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Abstract

In this paper we present an approach to model discontinuities in the solution of the elasticity

problem without changing the initial grid topology. In the context of surgery simulation or real-time

intraoperative registration this method allows for adapting a finite element model during the operation

in the presence of cutting or resection.

We outline a formulation of the eXtended finite element method (X-FEM) for elastic solids and

present an approach for modeling arbitrary cuts by means of finite elements on tetrahedral grids. For

this purpose, completely cut elements are enriched with the shifted Heaviside function and partially

cut elements are enriched with so-called asymptotic crack tip functions. In this context we show how

to handle the geometry of partial cuts and how the necessary local coordinate system based on polar

coordinates is constructed. Finally, we present a flexible implementation of the approach.

A numerical validation shows that the approach can handle complex cuts through low resolution

geometries. Furthermore, a convergence analysis reveals that the approach is superior to standard

remeshing techniques in terms of accuracy per degrees of freedom. The source code of the presented

method is available under an open-source license1.

1 Introduction

In this paper we make use elasticity theory in order to model cuts through deformable models. We apply
the eXtended finite element method (X-FEM) and discretize the problem using an oversampling inte-
gration method. We outline the challenges we are facing and explain the advantages that arise from an
implementation of this method on top of an existing finite element method (FEM) framework. Finally,
we evaluate the simulation and point out possible improvements.

The chapter on the continuous formulation of a cutting problem starts with an introduction to elas-
ticity theory. We formulate the cutting problem in the differential – strong – and in the variational –
weak – form. The weak formulation will be used in the third chapter where the discretization of the
cutting problem is outlined. In this context, the necessary adaptations of the object mesh are explained,
such that the mesh of the object can be opened at its intersections with the mesh of the cut. After dis-
cretization and adjustment of the grid of the object, we discretize the function space by defining the shape
functions that are the base for the classic or the continuous Galerkin finite element method (CG FEM),
proceeding with the declaration of the shape functions for the X-FEM. Replacing the continuous function
in the variational formulation of chapter2 by an interpolated discrete function yields an integral equation

1Code hosting platform bitbucket - https://bitbucket.org.

Download command: git clone https://chrijopa@bitbucket.org/chrijopa/xfem-in-cpp.git
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which can be transformed into an equation integrating over the body’s set of tetrahedra. Calculating the
integral over a tetrahedron by means of the oversampling method finally yields the discretized cutting
problem.
Related to this work, we implemented the X-FEM in C++ to solve and simulate the cutting problem. In
chapter 4 we describe the geometric precomputations and our implementation.
For the evaluation of our method we adapted object meshes to a cut such that we can obtain solutions of
a cutting problem with the CG FEM. We compared these solutions to our results applying the root mean
square error – an approximation of the Lebesgue error. We obtain very good results and our method even
surpasses the solutions of the CG FEM specifically adapted to the cutting problem. Further details and
conclusions to the evaluation can be found in chapter 5.
We conclude by summarizing this work and by pointing out possible future directions.

The contributions of this work are:

• application of the X-FEM to the simulation of cutting in soft tissue – with almost arbitrary cuts

• capability of simulating completely and partially cut elements

• an evaluation that demonstrates the superior accuracy in comparison with CG FEM

• very precise and application-related description of the X-FEM.

This preprint is intended to help researchers learn more about the X-FEM by working on it hands on.
Please note that the corresponding source code and further documentation – the evaluation and examples
– is available under an open source license. Please do not hesitate to contact the authors if you have any
questions on the code.

1.1 Related work

Simulating surgical cuts with finite element based discretization techniques is a challenging problem.
A straight forward approach is to simply remove the elements along the cutline [4] [5]. However, this
procedure does not only lead to a poor approximation of the cut, but it also violates the conservation of
mass. In order to obtain a more accurate solution, local re-meshing around the cut has to be performed
[13]. This approach can easily lead to ill-shaped tetrahedra (so called sliver elements) that can impair not
only the performance, but also the stability of the simulation. Although complex procedures have been
proposed that address this problem [2] [17], the main drawbacks of the re-meshing approach still remain;
the computationally demanding mesh adaptation procedure, the generation of many additional degrees
of freedom as well as potential stability issues.

Novel methods thus seek to model the discontinuity in the solution without changing the grid topology.
One possibility is to enrich the elements along the cutting front with additional, discontinuous basis
functions. This approach is called the eXtended finite element method (X-FEM) [8]. Vigneron et al.
use this method in conjunction with a linear elastic model to compensate the brain shift that occurs
during craniectomy in the presence of resected tissue [18] [19]. A first application of an X-FEM based
technique for real-time cutting 3D deformable objects was presented by Jerabkova et al. [11]. The work by
Hegemann et al. showed how X-FEM based techniques can be used simulate complex fracture phenomena
in the context of computer animation [9]. Kaufmann et al. showed how the approach can be used to
model very complex cuts through shell elements [12].

A different approach to the accurate simulation of surgical cutting is to use a hierarchical, high
resolution hexahedral grid [10] [7]. The idea of this method is to simply model the cut by disconnecting
the grid along the element boundaries, by deleting the so called links between the elements. This simplifies
not only the geometrical handling and the implementation of the cutting problem, but also enables the
simulation of multiple cuts. Furthermore, the solution of the arising linear system of equations can be
easily accelerated using multigrid solvers due to the regular grid hierarchy. However, very high resolution
grids have to be used in order to achieve a decent accuracy. Thus, the method needs much more degrees
of freedom in comparison with X-FEM based techniques in order to achieve the same accuracy. One
possibility to reduce the number of degrees of freedom is to group elements together in order to form so
called composite elements [20]. However, this procedure reduces the accuracy for corotated elasticity and
fully non-linear formulations.
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2 Continuous formulation of the cutting problem

2.1 Introduction to elasticity theory

In elasticity theory the body is seen as a continuum with reversible deformation, which is a deterministic
approach. The deformation ϕ can be formulated using the displacement function u:

ϕ :

{
R3 ⊃ Ω −→ Ω̃ ⊂ R3

x 7→ x̃ = id(x) + u(x)

We use a small strain approximation, and apply the linearized Cauchy elasticity tensor

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

We obtain a linear dependency between tension and distortion because of the linearization. We suppose
that the body behaves the same in all directions and at all points, i.e., we have an isotropic and homoge-
neous material. Assuming that the body is not subject to tension in the initial configuration, yields the
following simplification of the stress tensor :

σij = 2µεij + δijλ

3∑
k=1

εkk

2.2 Elasticity problem - differential formulation

We consider object deformations enforced by boundary conditions like displacements uD on ΓD – Dirichlet
boundary conditions – and surface forces s on ΓN (where ΓN ∩ΓD = ∅) – Neumann boundary conditions.
Then we can formulate all boundary conditions

uD : ΓD −→ R3 and

s : ΓN −→ R3.

