
A parallel solution scheme for multiphysics
evolution problems using OpenPALM

Martin Wlotzka, Vincent Heuveline

Preprint No. 2014-01

www.emcl.iwr.uni-heidelberg.de

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

Preprint No. 2014-01

EMCL publications are split into two categories: Papers and Preprints.

Under the category Papers all publications that were published in journals, books etc.

are listed.

The category Preprint Series contains publications that were accepted for the Preprint

Series of the EMCL.

The EMCL Preprint Series was published under the roof of the Karlsruhe Institute of

Technology (KIT) until April 30, 2013. As from May 01, 2013 it is published under the

roof of Heidelberg University.

Affiliation of the Authors

Martin Wlotzkaa,1, Vincent Heuvelinea

aEngineering Mathematics and Computing Lab (EMCL),

Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany
1Corresponding Author: Martin Wlotzka, martin.wlotzka@uni-heidelberg.de

Impressum

Heidelberg University

Interdisciplinary Center for Scientific Computing (IWR)

Engineering Mathematics and Computing Lab (EMCL)

Speyerer Str. 6,

69115 Heidelberg

Germany

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.iwr.uni-heidelberg.de

A parallel solution scheme for multiphysics evolution problems using
OpenPALM

Martin Wlotzka and Vincent Heuveline

Engineering Mathematics and Computing Lab (EMCL),
Interdisciplinary Center for Scientific Computing (IWR),

Heidelberg University, Germany

ABSTRACT

Multiphysics models seek to accurately represent complex phenomena by incorporating all
relevant physical aspects. Therefore, multiphysics simulations often require the use of high
performance computing resources. As an example application, we consider a natural convection
problem, where we couple a fluid dynamics model and a temperature evolution model. In order to
exploit the parallelism of operator splitting schemes, we propose to use the OpenPALM coupler
tool for coupling individual model implementations. We carried out performance tests of the
coupled models with a varying number of MPI processes and compared them to a standard
implementation. Our results show that the coupling approach is superior over the standard
implementation with respect to parallel efficiency, especially when using a higher number of MPI
processes.

1 INTRODUCTION

Multiphysics systems consist of more than one component governed by its own principle for
evolution or equilibrium. As an example, we consider a natural convection problem, where the
wind, pressure and temperature are the variables of interest. For the individual components there
are often well-established solvers and simulation codes available. This emphasizes the reuse of
software in operator splitting coupling methods. Current practices for multiphysics coupling seek
to find a balance between performance, software reuse and numerical accuracy. The OpenPALM
coupling tool allows to perform parallel multiphysics simulations employing specialized model
implementations as well as legacy codes.

2 PROBLEM FORMULATION, DISCRETIZATION AND SOLUTION SCHEME

2.1 Natural convection problem

According to the Boussinesq approximation, we assume density variations being sufficiently small
to be neglected, except in the buoyancy term. We consider a 2D scenario of wind dynamics in the
form of the natural convection problem

The unknowns , and denote the velocity, pressure and potential
temperature, respectively, where the given ground states are indicated by the zero-subscript and
the deviations from the ground states are denoted with the hat symbol. The constants denote the

density , the kinematic viscosity , the gravitation acceleration and the thermal diffusivity .
We use a rectangular domain for our computations. The no-slip condition is imposed on
the whole boundary. For the temperature, we impose the Dirichlet boundary conditions
and on the left and right side of the domain, respectively, and the homogeneous
Neumann boundary condition on the thermally insulated top and bottom side. As
initial conditions, we take and a linear temperature profile between the hot and the cold
side of the domain.

2.2 Discretization

The implementations of the fluid dynamics model and the temperature evolution model are based
on spatial Galerkin finite element discretizations of (1a,1b) and (2). We use inf-sup-stable Q2 / Q1
Taylor-Hood elements (Taylor and Hood, 1973, Ern and Guermond, 2010) for velocity and
pressure, respectively, and Q2 elements for the temperature. As time stepping scheme, we use the
Crank-Nicolson method. The discretized fluid dynamics model reads

where is the timestep size, and denote the velocity and pressure of the new
timestep, and and denote the solution of the old timestep. The finite element spaces are
defined on a rectangular mesh with cell size . The discretized temperature evolution
model reads

