object. Moreover, all calculations performed during the evaluation process are based
on the static consideration of final state of the elasticity and cutting simulation, since a time-dependent
step by step comparison is not possible for the above mentioned reasons.

Calculation of the Error. This paragraph will define the applied error measure and then outline the
error computation algorithm.

We apply the L2-error, which integrates the difference of the reference solution ϕref and the calcu-
lated solution ϕnDOFs

over the whole domain of the body. The calculated solution ϕnDOFs
indicates the

underlying mesh consisting of 1
3 nDOFs nodal points. The L2-error is defined as

L2-error =
∥∥ϕref −ϕnDOFs

∥∥
2

=

√∫
Ω

(
ϕref −ϕnDOFs

)2
dV =

√√√√nelem∑
i=1

ωi
((
ϕref −ϕnDOFs

)
(xi)

)2
. (83)

When using structured meshes, which we do in the evaluation process, the number of DOFs nDOFs directly
depends on the characteristic element size h, such that nDOFs := nDOFs(h) = O(h−3). The same holds
for the total number of nodes nnodes and the number of elements nelem.

With the above definition of the error measure, the simulation method converges if∥∥ϕref −ϕnDOFs
(h)
∥∥

2

h→0−→ 0 (84)

where h→ 0 if nDOFs(h)→∞. It satisfies the order p of convergence if for a constant c∥∥ϕref −ϕnDOFs

∥∥
2
≤ chp , (85)

holds for h→ 0, or nDOFs(h)→∞, respectively. Logarithmical transformation under the assumption of
equality yields respectively

log
(∥∥ϕref −ϕnDOFs

∥∥
2

)
= log (chp) = log(c) + p log(h) , (86)

log
(∥∥ϕref −ϕnDOFs

∥∥
2

)
= log

(
c̃n−p̃DOFs

)
= log(c̃)− p̃ log(nDOFs) , (87)

Graphically interpreted, when plotting log
(∥∥ϕref −ϕnDOFs

∥∥
2

)
for different values of respectively h or

nDOFs(h) versus respectively log (chp) or log(c̃n−p̃DOFs), the slope corresponds to the order p or p̃ of con-
vergence.

In order to show the convergence of our simulation method, we compare a high resolution reference
solution ϕref with our Matlab simulation results ϕnDOFs

and the corresponding meshes. When increasing
the mesh resolution (i.e., h→ 0), the error with respect to the reference solution should decrease.

6Abaqus is a suite of software applications released by the company Simulia, see http://www.simulia.com/
7SOFA (Simulation Open Framework Architecture) primarily targets at real-time simulation, with an emphasis

on medical simulation, see http://www.sofa-framework.org/

http://www.simulia.com/
http://www.sofa-framework.org/

Test Object and Test Cases. The evaluation builds on three different application-relevant test sce-
narios which are introduced below. We point out the, corresponding real-world situations in the medical
context. The underlying test object is an elastic beam as presented in Figure 9a. It consists of homoge-
neous, almost incompressible, elastic material, with the Poisson ratio ν = 0.35 and the elasticity module
E = 300 kPa. The object’s mass is assumed to be uniformly distributed, such that the mass density is
ρ = 1, 070.0 kg

m3 all over the body. The cutting plane is defined as the set of all points (x, y, z)T in Scut,
where

Scut =
{

(x, y, z)T : x ∈ [0.0, 0.015], y ∈ [0.0, 0.06], z = 0.1
}
.

(a) The test object

(including the cut)

in its initial config-

uration.

(b) Test case 1:

Gravitation.

(c) Test case 2:

Stretching.

(d) Test case 3:

Bending.

Figure 9: The test object and a schematical depiction of the test cases.