In addition to the boundary condition, the object’s body forces are given by b : Ω −→ R3.

One can obtain the differential or strong formulation of the elasticity problem by applying the force
equilibrium on infinitesimal small volumes of the object, see [1]:

Find u = ϕ− id ∈ C2(Ω) ∩ C1(Ω), such that

−div(σ(x)) = b(x) ∀x ∈ Ω

σ(x)n(x) = s(x) ∀x ∈ ΓN

u(x) = uD(x) ∀x ∈ ΓD

∂Ω = ΓN ∪ ΓD ΓD ∩ ΓN = ∅

where n is the normal of Ω pointing outwards. Defining the spaces VB(Ω,f) = {u| − div(σ)|Ω = f}
VN (ΓN ,f) = {u|(σ · n)|ΓN = f} and VD(ΓD,f) = {u|u|ΓD = f} for an arbitrary function f helps to
simplify the strong formulation, such that we obtain

Find u = ϕ− id ∈ C2(Ω) ∩ C1(Ω) ∩ VB(Ω, b) ∩ VN (ΓN , s) ∩ VD(ΓD,uD)

.
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2.3 Cutting problem - differential formulation

A realistic cutting simulation must allow for an unrestrictive definition of an arbitrary cut. We firstly
define the cut2 surface Γc ⊂ R3. For simplicity reasons we only consider one cut, i.e. the parameterized
cut boundary is continuous. However, the approach can be extended in order to accomodate multiple cut
configurations. Since the cut separates the body, the newly considered domain is Ωc = Ω\Γc. As a result
of that, the boundary ∂Ωc of the body is larger: ∂Ωc = ∂Ω ∪ (Γc ∩ Ω). On the additional boundary we
neither allow the application of a force boundary condition which is unequal zero nor an application of a
displacement boundary condition, so we have s|Γc∩Ω = 0.
Defining ΓcN = ΓN ∪ Γc, the cutting problem corresponds to an elasticity problem, and we obtain the
following strong formulation of the cutting problem:

Find u = ϕ− id ∈ C2(Ωc) ∩ C1(Ωc) ∩ VB(Ωc, b) ∩ VN (ΓcN , s) ∩ VD(ΓD,uD)

In figure 1 we can see an example of a cutting problem in 2D.

, b

(a) Elasticity problem with a cut

, b

(b) Interpretation as a cutting problem with ex-

tended boundary force condition

Figure 1: 2D example of a cutting problem with force and displacement boundary conditions

2.4 Weak formulation

Multiplying the above differential equation with an arbitrary test function δu ∈ C∞0 (Ω) ∩ VD(ΓD,0)
and integrating the equation over the space Ωc, we obtain an integral equation that is equivalent to the
differential equation. Using the Gauß integration theorem, this integral formulation can be transformed
to the so-called variational or weak formulation of the problem

Find u = ϕ− id ∈ H1(Ω) ∩ VD(ΓD,uD) ∩ VN (ΓcN , s), such that∫
Ω

(∇δu)ijσji dΩ =

∫
ΓN

δuT · s dΓN +

∫
Ω

δuT · b dΩ ∀δu ∈ C∞0 (Ω) ∩ VD(ΓD,0) (1)

where H1(Ω) is the Sobolev space over Ω. In this formulation we apply aibi =
∑
i aibi, if there are doubled

indices in a multiplication. This also holds for the rest of this work.

2cut related variables use a superscript c, for example vc
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3 Discretization

The solution of the problem formulated in chapter 2 can only be solved numerically if we discretize the
problem. We begin by discretizing the spatial domain, i.e., the object and the cut. We proceed by
adjusting the mesh of the object to the mesh of the cut. Then we declare the discretized function spaces.
Together with the numerical integration this serves as the basis of the linear equation system that needs
to be solved in order to obtain a numerical solution of the problem.

3.1 Discretization of the object

In the following declarations, NA denotes the number of elements in an arbitrary set A = {ai}, i.e.
A = {ai|0 ≤ i < NA}. To solve the elasticity problem numerically, we first discretize the object using
a finite number of points P k ∈ Ω, k < NP and form a set of points P = {P k|k < NP} ⊂ Ω. We
connect the points P k ∈ P by tetrahedra and write the global node ids for each tetrahedron in the
connectivity vector connect C = (cm),m ∈ {0, ..., 3}. Then each tetrahedron T is the convex hull of its
four nodes, i.e. T = conv(P c0 ,P c1 ,P c2 ,P c3). The set T of NT tetrahedra T then defines the discretized
object Ωh = (

⋃
T∈T T )0. The grid Ωh approximates and converges to Ω for decreasing element sizes

h = maxT∈T (diam(T )).

The goal of the discretization is the calculation of the discrete deformations Uk at the points P k. This
will be explained in chapters 3.4, 3.5 and 3.6.

3.2 Discretization of the cut

If we aim on solving the cutting problem, the cut needs to be discretized as well. We proceed similarly
to chapter 3.1:

We replace the continuous formulation of the cut using a finite number of points P k ∈ Γc
2D

:= Γc ∪
∂2DΓc, k < NPc and form a set of points Pc = {P c

k|k < NPc} ⊂ Γc
2D

. Here, ∂2D is the boundary of
a 2D object in the 3D space, i.e. ∂2DΓc is a curve that can be parametrized with one variable. Then
we connect P c

k ∈ Pc by triangles, each triangle T c = conv(P c
cc0
,P c

cc1
,P c

cc2
) is the convex hull of its three

nodes with the ids Cc = (ccm),m ∈ {0, 1, 2}. The set T c of NT c triangles T c then defines our discretized
cut Γc = int2D(

⋃
T c∈T T

c), where int2D denotes the two-dimensional interior.

Furthermore, we define the normals of the cut triangles T c as nc = (P c
cc1
−P c

cc0
)×(P c

cc2
−P c

cc0
). We identify

normals of two adjacent cut triangles pointing into the same direction, if and only if their scalarproduct is
greater than zero. We assume that the normals of all cut triangles point into the same direction, i.e. we
can not handle a cut that has a shape of a Möbius strip. The direction of the normals defines the parts
of the object above Ω+ ⊂ Ω and below Ω− ⊂ Ω the cut (Ω = Ω+ ∪Ω− ∪ Γc). Finally the cut front can be
defined as ∂2DΓc ∩ Ω.