where denotes the temperature of the new timestep, and is the solution from the old
timestep. Note that the system (3a,3b) is nonlinear in the velocity variable, whereas (4) is a purely
linear equation for the temperature. Therefore, we use Newton's method to solve the fluid
dynamics model. In each Newton step, a linear system with the Jacobian matrix of (3a,3b) has to
be solved. As this Jacobian matrix is non-symmetric in general, we use the GMRES Krylov
subspace method with incomplete LU factorization (ILU) preconditioner (Saad, 2000) to compute
the Newton updates. We also use an ILU-preconditioned GMRES solver to solve the temperature
model (4), which is non-symmetric, too. Both models are implemented with the HiFlow3 finite
element package (Anzt et al., 2012).

2.3 Solution scheme

We consider a solution scheme which makes up the full model by coupling individual model
components for the fluid dynamics part (3a,3b) and for the temperature evolution part (4). In
contrast to implementing the solvers for the coupled models in one single monolithic application,
we split the models and their implementations into separate applications. This provides a layer of
parallelism, since the model components can be solved concurrently in each timestep by means of

an operator splitting approach. The solution scheme is sketched in Algorithm 1. It is a first order
in time scheme for the coupled evolution problem (Keyes et al., 2011).

In order to maintain these advantages in the simulations, we propose the use of the OpenPALM
coupler tool.

3 SIMULATION WITH OPENPALM

3.1 Concept of OpenPALM

The fundamental concept of OpenPALM (Buis et al., 2006) is to consider multiphysics
simulations as a coupled application. The models are assembled in a coupling algorithm, and
OpenPALM controls their execution and interaction. Each model can be implemented
individually. This offers the possibility to develop specialized solvers for the coupled models or to
reuse existing codes with only minimal modifications. OpenPALM features two levels of
parallelism. On the one hand, models can run concurrently on separate compute nodes. On the
other hand, OpenPALM is able to couple models which are internally parallelized, using MPI,
OpenMP as well as accelerators like GPU or MIC.

The OpenPALM coupler and the two model implementations are each compiled into their own
executable. The simulations are then carried out as a multiple program multiple data (MPMD)
application, which is outlined in Figure 1.

We use two independent
model implementations with
HiFlow3 for the fluid
dynamics and for the
temperature evolution. Both
models are parallelized using
MPI based on a domain
decomposition. Hereby, the
models may use individual
decompositions with a
different number of
subdomains. Generally, the
nonlinear fluid dynamics
model requires a much higher
computational effort for
solving one timestep than the
linear temperature evolution
model. As the model
components need to exchange
their solutions after each
timestep, they should consume
the same time-to-solution per
timestep. Therefore, we run the fluid dynamics model on a bigger number of MPI processes than
the temperature evolution model, so that their time-to-solution is balanced.

Figure 1: MPMD coupling scheme using OpenPALM.

3.2 Model implementation details

In OpenPALM terminology, a model
component which can be executed in a
coupling algorithm is called a unit. We
designed two units for the fluid dynamics
model and for the temperature evolution
model. OpenPALM offers a graphical user
interface named PrePALM which can be used
to define the execution scheme of the units.
Figure 2 shows the scheme we used for our
simulations. The blue and red vertical bars
depict the two independent execution
branches of the application. The boxes sitting
on the branches represent the units. Each unit
has a variety of plugs in pink, black and
green color, which are connected to each other. Plugs on the top side of a unit represent input data,
and plugs on the bottom side represent output data. The color of the plugs indicates the data type,
e.g. pink plugs for double precision floating point variables and green plugs for integer variables.
By connecting the plugs, units can communicate with each other. OpenPALM provides two basic
communication primitives for sending and receiving data, namely PALM_Put and PALM_Get.
These communication routines can be used in the unit's source code to perform the actual
exchange of the velocity and temperature data. As we run the models in parallel according to an
individual domain decomposition for each model, the data to be exchanged is distributed among
the MPI processes. OpenPALM is able to derive communication paths between the individual
processes of parallel units. This avoids to collect the distributed data on one process before the
communication, and to broadcast it afterwards. Instead, PALM_Put and PALM_Get transfer the
data in portions according the intersection of the individual data distributions in the units. In
Figure 2, the thick pink connection indicates the transfer of the distributed velocity and
temperature data between the parallel units, and the thin connections indicate single process
transfer of auxiliary data which the units need to set up their model.