The test cases (compare Figures 9b, 9c, 9d) are defined by different boundary conditions (BCs). We
generally assume the lower face of the object (lying in the x-y-plane) to be fixed by means of Dirichlet or
displacement BCs for all three test cases. The object’s boundary parts which are not subject to a special
prescribed deformation are left to natural BCs. In test case 1, the object is subject to gravitation forces,
where the mass acceleration caused by gravity is 9.81 m

s2 , acting in positive x-direction. Corresponding
situations in the medical context occur whenever a cut is performed and gravity acts on non-fixed semi-cut
or sliced parts, pulling them towards the earth. In test case 2, the upper left boundary edge {(x, y, z)T :
x = 0.0, y ∈ [0.0, 0.06]} to be pulled by 10% in positive z-direction in order to reach a displacement of
zdeformed = zinitial +0.02. This causes the whole beam to be stretched. A real-world situation as described
by this case might occur, e.g., when in a surgical operation a surgeon wants to open up a gap between the
two sides of the cut, hence pulling the soft tissue on the one side of the cut away from the other, in order to
be able to glance a view inside the body or to get inside with a surgical instrument. Test case 3 assumes an
additional displacement BC to pull the upper right boundary edge {(x, y, z)T : x = 0.03, y ∈ [0.0, 0.06]}
towards a prescribed displacement of xdeformed = xinitial + 0.03 and zdeformed = zinitial − 0.015, such that
the resulting cut beam is bended as it was under the effect of gravity. In the medical context, this case
can be found as a combination of the previous two.

As explained above, when testing the linear and corotational versions of the classical FEM in Abaqus
and SOFA, we let the cut already be prescribed in the input file. Opposed to this, for testing the X-FEM
versions, the cut is performed actively on an arbitrary mesh during the simulation. For both versions, we
evaluate the simulated behaviour of the object after the cut.

6.2 Evaluation Results

Convergence. We calculate the L2-error with respect to different mesh resolutions, in terms of the
number of DOFs. Figures 10 depict the convergence analysis. We observe the expected overall result: In
all three test cases and for both the linear and the corotational versions, the error decreases for increasing
mesh resolution.

(a) Test case 1, linearized version. (b) Test case 1, corotated version.

(c) Test case 2, linearized version. (d) Test case 2, corotated version.

(e) Test case 3, linearized version. (f) Test case 3, corotated version.

Figure 10: Convergence analysis for the three test cases, for the linearized (left) and corotation-

based (right) FEM and X-FEM versions. The plots show the convergence of the simulation results

of our methods implemented in Matlab as compared to the reference simulation results of Abaqus

and SOFA.

The left side shows the convergence plots for the three test cases for the simulation based on the
linearized methods. The grey dotted line represents the calculated errors when comparing Abaqus simu-
lations based on low resolution meshes to the high resolution result, as also calculated in Abaqus. The red
dotted line represents the results of our linearized version of the classical FEM compared to the highly
resolved reference results of Abaqus. As expected, these two lines completely agree with each other,
which means that when given the same mesh our linearized Matlab simulation delivers exactly the same
results as the Abaqus simulation. The blue line represents the results when comparing our X-FEM-based
simulation to the highly resolved reference solution of Abaqus.

In test case 1, we observe a better convergence of our X-FEM simulation in comparison to the stan-

dard FEM. Opposed to this, for test case 2, the two methods cannot be clearly distinguished in their
convergence behavior, and in test case 3, the convergence of the X-FEM simulation is slightly worse than
the convergence of the standard FEM.

This obviously is due to the fact that the X-FEM-based simulation as implemented in Matlab does not
allow elements to be partially cut. Hence, the cut is continued through the rest of the element, as opposed
to the simulation in Abaqus which is based on a mesh that perfectly aligns with the cut. Consequently,
the cut in our X-FEM simulation is a little ’longer’ than compared to the simulation of Abaqus.

However, this partly contradicts to the observation of a decreasing error for an increasing number of
DOFs, i.e., for a decreasing characteristic element size h. We would expect that the higher a mesh is
resolved, the more the size of the X-FEM cut approaches the actual size of the cut as prescribed for the
Abaqus FEM solution. Thus, the reason for the lower error of the X-FEM solution in test case 1 is to
be found in the conditions imposed by the scenario simulated in the test case. This becomes obvious
when comparing test cases 1 and 3, which deform in a similar way, however, under the effect of different
boundary conditions. In test case 1, gravity causes the deformation. The X-FEM cut, being a little
too long, offers a bigger affected target volume to gravity, which consequently shows stronger effects.
Opposedly, the prescribed displacement, as given in test case 3, does not benefit from the larger X-FEM
cut as compared to the standard FEM cut.