3.3 Adjusting the grid of the object

In this chapter we introduce additional degrees of freedom for the object to account for the mesh of the
cut. For the visualization of the cut opening, the intersections of the object mesh and the cut mesh are
necessary as well This will be covered in chapter 4.

To distinguish partially and completely cut elements, we start checking whether the edges of an ele-
ment are cut. An edge of an element is cut, if the intersection of the edge and the 2D closure of the cut
Γc is not the empty set. A face is completely cut, if there are two edges on that face, that are cut. Finally,
the element is

1. uncut, if there are no cut edges on that element

2. partially cut, if the element has cut edges but less than three completely cut element faces

3. completely cut through, if there are three or more completely cut element faces.
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The global nodes are called branch enriched, if they belong to a partially cut element and sign enriched,
if they belong to a completely, but not to a partially cut element. Nodes that are neither sign nor branch
enriched are called non-enriched. At this point, it can be seen that we allow for elements that have
two differents kinds of nodes, the so called blending elements (an example for blending elements will be
provided at the end of this subsection).
The separation of the two parts of a completely cut element is easier to display, than the opening of a
partially cut element. Therefore the complexity of completely cut elements is lower than the complexity
of partially cut elements. Since the branch enriched nodes belong to the partially cut elements, they need
to be able to store a lot more information. Therefore each of those nodes will get an additional enrichment
of twelve degrees of freedom, in contrast to the sign enriched nodes, that get an additional enrichment of
three degrees of freedom. The additional enrichments correspond to additional displacements Uk ∈ R3,
i.e., we obtain four additional displacements at each branch enriched and one additional displacement at
each sign enriched node. We enumerate the displacements such that the ids kP of the displacement of
the initial nodes, the ids kS of the displacements corresponding to the sign enrichment and the ids kB of
the displacements corresponding to the branch enriched nodes hold the condition kP < kS < kB .
In the following, NS is the number of sign enriched and NB the number of branch enriched nodes.
Then the number of displacements Uk in our adjusted model is N = NP + NS + 4NB and we have
kP ∈ {0, . . . , NP − 1}, kS ∈ {NP , . . . , NP +NS − 1} and kB ∈ {NP +NS , . . . , N − 1}.

For the next steps, we define in each element the local node id lm ∈ L for every global id cm ∈ C,m ∈
{0, . . . , 3}, which is in all current elements L = (l0, l1, l2, l3)T = (0, 1, 2, 3)T . For each enriched node
the connect C of a completely or partially cut element T is extended with the global number k of the
displacement Uk and the local connect L is extended with the local node number. Additionally, a branch
enriched node of an uncut element extends the connect C with the global number of the displacement
that corresponds to the branch enrichment and the local connect L with the local node number. That
means that uncut elements which are neighbours of partially cut elements can be blending elements, since
they have standard nodes and branch enriched nodes. The variable L will be used in chapter 3.4: the
discretization of the function space.

The example displayed in figure 2 illustrates the explained functionality in two dimensions.

{0}

{4}

{1}

{3}

{2}

[2]

[1]

[3]

[5][4]

[6]

[0]
1

0 2

2 0
12

0
1 2 1

2

00
1

(9)

(7)

(8)

((10,11,12,13))

((14,15,16,17))

((18,19,20,21))

Figure 2: Example for the enumeration of the displacements of the initial nodes in [blue], the local

node ids in cyan, the ids k of the displacements corresponding to sign enrichment in (green) and

branch enrichment in ((yellow)). And finally the elements ids in {dark green}
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In the example, the number of nodes for the standard mesh is NP = 7 and the number of enriched
nodes is NS = 3, NB = 3, so we obtain the total number of displacements N = 22. The variables that
are dependent on the element number are the following:

0. C = (1, 0, 2, 8, 7, 9)T , L = (0, 1, 2, 0, 1, 2)T

1. C = (2, 3, 1, 8, 9, 10, 11, 12, 13)T , L = (0, 1, 2, 2, 0, 1, 1, 1, 1)T

2. C = (4, 5, 2, 14, 15, 16, 17)T , L = (0, 1, 2, 1, 1, 1, 1)T

3. C = (3, 2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17)T , L = (0, 1, 2, 1, 0, 0, 0, 0, 2, 2, 2, 2)T

4. C = (3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)T ,
L = (0, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2)T

In this case the elements 1 and 3 are completely cut blending elements and the element 2 is an uncut
blending element. As it can be seen in the example, we are ordering the connect of the elements in such a
way, that the displacement of the initial nodes appears first, afterwards the displacement that corresponds
to sign and branch enriched nodes.

3.4 Discretizing the function space - defining the shape functions

The displacement function u used in chapter 2 depends on an infinite number of points. In the follow-
ing, the displacement function will be approximated by functions that are only dependent on a finite
number of degrees of freedom. In case there is no cut, the classical finite element method, the so-called
continuous Galerkin finite element method (CG FEM), can be used. We begin with the definition of the
shape functions for the CG FEM, i.e., for the displacements Uk with the ids k < NP and proceed with
the shape functions for the extended finite element method (X-FEM), i.e., for displacements Uk with ids
NP ≤ k < N .

We start with defining a reference tetrahedron T̂ = conv(P̂ 0, P̂ 1, P̂ 2, P̂ 3) where P̂ 0 = (1, 0, 0)T , P̂ 1 =

(0, 1, 0)T , P̂ 2 = (0, 0, 0)T , P̂ 3 = (0, 0, 1)T , and the natural coordinates

N̂0(x̂) = x̂0, N̂1(x̂) = x̂1, N̂2(x̂) = 1− x̂0 − x̂1 − x̂2, N̂3(x̂) = x̂2.

Every point x̂ ∈ T̂ can be mapped into an arbitrary tetrahedron T , by using the element transformation

ζ : T̂ −→ T, ζ(x̂) = P cmN̂m(x̂) = x,

ζ−1 : T −→ T̂ , ζ−1(x) = inv(ζ)(x) = x̂.