4 NUMERICAL EXPERIMENTS AND RESULTS

We ran a series of simulations for the natural
convection scenario with the parameters listed
in Table 1. The Rayleigh number of the fluid is

, and the flow yields a Reynolds
. Figure 3 shows three

snapshots from the simulations. In the initial
phase, buoyancy drives the main flow and
recirculation areas evolve in the corners of the
domain. The recirculation vortices propagate in
horizontal direction and revolve the main flow
direction temporarily. Finally, hot and cold
vortices create turbulent behaviour.

We carried out performance tests using a discretization with 2.36 million degrees of freedom
(DoF) for the fluid model and 1.05 million DoF for the temperature model, which amounts to 3.41
million DoF in total. We ran four test series with a total number of MPI processes ranging from 64
to 512. We varied the number of processes for the fluid dynamics model and for the temperature
evolution model to achieve a balanced time-to-solution. Note that the OpenPALM coupler tool
itself always runs on one process. For comparison, we also implemented the full model in a single

kinematic viscosity

thermal diffusivity

heated wall

cooled wall

timestep size

degrees of freedom

Table 1: Scenario parameters.

executable without OpenPALM. All tests were run on the JUROPA supercomputer at Jülich
Supercomputing Center.

In Figures 4 and 5 we show the runtime performance of our tests. Each of the four diagrams
visualizes the results of one of the test series, comprising the configurations with the same total
number of MPI processes. The data points are distinguished by the distribution of the processes on
the fluid model and on the temperature model for the specific configurations. For example,
55+8+1 means that the fluid model ran on 55 processes, the temperature model ran on 8
processes, and the OpenPALM coupler tool ran on one process, adding up to 64 processes in total.
The diagrams show the individual runtime of the two models in blue and orange, respectively. As
the models exchange their solutions and hence require a synchronization after each timestep, the
overall runtime of the coupled models
equals the maximum of the individual
model runtimes. The runtime consumed
by the data exchange itself is typically
three to four orders of magnitude smaller
than the computation time and therefore
negligible. In addition, the diagrams show
as black horizontal line the runtime of the
single executable implementation for
comparison.

For the configurations with 64 processes
in total, the runtime of the fluid model
decreases and the runtime of the
temperature model increases monotonely
when shifting processes from the
temperature model to the fluid model, i.e.
from left to right in the upper diagram.
We could achieve slightly smaller overall
runtimes for the coupled models
compared to the single executable
implementation.

Using 128 processes in total, the runtime
of the fluid model also decreases when
adding processes, with an exception for
the 119+8+1 configuration. At the same

Figure 3: Natural convection simulation snapshots.

Figure 4: Runtime performance of the test
configurations with 64 and 128 MPI processes.

time, the runtime for the temperature
model increases monotonely.

The 256-process-tests show a different
behaviour. The runtime of the fluid model
takes its minimum at the 239+16+1
configuration, where the temperature
model has a local runtime maximum.
When further adding processes to the fluid
model, its runtime as well as the
temperature model's runtime increase.

For the configurations with 512 processes
in total, the runtime of the fluid model
exhibits strong variations. However, the
temperature model runtime increases
monotonely when shifting processes to the
fluid model. The 480+31+1 configuration
showed the lowest overall runtime of the
coupled models, which was less than half
of the single executable runtime.

To assess the performance of our
implementations, we evaluated the parallel
speedup and efficiency with respect to the
64-process-configuration. The speedup is
defined as and the efficiency

is , where is the runtime using processes in total. For the
coupled models, we took the best configuration from each of the four test series to compute
speedup and efficiency. Figure 6 shows the efficiency of the coupled models and of the single
executable implementation in blue and black color, respectively. The data shows a decrease of
efficiency for both the coupled models and the single executable with increasing number of

processes. However, the single executable
implementation suffers from a severe
efficiency drop when going from 256 to
512 processes, while the coupled models'
efficiency exhibits only a small decrease.
This is reflected by the runtime ratio

 of the the single executable
and the coupled models, which is depicted
in orange color on Figure 5. The ratio
jumps to a value greater than two for the
best configuration with 512 processes in
total, meaning that the single executable
implementation consumes more than two
times the runtime of the coupled models.

