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ABSTRACT

Multiphysics  models  seek  to  accurately  represent  complex  phenomena  by  incorporating  all  
relevant  physical  aspects.  Therefore,  multiphysics  simulations  often  require  the  use  of  high 
performance computing resources. As an example application, we consider a natural convection 
problem, where we couple a fluid dynamics model and a temperature evolution model. In order to 
exploit the parallelism of operator splitting schemes, we propose to use the OpenPALM coupler 
tool  for  coupling  individual  model  implementations.  We carried out  performance  tests  of  the 
coupled  models  with  a  varying  number  of  MPI  processes  and compared  them to  a  standard  
implementation.  Our  results  show  that  the  coupling  approach  is  superior  over  the  standard 
implementation with respect to parallel efficiency, especially when using a higher number of MPI 
processes.

1 INTRODUCTION

Multiphysics systems consist  of  more than one component  governed by its  own principle for  
evolution or equilibrium. As an example, we consider a natural convection problem, where the 
wind, pressure and temperature are the variables of interest. For the individual components there  
are often well-established solvers and simulation codes available. This emphasizes the reuse of  
software in operator splitting coupling methods. Current practices for multiphysics coupling seek 
to find a balance between performance, software reuse and numerical accuracy. The OpenPALM 
coupling tool allows to perform parallel multiphysics simulations employing specialized model  
implementations as well as legacy codes.

2 PROBLEM FORMULATION, DISCRETIZATION AND SOLUTION SCHEME

2.1 Natural convection problem

According to the Boussinesq approximation, we assume density variations being sufficiently small 
to be neglected, except in the buoyancy term. We consider a 2D scenario of wind dynamics in the  
form of the natural convection problem

The  unknowns  ,   and   denote  the  velocity,  pressure  and  potential 
temperature, respectively, where the given ground states are indicated by the zero-subscript and  
the deviations from the ground states are denoted with the hat symbol. The constants denote the 



density  , the kinematic viscosity  , the gravitation acceleration  and the thermal diffusivity . 
We use a rectangular domain  for our computations. The no-slip condition  is imposed on 
the whole boundary. For the temperature, we impose the Dirichlet boundary conditions  
and   on  the  left  and  right  side  of  the  domain,  respectively,  and  the  homogeneous 
Neumann boundary condition   on the thermally insulated top and bottom side.  As 
initial conditions, we take  and a linear temperature profile between the hot and the cold 
side of the domain.

2.2 Discretization

The implementations of the fluid dynamics model and the temperature evolution model are based 
on spatial Galerkin finite element discretizations of (1a,1b) and (2). We use inf-sup-stable Q2 / Q1 
Taylor-Hood  elements  (Taylor  and  Hood,  1973,  Ern  and  Guermond,  2010)  for  velocity  and 
pressure, respectively, and Q2 elements for the temperature. As time stepping scheme, we use the 
Crank-Nicolson method. The discretized fluid dynamics model reads

where   is  the  timestep  size,   and   denote  the  velocity  and  pressure  of  the  new 
timestep, and   and   denote the solution of the old timestep. The finite element spaces are 
defined on a rectangular mesh   with cell  size  .  The discretized temperature evolution 
model reads

where   denotes the temperature of the new timestep, and   is the solution from the old 
timestep. Note that the system (3a,3b) is nonlinear in the velocity variable, whereas (4) is a purely 
linear  equation  for  the  temperature.  Therefore,  we  use  Newton's  method  to  solve  the  fluid  
dynamics model. In each Newton step, a linear system with the Jacobian matrix of (3a,3b) has to 
be solved.  As this  Jacobian matrix  is  non-symmetric  in  general,  we use the GMRES Krylov 
subspace method with incomplete LU factorization (ILU) preconditioner (Saad, 2000) to compute 
the Newton updates. We also use an ILU-preconditioned GMRES solver to solve the temperature 
model (4), which is non-symmetric, too. Both models are implemented with the HiFlow3 finite 
element package (Anzt et al., 2012).