For the definition of the shape functions, we use an arbitrary tetrahedron T ∈ T . The connect C is sorted,
such that we find the ids of the initial nodes in the entries m ∈ {0, . . . , 3}. Only the displacements of
those nodes are considered in the CG FEM. We use linear shape functions. We define the isoparametric
shape functions for each tetrahedron T in the nodal formulation Φcm and in the elementary formulation
Nm:

Φcm|T (x) = Nm(x) = N̂lm(ζ−1(x)), x ∈ T
At this point and in the following formulations of the shape functions, we assume that the elementary
functions Nm are only defined on their tetrahedron, i.e., Nm : T → R and the support of the nodal shape
functions Φk is restricted to the elements that have a displacement Uk with the id k, i.e. k ∈ C. The
shape functions in the elementary formulation describe the discretized displacement of an uncut element
that has no partially cut neighbour:

uh|T (x) = U cmNm(x)

The nodal shape functions define the piecewise linear displacement function uh that would be used in the
CG FEM, i.e., in a problem without a cut:

uh(x) =

NP−1∑
k=0

UkΦk(x)

The nodal shape functions of the conventional finite element method are linear on each element, satisfy
the partition of unity and the Kronecker delta property.
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Now, we define the additional shape functions that arise because of the cut, i.e. we look at a tetra-
hedron T with NC > 4. We start with the shape functions for additional displacements corresponding to
sign enrichment. Therefore we choose a tetrahedron T with an m < NC : cm ∈ {NP , . . . , NP +NS − 1}.
Then the nodal shape function Φcm and the elementary shape function Nm are defined as

Φcm|T (x) = Nm(x) = N̂lm(ζ−1(x))ψlm(x) ∀x ∈ T,

where ψm(x) =
H(x)−Hm

2
with

H(x) =

{
1, x ∈ Ω+

−1, x ∈ Ω−
, and Hm = H(P cm). (2)

We call H(x) the Heaviside function and ψm(x) the shifted Heaviside function. For more information on
the choice of the enrichment function ψm, I am referring to Schoch et al [15].

As previously mentioned, the branch enriched nodes are part of a tetrahedron, that may have a complex
opening since they are connected to an element which is partially cut. Therefore the formulation of
the shape functions for displacements that correspond to a branch enrichment is more difficult than the
formulation of the shape functions for displacements corresponding to sign enrichment. Like the shape
functions of displacements that originate in a sign enrichment, the natural coordinates N̂m will be mul-
tiplied with enrichment functions. For the displacements corresponding to branch enrichment we choose
the asymptotic crack tip functions (ACTFs) as enrichment functions. The ACTFs are dependent on the
polar coordinates (r, θ) that correspond to the closest cut front. In order to obtain the polar coordinates,
we will first transform x to xabc, i.e., to a coordinate system (a, b, c) that is adjusted to the closest cut
front and afterwards to the polar coordinates (see figure 3). After that we can define the ACTFs and the

a
c

b r

Figure 3: The orientation of the different coordinate systems with respect to each other.

shape functions for the branch enriched degrees of freedom.
The ids k of branch enriched nodes satisfy NP + NS ≤ k < N , so we choose a tetrahedron T with an
m < NC : cm ∈ {NP + NS , . . . , N − 1} and an arbitrary x ∈ T . We start with calculating the point
CP (x) of the cut front that is the closest to x, i.e.,

CP (x) = argmin
xc∈(∂2DΓc)∩Ω

‖x− xc‖

Then we proceed by finding the triangle T c ∈ T c of the discretized cut such that CP (x) ∈ T c, and we

define the cut front line CF (x) = conv(P̃ c
0, P̃

c
1) with P̃ c

0, P̃
c
1 ∈ {P c

c0 ,P
c
c1 ,P

c
c2} and xc ∈ CF (x).

Then we adjust the (a, b, c) coordinate system to the cut triangle T c with its cut front line CF (x) such
that

b = ‖nc‖,

c =
P̃ c

0 − P̃ c
1∥∥∥P̃ c

0 − P̃ c
1

∥∥∥ ,
a = b× c,
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which helps to build the rotation matrix R = (a|b|c) and we obtain the transformation of x to the (a, b, c)
coordinate system

xabc = R−1(x− P̃ c
0)

and finally the transformation to the 2D (r, θ) polar coordinate system

{r =
√
x2
a + x2

b, θ = arctan

(
xb
xa

+ (sgn(xb) + 1xa>0,xb=0(xa, xb)) · π
)
}.

The asymptotic crack tip function (ACTF) number can be determined by n = (cm − NP − NS) mod 4,
which helps to define the shape functions

Φcm|T (x) = Nm(x) = Fn(r, θ)N̂lm(ζ−1(x))

with the ACTFs

F (r, θ) =

(√
r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

)T
.

Again, we have that supp(Nm) = T and we can formulate the elementary displacements as:

uh|T (x) = U cmNm(x).

The elementary displacement function can be expanded to the global displacement function using the
elementary formulation by defining uh(x) = uh|T (x) ∀x ∈ T , i.e.,

uh(x) =
∑
T∈T

U cmNm(x). (3)

The global displacement function can be formulated by using the nodal formulation of the shape function
as well, we obtain

uh(x) =

N−1∑
k=0

Ukφk(x). (4)

Despite the similarities in the formulation of the displacement function, in general the shape functions
of the X-FEM are not linear on each element. Furthermore, they do not hold the partition of unity and
Kronecker delta property.

With the definitions of the shape functions above, we assure that the discretized displacement func-
tion uh(x) approximate the displacement function u(x), i.e., ϕh(x) −→ ϕ(x), h → 0. Therefore we can
approximate the test functions ∇δu with the elementary formulation

∑
T∈T (δU cm)∇Nm(x). Concluding

we can merge the theories above: we replace the displacement function u(x) and the test functions ∇δu
in the weak formulation (1) by their discrete substitute. To simplify the following derivation, we write u
and ϕ instead of uh and ϕh until the end of chapter 3.

3.5 Local stiffness matrices

We begin by defining the element force matrix Fmi := (∇Nm)l σli for each tetrahedron T . For the
following steps, we write Uki for the i-th entry of the displacement vector Uk. Then we can use the
elementary formulation (∇δu)j =

∑
T∈T δU cm (∇Nm)j (see formula (3)) and supp(Nm) = T to transform

the left hand side of the weak formulation (see formula (1)) to∫
Ω

(∇δu)ijσjidΩ =
∑
T∈T

(
δUcmi

∫
T

FmidT
)
.