The right side of Figure 10 shows the results of the corotation-based simulations. For all three
test cases, we observe that the order of convergence and the general course of the convergence curve
approximately correspond to the respective characteristics of the simulations based on the linearized
formulation. Generally delivering comparable results, apart from that, the reason for differences can be
found in the effects of the absence of ghost forces, as opposed to their presence for large deformations in
the linearized versions.

Generally, considering that we created the underlying meshes on the basis of doubling the number
of elements in each coordinate direction one after the other, the mesh is not scaled isotropically, which
explains the zigzag of the convergence plot.

Note that, due to relatively low resolutions that could be handled by our Matlab simulation, the
described convergence analysis has limited significance only and is not conclusive. For more reliable
results, simulations on the basis of higher resolved meshes will have to be analyzed.

Stability. The elasticity and cutting simulations based on our dynamic X-FEM implementation are
generally very stable. This is due to the novel combination of the underlying corotational formulation
and the implicit Newmark time integration scheme. In test case 2 a static corotation-based simulation
reveals instabilities such that the object may start jiggling. Georgii focussed on this phenomenon, and
figured the reason for the instability to be found in the polar decomposition used for the extraction of
the rotation matrices. He therefore alternatively suggests applying a more advanced method based on
the determination of minima in the energy potential by means of Newton iterations, see [10]. Yet, since
real-world applications require dynamic simulations, these possible instabilities are reduced, oppressed or
even eliminated by damping and inertia.

Additional Notes. Besides from the analysis of convergence and stability properties, we again want
to mention the enormous potential for optimization in terms of precomputing complex parts before the
actual simulation, and the thus improved simulation performance.

6.3 Conclusion

The convergence analysis along with the appendant error plots show the convergence of our X-FEM-
based simulation presented in this work with respect to a gold standard reference solution. The X-FEM
effectively models discontinuities, enables arbitrary cuts, and shows very good accuracy in terms of DOFs,
even in comparison to gold standard FEM simulations which operate on meshes which already perfectly
align with the cut before the start of the simulation.

The incorporation of the corotational formulation allows a realistic simulation of large deformations
and overcomes the disturbing phenomenon of ghost forces. In addition to that, an important and dis-
tinguishing feature of the methods implemented is their potential for precomputing complex parts of the

calculations before the actual time-stepping algorithm. This makes them feasible for real-time applica-
tions, such as in the medical and surgical context. To this regard, the application of the implicit Newmark
time integration scheme enforces the simulation’s stability, which is to be noted as a prominent feature of
the implementation, since it represents an important step towards the applicability of the produced sim-
ulations in real-world medical simulation systems. Moreover, to the best of the author’s knowledge, this
is the first X-FEM simulation based on an implementation which combines the corotational formulation
with an implicit time integration scheme, hence enforcing almost unconditional stability.

Finally, the particular choice of enrichment functions results in surprisingly sparse stiffness matrices
that remain reasonably conditioned as the mesh is refined. This not only allows for an economical use of
storage, but also increases computing efficiency by reducing the time-consumption of the simulation.

The flexibility of our X-FEM-based elasticity and cutting simulation in the context of medical engi-
neering is shown in Figure 11, where a cut is performed through an arbitrary unstructured mesh.

(a) A tetrahedralized liver model and the cutting

plane.

(b) The result of the cutting simulation. The

enriched elements are marked by a white wire-

frame representation.

Figure 11: Cutting scenario for a human liver: Pre- and post-cutting visualization.

Summarizing, the considerations on the convergence, stability, performance and flexibility of our
simulations show their applicability in real-world applications.