2.3 Solution scheme

We consider a solution scheme which makes up the full  model  by coupling individual  model  
components for the fluid dynamics part (3a,3b) and for the temperature evolution part (4).  In  
contrast to implementing the solvers for the coupled models in one single monolithic application, 
we split the models and their implementations into separate applications. This provides a layer of 
parallelism, since the model components can be solved concurrently in each timestep by means of 



an operator splitting approach. The solution scheme is sketched in Algorithm 1. It is a first order 
in time scheme for the coupled evolution problem (Keyes et al., 2011).

In order to maintain these advantages in the simulations, we propose the use of the OpenPALM 
coupler tool.

3 SIMULATION WITH OPENPALM

3.1 Concept of OpenPALM

The  fundamental  concept  of  OpenPALM  (Buis  et  al.,  2006)  is  to  consider  multiphysics 
simulations as a coupled application.  The models are assembled in a coupling algorithm, and 
OpenPALM  controls  their  execution  and  interaction.  Each  model  can  be  implemented 
individually. This offers the possibility to develop specialized solvers for the coupled models or to  
reuse  existing  codes  with  only  minimal  modifications.  OpenPALM  features  two  levels  of 
parallelism. On the one hand, models can run concurrently on separate compute nodes. On the 
other hand, OpenPALM is able to couple models which are internally parallelized, using MPI,  
OpenMP as well as accelerators like GPU or MIC.

The OpenPALM coupler and the two model implementations are each compiled into their own 
executable. The simulations are then carried out as a multiple program multiple data (MPMD) 
application, which is outlined in Figure 1.

We  use  two  independent 
model  implementations  with 
HiFlow3 for  the  fluid 
dynamics  and  for  the 
temperature  evolution.  Both 
models  are  parallelized  using 
MPI  based  on  a  domain 
decomposition.  Hereby,  the 
models  may  use  individual 
decompositions  with  a 
different  number  of 
subdomains.  Generally,  the 
nonlinear  fluid  dynamics 
model requires a much higher 
computational  effort  for 
solving one timestep than the 
linear  temperature  evolution 
model.  As  the  model 
components need to exchange 
their  solutions  after  each 
timestep, they should consume 
the  same time-to-solution  per 
timestep. Therefore, we run the fluid dynamics model on a bigger number of MPI processes than 
the temperature evolution model, so that their time-to-solution is balanced.

Figure 1: MPMD coupling scheme using OpenPALM.



3.2 Model implementation details

In  OpenPALM  terminology,  a  model
component  which  can  be  executed  in  a
coupling  algorithm  is  called  a  unit.  We
designed  two  units  for  the  fluid  dynamics
model  and  for  the  temperature  evolution
model.  OpenPALM  offers  a  graphical  user
interface named PrePALM which can be used
to define the execution scheme of the units.
Figure 2 shows the scheme we used for our
simulations.  The  blue  and red  vertical  bars
depict  the  two  independent  execution
branches of the application. The boxes sitting
on the branches represent the units. Each unit
has  a  variety  of  plugs  in  pink,  black  and
green color, which are connected to each other. Plugs on the top side of a unit represent input data,  
and plugs on the bottom side represent output data. The color of the plugs indicates the data type,  
e.g. pink plugs for double precision floating point variables and green plugs for integer variables. 
By connecting the plugs, units can communicate with each other. OpenPALM provides two basic 
communication primitives  for  sending and receiving data,  namely  PALM_Put and  PALM_Get. 
These  communication  routines  can  be  used  in  the  unit's  source  code  to  perform  the  actual 
exchange of the velocity and temperature data. As we run the models in parallel according to an  
individual domain decomposition for each model, the data to be exchanged is distributed among 
the MPI processes. OpenPALM is able to derive communication paths between the individual 
processes of parallel units. This avoids to collect the distributed data on one process before the  
communication, and to broadcast it afterwards. Instead,  PALM_Put and  PALM_Get transfer the 
data in portions according the intersection of the individual  data distributions in the units.  In  
Figure  2,  the  thick  pink  connection  indicates  the  transfer  of  the  distributed  velocity  and 
temperature  data  between  the  parallel  units,  and  the  thin  connections  indicate  single  process 
transfer of  auxiliary data which the units need to set up their model.