The local stiffness matrix k of the tetrahedron T is defined as

k3n+j,3m+i =

∫
T

∂Fmi
∂Ucnj

dT

=

∫
T

µ∇Nni∇Nmj + λ∇Nnj∇Nmi + δjiµ∇Nmo∇Nno dT
(5)
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with the derivations of the elementary shape functions Nm of the tetrahedron T . In the linear elasticity
theory we have a linear dependency between the element force matrix and the local stiffness matrix k.
Using the assumption of no tension in the initial state, i.e., Fmi|Ukn=0 = 0, then yields∫

Ω

(∇δu)ijσjidΩ =
∑
T∈T

δUcmi · k3n+j,3m+i · Ucnj . (6)

Defining the body force vector

Bk =

∫
Ω

Φkb dΩ,

and the surface force vector

Sk =

∫
ΓN

Φks dΓN ,

we can rewrite the right hand side of (1) replacing δuT by the nodal formulation
∑N−1
k=0 (δUk)

T
Φk (see

formula (4)): ∫
Ω

δuT b dΩ +

∫
Ω

δuTs dΩ =

N−1∑
k=0

δUT
k (Bk + Sk) . (7)

In order to obtain the body force vector Bk, the surface force vector Sk and the element stiffness matrices
k, we need to be able to integrate the corresponding functions, which we will deal with in the following
subsection.

3.6 Numerical integration

The conventional finite element method is based on polynomial shape functions. In order to calculate the
body force vector Bk, the surface force vector Sk, and the element stiffness matrices k, those functions
need to be integrated over simple domains, like tetrahedra. Most implementations of the CG FEM apply
the fast and stable Gauß integration. The Gauß integration is advantageous for the CG FEM, since
an exact numerical integration of polynomials with low degrees over domains like a tetrahedron can be
achieved. The ACTFs are trigonometric functions wherefore the Gauß integration can only approximate
the solution of their integrals. Furthermore, the discontinuity of the Heaviside function yields to inac-
curacy, since an integration over arbitrary three dimensional domains is necessary. In order to overcome
the negative side affects, we expand the idea of the Gauß integration to replacing the integral by a sum
of function values multiplied with integration weights.

The integration points in the tetrahedron T are obtained by transforming the reference integration
points χ = (ξl) where ξl ∈ T̂ , l < Nχ. For that, we apply the transformation function ζ introduced in the
last chapter and weigh the function values with the integration weights wl:∫

T

f dT =

∫
ζ−1(T )=T̂

|det(∇ζ(x̂))|f(ζ(x̂))dT̂

=

∫ 1

0

∫ 1−x3

0

∫ 1−x2−x3

0

|det(∇ζ(x̂))|f

ζ(

x1

x2

x3

)

 dx1dx2dx3

=

Nχ−1∑
k=0

wkf(ζ(ξk))|det(∇ζ(ξk))|

+ Error(f ◦ ζ, Nχ)

We obtain the reference integration points χ by subdividing the tetrahedron into smaller tetrahedra in
which we place Gauß integration points. With the numerical integration we obtain the integrals mentioned
above. Now we proceed similarly to the CG FEM: we lexicographically write the element stiffness matrix
k of (5) into a global stiffness matrix K ∈ R3N×3N :

K3k1+j1,3k2+j2 =
∑

∃T∈T :m1,m2≤NC∧k1=cm1
∧k2=cm2

k3m1+j1,3m2+j2 , j1, j2 ∈ {1, 2, 3}. (8)
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With the unknown displacement Uk, k ∈ {0, . . . , N − 1} and exploiting the arbitrary choice of δUk we
receive the discretized formulation of the problem using (6), (7) and (8):

Solve K3k+i,3l+jUlj = Bki + Ski,∀k < N, i < 3, where u(x) =
∑N−1
k=0 UkΦk(x) ∈ VD(ΓD ∩ P,uD).

This formulation finally discretizes the continuous cutting problem of chapter 2. In the following chapter,
we give more details about the implementation of the X-FEM using C++.

4 Implementation

The aim of this work was to enable a simulation of the surgical cutting caused opening of soft tissue,
considered both from the mathematical point of view and also from the implementation point of view.
This chapter explains our approach to an implementation of the above described X-FEM-based simulation
for the cutting problem.

The focus lies on the implementation of the X-FEM, which is why we directly assume the object and cut
to be given and represented as a mesh. An implementation of a dynamic simulation is possible, since
the dynamic formulation of the cutting problem does not differ considerably from the static formulation
presented in the previous chapters, for further information see [15]. In this context, we assume that the
cut can only change the topology of the object at the beginning of the simulation.

Based on those assumptions, the geometrical and topological changes of the mesh (see chapter 3.3) can
be precomputed. The first section is dedicated to these geometric precomputations that introduce the
topological changes of the mesh and serve as the fundament for the shape functions of the additional
degrees of freedom. The second section gives a brief overview of the structure of our implementation.

4.1 Geometric precomputations

In the context of an implementation of the X-FEM, there are two main issues, where geometric functions
need to be applied: For the adjustment of the grid and for the calculation of the shape functions and
their derivatives.

The theory of the adjustments of the grid for the X-FEM was mentioned in chapter 3.3. The appli-
cation reveals the necessity for several other steps outlined in this paragraph.
We begin by formulating the input in two new ways: we connect the nodes P k by triangles (the faces of
the tetrahedra T ∈ T ) or by lines (the edges of the tetrahedra T ∈ T ). Then, we check whether an edge
of the object intersects with the triangular mesh of the cut. Based on this information, the elements are
named uncut, completely or partially cut. Concluding, we store the branch and sign enriched nodes and
the extended connectivity data of the global node IDs C and local node IDs L of the elements, following
the idea of chapter 3.3.
In addition to the adjustment of the grid for the computation, we adapt the grid for a visually realistic
output of the calculated results. In order to obtain a visually pleasant result we calculate all the inter-
sections of the mesh of the cut and the mesh of the object and we visualize the nodes according to their
real positions by means of the Uk calculated using the X-FEM:

uh(x) =

N−1∑
k=0

Ukφk(x).

Moreover, these newly introduced intersection points are triangulated in order to obtain a suitable visu-
alization mesh. For this purpose, we calculate the intersections between the

• edges of the object and the triangles of the cut, and the

• triangles of the object and the edges of the cut
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using a functionality of the toolkit CGAL3. Furthermore, we obtain the points P c
k ∈ Pc of the cut that

are in the a tetrahedron of the object exploiting that the normals of the faces of the tetrahedron point
outwards. Then we connect the intersection points and the cut points in the object by triangles such that
we obtain a visually pleasant result.

(a) completely cut face (b) partially cut face

Figure 4: Triangulation of element faces.