Future and ongoing work in this context might address items such as partial and progressive cutting,
which so far is not implemented, but for which the X-FEM and the presented data structures offer the
right functionalities. Moreover, the extension to multiple cuts is straightforward, since an additional
displacement within an element can easily be calculated by twice adding further DOFs according to
equation (42) (see [13]). Comparing our elasticity simulation using the standard FEM to our X-FEM
implementation, the capabilities of applying higher order isoparametric elements seems promising and
would need to be evaluated, too, both with respect to performance and to accuracy.

7 Appendix

7.1 Calculation of the Linearized Version of the Stiffness Matrix for the Elas-

tic Forces

Aiming for maximal exploitation of the computational advantages arising through the simplifications due
to the use of the linear elasticity theory, we give a detailed derivation of the calculation and assembly of
the linearized element stiffness matrix elemKlin as in (25).

According to equation (27), we find the linearized [3n× 3n] element stiffness matrix

elemKlin = ∇UF
lin =

∂F lin

∂U =
∂F lin

∂P̃
, (88)

where F lin implies the strain ε and the stress σ to be replaced by their linearized versions εlin and σlin.

Hence, calculating the integrand of the stiffness term in the equilibrium equation (21) yields

δεlin : σlin =
1

2

(
∇δu+∇δuT

)
: σlin F lin:=∇Φσlin

= δU : F lin , (89)

where the linearized element force matrix reads as

F lin =

[
3∑
l=1

∇Φil σ
lin
lp

]
i=1...n, p=1...3

. (90)

Similarly to (23), for the entries F lin
lj of the global matrices we find

F lin
lj =

∑
k

∫
Vk

F lin
ij dVk , where l = 1 . . . N, i = 1 . . . n, j = 1 . . . 3 , (91)

i.e., the sum of nodal elastic forces F lin
ij from all the elements k containing the vertex l in any i-th row.

Finally, as in (27), we find the representation of the Jacobian

elemKlin
ij =

(
∇UF

lin
)
i,j

=
∂F lin

ip

∂U jq
=
∂F lin

ip

∂P̃jq

. (92)

Thus, inserting the expression for the nodal elastic forces, we retrieve

∂F lin
ip

∂P̃jq

=
∂

∂P̃jq

(
3∑
l=1

∇Φil σ
lin
lp

)
=

3∑
l=1

∂

∂P̃jq

(
∇Φil σ

lin
lp

)
=

3∑
l=1

∇Φil
∂

∂P̃jq

(
σlin
lp

)
︸ ︷︷ ︸

term 1

. (93)

As a preparing step for the calculation of term 1 we determine the partial derivatives of the linearized
strain tensor

2
∂εlin

ip

∂P̃jq

=
∂

∂P̃jq

(
∇ϕip +∇ϕpi − 2I

)
=

∂

∂P̃jq

∇ϕip +
∂

∂P̃jq

∇ϕpi

product rule
= δiq (∇Φ)jp + δqp (∇Φ)ji

symmetry of εlin

= 2
∂εlin

pi

∂P̃jq

, (94)

such that with the linear material law of Hooke (5) for linear isotropic materials, we obtain the partial
derivatives of the linearized stress tensor

∂σlin
ip

∂P̃jq

= 2µ
∂εlin

ip

∂P̃jq

+ λδip

3∑
k=1

∂εlin
kk

∂P̃jq

= µ
(
δiq (∇Φ)jp + δpq (∇Φ)ji

)
+

1

2
λδip

3∑
k=1

2
∂εlin

kk

∂P̃jq︸ ︷︷ ︸
=2∇Φjq

= µδiq∇Φjp + µδpq∇Φji + λδip∇Φjq . (95)

Summarizing, i.e., inserting the above results, we obtain the components of the linearized element
stiffness matrix elemKlin, i.e., the linearized version of the symmetric force derivatives

∂F lin
ip

∂P̃jq

=

3∑
l=1

∇Φil (µδlq∇Φjp + µδpq∇Φjl + λδlp∇Φjq)

= µ∇Φiq∇Φjp + µδpq

3∑
l=1

∇Φil∇Φjl + λ∇Φip∇Φjq =
∂F lin

jq

∂P̃ip

. (96)

8 Acknowledgements

This work was carried out with the support of the German Research Foundation (DFG) within the project
I03 of the Collaborative Research Center SFB/TRR 125 ’Cognition-Guided Surgery’.