5 CONCLUSION

As an example of a multiphysics evolution problem, we gave the problem formulation of a natural
convection wind dynamics scenario. The fluid dynamics are modeled by the instationary Navier-
Stokes equations using the Boussinesq approximation for the momentum equation, and the
temperature evolution is described by an instationary convection diffusion equation. We proposed

Figure 6: Efficiency and runtime ratio of single
executable and coupled models implementation.

Figure 5: Runtime performance of the test
configurations with 256 and 512 MPI processes.

a first order in time operator splitting scheme which offers great flexibility for implementing the
individual model components. We described the finite element discretization and the solvers we
used for the implementation. We explained the concept of the OpenPALM software coupler tool,
which we employed to couple our individual fluid and temperature models. For comparison, we
also developed a single executable implementation including both models.

We carried out four series of performance tests, where we measured the runtime for computing
one timestep using the coupled models as well as the single executable implementation. We varied
the total number of MPI processes, ranging from 64 to 512, and we tested different parallel
configurations for the OpenPALM-coupled model. In each of the test series, we could determine a
configuration for the coupled models which showes a better runtime performance than the
corresponding single executable run. However, except for the 64-process-tests, finding the best
configuration required to investigate several configurations for each of the test series, as their
performance varies in a non-monotonic way. In particular the scalability of the fluid dynamics
model depends strongly on the distribution of the MPI processes. A reason for this unpredictable
behaviour lies in the mapping of the MPI processes onto the compute nodes. The compute nodes
of the JUROPA supercomputer are each equipped with two Intel Xeon X5570 quad-core
processors, so there are eight cores per node. In the test runs, we allocated all eight cores on the
nodes we used, putting one MPI process per core. Therefore, depending on the specific
configuration at hand, the JUROPA scheduler maps MPI processes from both the fluid model and
the temperature model onto the same compute node, or from one of the models and from the
OpenPALM coupler. It even happens that some MPI processes of the two models, or of one of the
models and OpenPALM, are mapped onto the cores of the same CPU on one of the nodes. As the
models each run in their own executable, it means that the CPU is shared between the MPI
processes of two distinct executables. This may result in bottlenecks with respect to computational
effort, inter-node communication or memory usage.

Nevertheless, we could prove the potential of the coupling approach to yield a better runtime
performance than the single executable implementation. In particular for the 512 processes tests,
the coupled models show their superiority with respect to the parallel efficiency. This is due to the
fact that the coupled models run concurrently in independent executables, requiring
synchronization only after each timestep. Also, the size of the equation system and therefore the
computational effort for each of the coupled models is smaller than for the single executable
implementation.

As future work to improve the efficiency and to reduce the disruptive impact of the mapping of
MPI processes to CPU cores, we aim for a hybrid MPI and OpenMP parallelization of the models.
This allows to put one MPI process per CPU, hereby preventing from sharing the same CPU
between the executables of the coupled models, while still exploiting all cores with the proper
number of OpenMP threads.

Acknowledgements

Work on the OpenPALM coupler tool is funded by the German Research Foundation (DFG) as part of the
DFG-project “Land use change and management effect on soil N2O emissions in the Hai He river basin”.

The authors gratefully acknowledge the computing time granted by the John von Neumann Institute for
Computing (NIC) and provided on the supercomputer JUROPA at Jülich Supercomputing Centre (JSC).

References
Anzt, H., Augustin, W., Baumann, M., Gengenbach, T., Hahn, T., Helfrich-Schkarbanenko, A., Heuveline,

V., Ketelaer, E., Lukarski, D., Nestler, A., Ritterbusch, S., Ronnas, S., Schick, M., Schmidtobreick,
M., Subramanian, C., Weiss, J.-P., Wilhelm, F., Wlotzka, M. (2012). HiFlow3: A Hardware-Aware
Parallel Finite Element Package. Springer, Tools for High Performance Computing 2011, p139-151

Buis, S., Piacentini, A., Déclat, D., The PALM Group (2006). PALM: A computational framework for
assembling high-performance computing applications. Concurrency and Computation: Practice and
Experience, Vol. 18-2, p231-245, doi:10.1002/cpe.914