Now, we proceed with geometric precomputations for the shape functions of the enriched nodes. The
corresponding theory was explained in chapter 3.4.
In order to compute the Heaviside function H(x) of x ∈ Ω, as defined in formula (2), we calculate the cut
triangle T c that is closest to x. We compare the vector x − P c

c0 with the normal of the cut triangle nc

and check whether x lies above or below the cut. Based on that information, we precompute the shifted
Heaviside function ψm of the nodes P k ∈ P and of the integration points ζ(ξl) for each element.
For the shape functions that originate in the branch enrichment, we need to transform the given coor-
dinate system (x0, x1, x2) into a new coordinate system (r, θ). We follow the idea that was described in
chapter 3.4 and precompute cut triangles T c ∈ Γc that are part of the cuts’ two-dimensional boundary.
These cut triangles help to build the rotation matrix R and are the basis of the transformation between
the two coordinate systems.

4.2 Implementation structure

Since we introduce some specific declarations and properties in this work in order to allow a discussion
about the applied X-FEM model and simulation, the appendant implementation has to overcome the
challenge of, on the one hand, sticking to a preferably very general FEM code, and on the other hand,
allowing for all additional object properties and features used.

In order to facilitate this requirement, a topology-based ’cut model’ class structure is introduced and can –
with slight adaptations – be used as an add-on to standard FE implementations. In this chapter, we there-
fore give a brief overview of the implementation of the X-FEM simulation and the underlying X-FEM cut
model code structure. Moreover, we show which external toolkits and software frameworks and libraries
it is based on, and give hints on what the implemented functionalities do, and how the input/output
interface works, e.g., with respect to other software frameworks, such as the Simulation Open Framework
Architecture (SOFA) (see http://www.sofa-framework.org/) or HiFlow3 (see http://www.hiflow3.org/).
Concluding, we depict a stand-alone demonstrator which exemplarily makes use of the most common
functionalities.

3Computational Geometry Algorithms Library (CGAL): http://www.cgal.org/
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XFemLinearTetrahedron
facilitate X-FEM enrichment

CutModelTopology_CGAL
read and get geometry of object and cut
initialize cut model topology
compute cutting-caused intersection points/facets/cells

LinearTetrahedron
facilitate standard FEM structures
(such as sfs, sfDs, J, detJ, intpts, intws, transforms)
assemble standard FEM element stiffness matrix
vtk interface

fill in fill in

loadCutModelTopologyInVectorXFEMLinearTetrahedra
load CutModelTopology_CGAL into Vector of XFEMLinearTetrahedron
initialize setup
handle enrichment information about points on each tetrahedron

FEM Framework
load scene information 
build stiffness system matrix and force vector
solve equation system
{ allows to run simulation }
{ executes functionalities of our classes}

 
 

use functionalities of lib

load

CGAL
open source geometry toolkit

VTK
open source visualization toolkit

FEM_ElementType
basis class of ElementType
specific ElementTypes are derived

inherit

inherit

 
use functionalities of lib

Figure 5: Class structure of X-FEM Simulation.

As can be seen in the unified modeling language (UML) diagram of figure 5, we build the base class
’CutModelTopologyCGAL’ on top of CGAL functionalities. In the context of this simulation, the open
source framework CGAL is mainly used for geometric operations, i.e., for the steps mentioned in the first
subchapter. The CGAL-based class ’CutModelTopologyCGAL’ facilitates the handling of all operations
on enriched elements, and hence connects a FEM framework with CGAL features without an overlapping
of their functionalities, eventually allowing for the exchange of the two above named tools. The basic
tasks executed through class ’CutModelTopologyCGAL’ are the following:

• load the object’s volume mesh (e.g. tetrahedra) and the cut surface (e.g. triangles), and transform
these into segments and triangles,

• check the object’s mesh nodes on their location above or below the triangulated cut surface,

• check the way elements are cut (i.e., uncut, partially cut, or completely cut), and based on this
information determine the type of enrichment (i.e., non-enriched, sign-enriched, or branch-enriched),

• adjust the element connectivity information with respect to the additionally enriched nodes,

• if a (partial or complete) cut goes through an element of the object: calculate the intersections of the
object’s tetrahedral mesh and the cut’s triangle mesh, and obtain the resulting intersection points,
as well as in case of partial cuts, obtain the cut boundary which is needed for the asymptotic crack
tip functions,

• triangulate the new elements’ surfaces.

In order to demonstrate the features of this newly implemented cut model topology, we chose to exemplify
our simulation by means of a tetrahedralized mesh Thus, let class ’FEM ElementType’ be the basis for
the class ’LinearTetrahedron’, which is only an option besides e.g. ’QuadraticTetrahedron’. The class
’LinearTetrahedron’ provides all functions and variables that are necessary to handle a linear tetrahe-
dron, e.g., the FE shape function and their derivatives, coordinate transformations, integration points
and weights, as well as the assembly of the system’s stiffness matrix, and the capabilities to perform

13



displacements of the element. The class uses the Visualization Toolkit (VTK)4 and its associated mesh
formats for file input/output. Similarly, the class ’XFemLinearTetrahedron’ inherits all properties of ’Lin-
earTetrahedron’, and only adds the X-FEM specific features needed in order to handle enriched elements:
the enriched elements’ shape functions, their derivatives and the corresponding degrees of freedom (DoFs).

Building on these FE-typical facilitating tasks, the class ’loadCutModelTopologyIntoVectorXFEMLin-
earTetrahedra’ now loads the cut model topology, which is used to initialize the corresponding cut, mesh
and DoF characteristics, and transfers the thus obtained information into a vector of the class ’XFEM-
LinearTetrahedron’. The thus obtained above mentioned element stiffness matrices k can then be given to
a standard Finite Element framework. The Finite Element framework builds the system stiffness matrix
K and computes the solution vector Uk, k < N , using Neumann and Dirichlet boundary conditions. In
order to give access to the X-FEM simulation functionalities, we implemented a small FEM structure
that uses the X-FEM classes mentioned above. The code is published open source on bitbucket5. For an
example workflow, see figure 6.

Object

Cut

Object Mesh

Cut Mesh

Visualization

Shapefunctions and Derivatives
of discrete displacement functionadjusted grid integral elementary stiffness matrix

linear equation systemboundary conditions discrete displacement

Figure 6: Scheme of X-FEM Simulation workflow.