4 NUMERICAL EXPERIMENTS AND RESULTS

We ran a series of  simulations for the  natural 
convection scenario with the parameters listed 
in Table 1. The Rayleigh number of the fluid is 

,  and  the  flow  yields  a  Reynolds 
.  Figure  3  shows  three 

snapshots  from  the  simulations.  In  the  initial 
phase,  buoyancy  drives  the  main  flow  and 
recirculation areas evolve in the corners of the 
domain. The recirculation vortices propagate in 
horizontal direction and revolve the main flow 
direction  temporarily.  Finally,  hot  and  cold 
vortices create turbulent behaviour.

We carried out  performance tests  using a discretization with 2.36 million degrees of freedom 
(DoF) for the fluid model and 1.05 million DoF for the temperature model, which amounts to 3.41 
million DoF in total. We ran four test series with a total number of MPI processes ranging from 64 
to 512. We varied the number of processes for the fluid dynamics model and for the temperature 
evolution model to achieve a balanced time-to-solution. Note that the OpenPALM coupler tool  
itself always runs on one process. For comparison, we also implemented the full model in a single  

kinematic viscosity

thermal diffusivity

heated wall

cooled wall

timestep size

degrees of freedom

Table 1: Scenario parameters.



executable  without  OpenPALM.  All  tests  were  run  on  the  JUROPA supercomputer  at  Jülich 
Supercomputing Center.

In Figures 4 and 5 we show the runtime performance of our tests. Each of the four diagrams 
visualizes the results of one of the test series, comprising the configurations with the same total  
number of MPI processes. The data points are distinguished by the distribution of the processes on 
the  fluid  model  and  on  the  temperature  model  for  the  specific  configurations.  For  example, 
55+8+1  means  that  the  fluid  model  ran  on  55  processes,  the  temperature  model  ran  on  8 
processes, and the OpenPALM coupler tool ran on one process, adding up to 64 processes in total. 
The diagrams show the individual runtime of the two models in blue and orange, respectively. As  
the models exchange their solutions and hence require a synchronization after each timestep, the 
overall  runtime  of  the  coupled  models 
equals  the  maximum  of  the  individual 
model  runtimes.  The  runtime  consumed 
by  the  data  exchange  itself  is  typically 
three to four orders of magnitude smaller 
than the computation time and therefore 
negligible. In addition, the diagrams show 
as black horizontal line the runtime of the 
single  executable  implementation  for 
comparison.

For the configurations with 64 processes 
in  total,  the  runtime  of  the  fluid  model 
decreases  and  the  runtime  of  the 
temperature model increases monotonely 
when  shifting  processes  from  the 
temperature model to the fluid model, i.e. 
from left  to  right  in  the  upper  diagram. 
We could achieve slightly smaller overall 
runtimes  for  the  coupled  models 
compared  to  the  single  executable 
implementation.

Using 128 processes in total, the runtime 
of  the  fluid  model  also  decreases  when 
adding  processes,  with  an  exception  for 
the  119+8+1 configuration.  At  the  same 

Figure 3: Natural convection simulation snapshots.

Figure 4: Runtime performance of the test  
configurations with 64 and 128 MPI processes.



time,  the  runtime  for  the  temperature 
model increases monotonely.

The  256-process-tests  show  a  different 
behaviour. The runtime of the fluid model 
takes  its  minimum  at  the  239+16+1 
configuration,  where  the  temperature 
model  has  a  local  runtime  maximum. 
When further adding processes to the fluid 
model,  its  runtime  as  well  as  the 
temperature model's runtime increase.

For the configurations with 512 processes 
in  total,  the  runtime  of  the  fluid  model 
exhibits  strong  variations.  However,  the 
temperature  model  runtime  increases 
monotonely when shifting processes to the 
fluid model. The 480+31+1 configuration 
showed the lowest overall runtime of the 
coupled models, which was less than half 
of the single executable runtime.