Ern, A., and Guermond, J.-L. (2010). Theory and Practice of Finite Elements. Springer, Applied
Mathematical Sciences, Vol. 159

Keyes, D.E., McInnes, L.C., Woodward, C., Gropp, W.D., Myra, E., Pernice, M., Bell, J., Brown, J., Clo, A.,
Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G.,
Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K.,
Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawlowski, R., Peters, A.,
Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A.,
Smith, B., Tang, X., Wilson, C., Wohlmuth, B. (2011). Multiphysics Simulations: Challenges and
Opportunities. Tech. Rep. ANL/MCS-TM-321, Argonne National Laboratory

Saad, Y. (2000). Iterative Methods for Sparse Linear Systems (2nd edition).
Taylor, C., and Hood, P. (1973). A numerical solution of the Navier-Stokes equations using the finite

element technique. Elsevier, Computers & Fluids, Vol. 1

Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2013-04 Nicolai Schoch, Stefan Suwelack, Rüdiger Dillmann, Vincent Heuveline: Simulation of

Surgical Cutting in Soft Tissue using the Extended Finite Element Methods (X-FEM)

No. 2013-03 Martin Wlotzka, Vincent Heuveline, Edwin Haas, Steffen Klatt, David Kraus,

Klaus Butterbach-Bahl, Philipp Kraft, Lutz Breuer: Dynamic Simulation of Land

Management Effects on Soil N2O Emissions using a coupled Hydrology-Ecosystem

Model on the Landscape Scale

No. 2013-02 Martin Baumann, Jochen Förstner, Jonas Kratzke, Sebastian Ritterbusch,

Bernhard Vogel, Heike Vogel: Model-based Visualization of Instationary Geo-Data with

Application to Volcano Ash Data

No. 2013-01 Martin Schindewolf, Björn Rocker, Wolfgang Karl, Vincent Heuveline: Evaluation of

two Formulations of the Conjugate Gradients Method with Transactional Memory

No. 2012-07 Andreas Helfrich-Schkarbanenko, Vincent Heuveline, Roman Reiner,

Sebastian Ritterbusch: Bandwidth-Efficient Parallel Visualization for Mobile Devices

No. 2012-06 Thomas Henn, Vincent Heuveline, Mathias J. Krause, Sebastian Ritterbusch: Aortic

Coarctation simulation based on the Lattice Boltzmann method: benchmark results

No. 2012-05 Vincent Heuveline, Eva Ketelaer, Staffan Ronnas, Mareike Schmidtobreick,

Martin Wlotzka: Scalability Study of HiFlow3 based on a Fluid Flow Channel

Benchmark

No. 2012-04 Hartwig Anzt, Armen Beglarian, Suren Chilingaryan, Andrew Ferrone,

Vincent Heuveline, Andreas Kopmann: A unified Energy Footprint for Simulation

Software

No. 2012-03 Vincent Heuveline, Chandramowli Subramanian: The Coffee-table Book of

Pseudospectra

No. 2012-02 Dominik P.J. Barz, Hendryk Bockelmann, Vincent Heuveline: Electrokinetic

optimization of a micromixer for lab-on-chip applications

No. 2012-01 Sven Janko, Björn Rocker, Martin Schindewolf, Vincent Heuveline, Wolfgang Karl:

Software Transactional Memory, OpenMP and Pthread implementations of the

Conjugate Gradients Method - a Preliminary Evaluation

No. 2011-17 Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Piotr Luszczek: GPU-Accelerated

Asynchronous Error Correction for Mixed Precision Iterative Refinement

No. 2011-16 Vincent Heuveline, Sebastian Ritterbusch, Staffan Ronn̊as: Augmented Reality for

Urban Simulation Visualization

No. 2011-15 Hartwig Anzt, Jack Dongarra, Mark Gates, Stanimire Tomov: Block-asynchronous

multigrid smoothers for GPU-accelerated systems

No. 2011-14 Hartwig Anzt, Jack Dongarra, Vincent Heuveline, Stanimire Tomov: A

Block-Asynchronous Relaxation Method for Graphics Processing Units

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

www.emcl.iwr.uni-heidelberg.de