We point out some restrictive features of the X-FEM and hence our code in the following. Firstly, the
body forces b (and surface forces s) are assumed to be constant on the elements (and the surfaces, re-
spectively). An extension to nonlinear body and surface forces is straight forward, since the implemented
integration method of chapter 3.6 can deal with arbitrary functions. Secondly, as previously mentioned
the code applies a zero Neumann boundary condition on the cut ΓC , which is why the additional entries
of the boundary force vector are all zero, i.e. Sn = 0, ∀n > 3NP . Thirdly, the body force b has no
effect on the enriched nodes, and therefore the additional entries of the body force vector are zero as well,
i.e. Bn = 0, ∀n > NP . As a consequence the calculation of the body force vector Bn can be executed
by the finite element framework and does not have to be provided by our classes.

5 Evaluation

In this chapter we evaluate our implementation of the X-FEM-based simulation. We begin by introducing
the tools we apply; the test case, the reference solution and the error measure. We compare the solutions
of our algorithm with the solution of the well established CG FEM and interpret the results.

5.1 Test problem, reference solution and error measure

We consider the deformation of an elastic beam with an initial configuration Ω = [0, 0.03]m× [0, 0.06]m×
[0, 0.2]m (in the following we will omit the unit m). The material behaviour of the beam is isotropic and
homogeneous with a Young’s modulus of E = 300kPa and a Poisson’s ratio of ν = 0.35. We fix the beam
by a Dirichlet boundary condition at its stump in all directions

uD(x) = 0 ∀x ∈ ΓD1 = [0, 0.03]× [0, 0.06]× {0}
4Visualization Toolkit (VTK): http://www.vtk.org/
5Code hosting platform bitbucket - https://bitbucket.org.

Download command: git clone https://chrijopa@bitbucket.org/chrijopa/xfem-in-cpp.git
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and stretch the beam with a second Dirichlet boundary condition

uD(x) =

 0
0

0.02

 ∀x ∈ ΓD2
= {0} × [0, 0.06]× {0.2}

The rest of the boundary is in its equilibrim, which is equivalent to applying a Neumann boundary
condition equals zero: s(x) = 0 for x ∈ ΓN = ∂Ω\(ΓD1

∪ ΓD2
). We cut the beam halfway at x2 = 0.1 in

the x0-direction, i.e. we have the cut surface

Γc = [0, 0.015]× [0, 0.06]× {0.1},

so the zero Neumann boundary condition expands to ΓcN = ∂Ω\(ΓD1 ∪ ΓD2) ∪ Γc.

We compare our results for the cutting problem with a reference solution, that is obtained using the
CG FEM. With the verified convergence of CG FEM, the reference solution can be applied to investigate
on the convergence of our results.

In order to be able to solve the cutting problem with the CG FEM we need to adapt our mesh to
the topological changes that arise from the cut. We begin by aligning the surfaces of the elements to the
cut. Then the nodes on the cut are doubled, one of the nodes is attached to the elements above the cut
and the other one is attached to the elements below the cut. After this adjustment, the object allows for
an opening of the cut, since the doubled nodes can move away from each other. The perfect alignment
on and separation at the cut, simplifies the cutting problem to a standard elasticity problem. Since the
conventional finite element method is sufficient to solve this problem, we can use CG FEM to obtain our
reference solution.
To minize the difference between the deformation of the reference solution and the real world, we choose
a body with 466560 tetrahedra and 256188 degrees of freedom. These degrees of freedom correspond to
the points P r

k ∈ Ω, k < NPr = 85396 and the set of points Pr = {P r
k|k < NPr} discretizes the domain

Ω. The CG FEM provides the deformed object, which we will refer to using its deformation function ϕr.

Our solutions to the cutting problem are stored in the vtk-format. We visualize the solutions using
Paraview6, the reference solution can be seen in figure 7.

Figure 7: The reference solution

6http://www.paraview.org/
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Now, we proceed with the examination of the functionality of our method, comparing the reference
solution with our results. In the evaluation of the conventional finite element method, a common definition
of the deformation error is

εL2 = ‖ϕr −ϕh‖L2(Ω) =

√∫
Ω

(ϕr −ϕh)2dΩ.

Utilizing this error measure is difficult in our case, since the shape functions of the branch enriched
elements only allow for an appoximation of the integral. Moreover, this is computationally expensive,
because of the complexity of these shape functions. Therefore, we chose to approximate the error measure
εL2 directly instead of approximating the integral. The Root-Mean-Square Error (RMS)

εRMS =

√√√√ 1

3NPr

NPr−1∑
k=0

‖(ϕr −ϕh)(P r
k)‖22,

which depends on the nodes P r
k of the reference solution approximates εL2 very well, since the elements

of the reference solution all have the same size. Therefore, we choose the RMS error. We calculate the
RMS error, by first calculating the position – i.e., the id of the tetrahedron and the local coordinates in
a mesh with lower resolution – of each reference node P r

k ∈ Ωh and then deform the node by using the
displacement function in the elementary formulation (3).

In the course of our examination, we utilize our implementation of the X-FEM in C++ to compute
the results of the cutting problem mentioned above. We discretize the beam Ω by means of an arbitrary
unstructured grid, that our algorithm can cut at any point. The cut is discretized by two triangles.

The goal of the evaluation was to not only prove the convergence of our implementation of the X-FEM,
but also to compare its result. For comparison, we are using the same idea, that has been applied to
obtain the reference solution: We introduce meshes with different number of equidistant points, such
that the surface of the tetrahedra aligns with the cut. On the cut, we double the points and attach one
of them to the tetrahedra above and one of them to the tetrahedra below, allowing an opening of the
cut. Following these steps, we simplified the cutting problem to the standard problem, and we use CG
FEM to compute the solution. We obtain an adapted solution of the cutting problem – only the spe-
cific cut scenario mentioned above can be simulated without computational expensive changes to the mesh.

The first check of our implementation of X-FEM is visually accurate, as can be seen in figure 8.

(a) the complete mesh of the test object (b) partially cut and completely cut ele-

ments above the cut, coloured in orange

and green

Figure 8: Visualization of the test case with an mesh with NT = 1810 and N = 595.

In the next chapter, we confirm those results by applying the error measure introduced above.
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5.2 Convergence analysis

We evaluate the results of the implementation of the X-FEM in C++ by means of the reference solution
of CG FEM. We compute the RMS error for different numbers of degrees of freedom (DoFs) and compare
it with the error of the results obtained using CG FEM, see figure 9: on the x0-axis the number of DoFs
and on the x1-axis the RMS error - in red the error of CG FEM, in blue the error of our implementation
of X-FEM based on C++. The convergence analysis can be reproduced using the open source version of
our implementation.