References

[1] K.J. Bathe. Finite element method. Wiley Encyclopedia of Computer Science and Engineering, 2009.

[2] T. Belytschko, WK Liu, and B. Moran. Nonlinear finite elements for continua and structures,
volume 36. Wiley, 2000.

[3] T. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin methods. International journal for
numerical methods in engineering, 37(2):229–256, 1994.

[4] T. Belytschko, G. Zi, J. Xu, and J. Chessa. The extended finite element method for arbitrary
discontinuities. Computational Mechanics-Theory And Practice. Barcelona, Spain: CIMNE, 2003.

[5] D. Bielser, V.A. Maiwald, and M.H. Gross. Interactive cuts through 3-dimensional soft tissue. In
Computer graphics forum, volume 18, pages 31–38. Wiley Online Library, 1999.

[6] D. Braess. Finite elemente. Springer, 2003.

[7] P.G. Ciarlet. Mathematical elasticity: General preface 1. Studies in Mathematics and its Applications,
29:v–viii, 2000.

[8] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model for real-time cutting, deformations,
and force feedback for surgery training and simulation. The Visual Computer, 16(8):437–452, 2000.

[9] Thomas-Peter Fries and Ted Belytschko. The extended and generalized finite element method:
An overview of the method and its applications. International Journal for Numerical Methods in
Engineering, 84(3):253–304, 2010.

[10] J. Georgii and R. Westermann. Corotated finite elements made fast and stable. 2008.

[11] N.J. Higham and R.S. Schreiber. Fast polar decomposition of an arbitrary matrix. 1990.

[12] L. Jerabkova. Interactive Cutting of Finite Elements based Deformable Objects in Virtual Environ-
ments. Citeseer, 2007.

[13] L. Jerábková and T. Kuhlen. Stable cutting of deformable objects in virtual environments using
xfem. Computer Graphics and Applications, IEEE, 29(2):61–71, 2009.

[14] A. Mazura. Virtuelles schneiden in volumendaten. 1997.

[15] D.I.J. Mezger. Simulation and animation of deformable bodies. update, 2007.

[16] J. Mezger, B. Thomaszewski, S. Pabst, and W. Straßer. Interactive physically-based shape editing.
Computer Aided Geometric Design, 26(6):680–694, 2009.

[17] H.W. Nienhuys and A.F. van der Stappen. Supporting cuts and finite element deformation in inter-
active surgery simulation. 2001.

[18] LaraM. Vigneron, JacquesG. Verly, and SimonK. Warfield. Modelling surgical cuts, retractions,
and resections via extended finite element method. In Christian Barillot, DavidR. Haynor, and
Pierre Hellier, editors, Medical Image Computing and Computer-Assisted Intervention MICCAI
2004, volume 3217 of Lecture Notes in Computer Science, pages 311–318. Springer Berlin Heidelberg,
2004.

[19] C. Wieners. Numerik partieller differentialgleichungen 2. 2010.

[20] G. Zi and T. Belytschko. New crack-tip elements for xfem and applications to cohesive cracks.
International Journal for Numerical Methods in Engineering, 57(15):2221–2240, 2003.

[21] O.C. Zienkiewicz and R.L. Taylor. The finite element method (3 volume-set). 2005.

Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2013-03 Martin Wlotzka, Vincent Heuveline, Edwin Haas, Steffen Klatt, David Kraus,

Klaus Butterbach-Bahl, Philipp Kraft, Lutz Breuer: Dynamic Simulation of Land

Management Effects on Soil N2O Emissions using a coupled Hydrology-Ecosystem

Model on the Landscape Scale

No. 2013-02 Martin Baumann, Jochen Förstner, Jonas Kratzke, Sebastian Ritterbusch,

Bernhard Vogel, Heike Vogel: Model-based Visualization of Instationary Geo-Data with

Application to Volcano Ash Data

No. 2013-01 Martin Schindewolf, Björn Rocker, Wolfgang Karl, Vincent Heuveline: Evaluation of

two Formulations of the Conjugate Gradients Method with Transactional Memory

No. 2012-07 Andreas Helfrich-Schkarbanenko, Vincent Heuveline, Roman Reiner,

Sebastian Ritterbusch: Bandwidth-Efficient Parallel Visualization for Mobile Devices

No. 2012-06 Thomas Henn, Vincent Heuveline, Mathias J. Krause, Sebastian Ritterbusch: Aortic

Coarctation simulation based on the Lattice Boltzmann method: benchmark results

No. 2012-05 Vincent Heuveline, Eva Ketelaer, Staffan Ronnas, Mareike Schmidtobreick,

Martin Wlotzka: Scalability Study of HiFlow3 based on a Fluid Flow Channel

Benchmark

No. 2012-04 Hartwig Anzt, Armen Beglarian, Suren Chilingaryan, Andrew Ferrone,

Vincent Heuveline, Andreas Kopmann: A unified Energy Footprint for Simulation

Software

No. 2012-03 Vincent Heuveline, Chandramowli Subramanian: The Coffee-table Book of

Pseudospectra

No. 2012-02 Dominik P.J. Barz, Hendryk Bockelmann, Vincent Heuveline: Electrokinetic

optimization of a micromixer for lab-on-chip applications

No. 2012-01 Sven Janko, Björn Rocker, Martin Schindewolf, Vincent Heuveline, Wolfgang Karl:

Software Transactional Memory, OpenMP and Pthread implementations of the

Conjugate Gradients Method - a Preliminary Evaluation

No. 2011-17 Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Piotr Luszczek: GPU-Accelerated

Asynchronous Error Correction for Mixed Precision Iterative Refinement

No. 2011-16 Vincent Heuveline, Sebastian Ritterbusch, Staffan Ronn̊as: Augmented Reality for

Urban Simulation Visualization

No. 2011-15 Hartwig Anzt, Jack Dongarra, Mark Gates, Stanimire Tomov: Block-asynchronous

multigrid smoothers for GPU-accelerated systems

No. 2011-14 Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Stanimire Tomov: A

Block-Asynchronous Relaxation Method for Graphics Processing Units

No. 2011-13 Vincent Heuveline, Wolfgang Karl, Fabian Nowak, Mareike Schmidtobreick,

Florian Wilhelm: Employing a High-Level Language for Porting Numerical Applications

to Reconfigurable Hardware

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

www.emcl.iwr.uni-heidelberg.de

	Introduction and Motivation
	Medical Context and Motivation
	Related Work and State-of-the-art of Science and Technology

	Basics of Elasticity Theory and Soft Tissue Simulation
	Basics of Elasticity Theory
	Differential and Variational Formulation of the Elasticity Problem

	Numerical Solution of the Elasticity Problem using FEM
	FE discretization based on linear and quadratic elements
	Discretization of Elastic Force Density, Inertia and External Force Densities
	The Virtual Work ODE
	Volume Integration
	Time Integration
	Calculation and Assembly of the Elasticity Stiffness Matrix
	The Corotational Method

	Simulation of Cuts – Modelling Discontinuities using X-FEM
	Different Approaches to Model Discontinuities
	The X-FEM Approach to Model Discontinuities
	Simulation based on Linear and Corotational X-FEM
	Linear X-FEM
	Corotational X-FEM
	Assembly of global matrices

	Dynamical Simulation

	Notes on Implementation and Data Structures
	FEM Implementation
	X-FEM Implementation

	Evaluation
	Notes on the Evaluation Methods
	Evaluation Results
	Conclusion

	Appendix
	Calculation of the Linearized Version of the Stiffness Matrix for the Elastic Forces

	Acknowledgements