To  assess  the  performance  of  our 
implementations, we evaluated the parallel 
speedup and efficiency with respect to the 
64-process-configuration.  The  speedup  is 
defined as  and the efficiency 

is  , where   is the runtime using   processes in total.  For the 
coupled models,  we took the best  configuration from each of the four  test  series to compute  
speedup and efficiency. Figure 6 shows the efficiency of the coupled models and of the single 
executable implementation in blue and black color, respectively. The data shows a decrease of 
efficiency for  both  the  coupled  models  and  the  single  executable  with  increasing  number  of  

processes. However, the single executable 
implementation  suffers  from  a  severe 
efficiency drop when going  from 256 to 
512 processes, while the coupled models' 
efficiency exhibits only a small decrease. 
This  is  reflected  by  the  runtime  ratio 

 of  the  the  single  executable 
and the coupled models, which is depicted 
in  orange  color  on  Figure  5.  The  ratio 
jumps to a value greater than two for the 
best  configuration  with  512 processes  in 
total,  meaning  that  the  single  executable 
implementation consumes more than two 
times the runtime of the coupled models.

5 CONCLUSION

As an example of a multiphysics evolution problem, we gave the problem formulation of a natural  
convection wind dynamics scenario. The fluid dynamics are modeled by the instationary Navier-
Stokes  equations  using  the  Boussinesq  approximation  for  the  momentum  equation,  and  the 
temperature evolution is described by an instationary convection diffusion equation. We proposed 

Figure 6: Efficiency and runtime ratio of single  
executable and coupled models implementation.

Figure 5: Runtime performance of the test  
configurations with 256 and 512 MPI processes.



a first order in time operator splitting scheme which offers great flexibility for implementing the 
individual model components. We described the finite element discretization and the solvers we  
used for the implementation. We explained the concept of the OpenPALM software coupler tool, 
which we employed to couple our individual fluid and temperature models. For comparison, we 
also developed a single executable implementation including both models.

We carried out four series of performance tests, where we measured the runtime for computing 
one timestep using the coupled models as well as the single executable implementation. We varied 
the total  number  of  MPI processes,  ranging from 64 to 512,  and we tested different  parallel  
configurations for the OpenPALM-coupled model. In each of the test series, we could determine a 
configuration  for  the  coupled  models  which  showes  a  better  runtime  performance  than  the 
corresponding single executable run. However, except for the 64-process-tests, finding the best  
configuration required to investigate several configurations for each of the test series, as their  
performance varies in a non-monotonic way. In particular the scalability of the fluid dynamics 
model depends strongly on the distribution of the MPI processes. A reason for this unpredictable 
behaviour lies in the mapping of the MPI processes onto the compute nodes. The compute nodes 
of  the  JUROPA supercomputer  are  each  equipped  with  two  Intel  Xeon  X5570  quad-core 
processors, so there are eight cores per node. In the test runs, we allocated all eight cores on the 
nodes  we  used,  putting  one  MPI  process  per  core.  Therefore,  depending  on  the  specific 
configuration at hand, the JUROPA scheduler maps MPI processes from both the fluid model and 
the temperature model onto the same compute node, or from one of the models and from the  
OpenPALM coupler. It even happens that some MPI processes of the two models, or of one of the 
models and OpenPALM, are mapped onto the cores of the same CPU on one of the nodes. As the 
models  each run in  their  own executable,  it  means that  the  CPU is  shared between the MPI 
processes of two distinct executables. This may result in bottlenecks with respect to computational 
effort, inter-node communication or memory usage.

Nevertheless, we could prove the potential of the coupling approach to yield a better runtime 
performance than the single executable implementation. In particular for the 512 processes tests,  
the coupled models show their superiority with respect to the parallel efficiency. This is due to the 
fact  that  the  coupled  models  run  concurrently  in  independent  executables,  requiring 
synchronization only after each timestep. Also, the size of the equation system and therefore the  
computational  effort  for  each of the coupled models is  smaller  than for the single executable  
implementation.

As future work to improve the efficiency and to reduce the disruptive impact of the mapping of  
MPI processes to CPU cores, we aim for a hybrid MPI and OpenMP parallelization of the models.  
This allows to put one MPI process per CPU, hereby preventing from sharing the same CPU 
between the executables of the coupled models, while still exploiting all cores with the proper 
number of OpenMP threads.
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