In a mesh of a domain Ω that consists of equidistant points, there is a close correlation between

102 103 104 105

NDoFs

10-4

10-3

10-2

ε R
M
S

CG FEM
X-FEM

Figure 9: Development of the RMS errors using X-FEM and CG FEM

the number of DoFs and the greatest length h of an edge of a tetrahedron that belongs to the mesh.
Therefore most of the evaluations of conventional finite element methods contain the development of the
error dependent on h instead of the number of DoFs. In the X-FEM, the number of DoFs depends on
the cut as well, so it is difficult to establish a relation between the number of DoFs and h. Furthermore,
the computation time depends on the number of DoFs, i.e. knowing about the number of DoFs helps
to better decide whether a result can be obtained in real time. Therefore we restricted ourselves to only
displaying the error dependent on the number of DoFs.

In the considered test case the error of our method decreases monotonously with the increase of the
number of DoFs. The error of the solution obtained with our implementation stays less than the error
of an adapted FEM mesh. However, the convergence of the X-FEM implementation seems to be weaker
than the convergence of the standard FEM.

The phenomenom of the weak convergence rate, has been discovered and discussed in several papers.
Chessa et al [3] relate this to the blending elements, which are in between enriched and non-enriched
elements, i.e., elements that have enriched and non-enriched nodes. They claim and show in this paper
that the violation of the partition of unity in the blending elements negatively impacts the approxima-
tions’ accuracy. The deterioration of the accuracy in the blending elements weakens the improvement
of accuracy that comes from the enrichment. A constant space of enrichment minimizes this negative
effect of the blending elements. The general idea of this technique and of other similar ones, namely the
prevention of the deterioration in convergence rate, can be found in [16].
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Some of the meshes that we used for the evaluations have nodes that are close to the cut of the test
problem. Cuts like those can yield sign enriched nodes with shape functions having a relatively small
support above or below the cut compared to the volume of the elements that are attached to the node,
i.e.,

∃k ∈ {NP , . . . , NP +NS − 1} :

(
λL (supp(Φk) ∩ Ω+)

λL
(⋃

T∈T :P k∈T T
) ≈ 0

)
∨

(
λL (supp(Φk) ∩ Ω−)

λL
(⋃

T∈T :P k∈T T
) ≈ 0

)
Daux et al [6] showed that such nodes lead to singularities, if they are not treated in the right way. This
has not been a problem for our calculations, but it could trigger weak convergence rate.

At this point, we underline that in our simulation the grid of the beam is arbitrary and not adjusted
to the cut, i.e., the results we obtain by applying the X-FEM are average results. Still, the accuracy of
our solution surpasses the solutions of the CG FEM, which have been specifically adapted to the problem.

5.3 Cut through complex geometry

In order to demonstrate the flexibility of the approach, we perform a sinusoidal cut through a very low
resolution liver geometry (Fig. 10, the example is provided in the git repository). The undeformed finite
element model consists of 888 linear tetrahedra and 397 nodes, i.e. 1191 degrees of freedom. An additional
303 degrees of freedom are added in order to model the cut.

Figure 10: A liver with 888 linear tetrahedral elements is cut by a sinusoidal blade.

5.4 Conclusion

The evaluation showed, that the X-FEM provides an accurate solution of the cutting problem. The solu-
tion of the method surpasses the solution of the conventional finite element method that has been adapted
to the specific problem.

In our implementation an arbitrary mesh for the object can be chosen without restricting the cut. Op-
posed to this, in the CG FEM the mesh has to be adapted when we apply a cut, which already is a complex
task for simple cut geometries. An adaption of the mesh is computationally expensive and therefore has
a negative impact on the real-time capacity of the simulation. Despite of the computational cost for the
adjustment of the grid, the accuracy of the solution of the CG FEM is worse than the accuracy of our
implementation.

We discretize the cut using triangles. With triangles we can represent any arbitrary 2D object, which
means arbitrary cuts can be discretized. Therefore, the X-FEM can handle cuts that either cannot be
calculated using the CG FEM at all, or only at high computational cost.
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6 Summary and outlook

In the context of this work, the cutting problem which arises when deforming and cutting soft tissue
under the influence of force and displacement boundary conditions, has been modelled, discretized, solved
and simulated applying the eXtended finite element method (X-FEM).

We presented the cutting problem in elasticity by means of its differential and its variational formu-
lation. We discretized the object and the cut to allow for finding a solution using numerical methods. We
adjusted the mesh to the topological changes that arise from the intersections of the meshes of the object
and the cut and defined branch and sign enriched nodes. Then the shape functions for the conventional
and the X-FEM were defined. Considering approximative discrete function for the variational formula-
tion, we obtained an integral equation. An adapted numerical integration finally yields the discretized
displacement of the cutting problem as the solution of a system of linear equations.
In the case of an implementation of the dynamic problem, we presented the geometric precomputations.
Furthermore, our method was implemented in C++ using methods provided by the open source frame-
work CGAL. The implementation allows a three dimensional simulation of an arbitrary cutting problem
without adaptation of the grid of the object to the grid of the cut.
For the evaluation of our C++ implementation, we compare our simulation of a stretched beam to a
reference solution, that was obtained with CG FEM. The analysis proved the convergence of the imple-
mented method. In this simple example, our method has a higher accuracy than the solutions of the
conventional finite element method, which are obtained by perfectly aligning the grid of the object to
the cut. In problems with higher complexity, conventional methods either fail or get computationally
expensive, whereas the computation of solutions based on our method is numerically stable.
In the future, we want to simulate models with higher degrees of freedom without a drawback in com-
putation time. This could be achieved by replacing the oversampling integration method by another
integration technique. We suggest to find a polynomial that replaces or approximates the asymptotic
crack tip functions and to apply the idea of Mirtich [14] – he proposed to replace an integral over a
volume by an integral over a face and then by an integral over a line. This approach allows very fast
computations on complex volumes like tetrahedra separated by a triangulated cut. An application of the
co-rotational finite element method combined with the X-FEM would eliminate the unnatural deforma-
tion that arises because of ghost forces, see [15]. Furthermore, a dynamic declaration of the cut in each
time step would allow for progressive cutting, which represents another challgenging task in the context
in surgery simulation applications. Finally, allowing for non-zero force boundary conditions on the cut
surface would enable the simulation of collisions of the body parts above and below the cut.
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