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Abstract

Patient-specific biomechanical simulations of the behavior of soft tissue play an impor-

tant role in surgery assistance systems. They can provide surgeons with valuable insights and

additional information for diagnosis and therapy. In this work, we focus on the surgical treat-

ment of incompetent mitral valves by means of minimally-invasive mitral valve reconstructions

(MVR). We aim at supporting MVR surgery by providing adequate FEM-based soft tissue sim-

ulations, which simulate the behavior of the patient-individual mitral valve subject to natural

forces during the cardiac cycle and to surgical manipulation during MVR.

In order to forster the applicability of such simulations, they need to be fully integrated

in often complex biomechanical modeling workflows, which cover the complete pipeline from

imaging and segmentation to meshing, model setup and simulation. Like this, an automated

execution of all preprocessing steps and of the simulation itself can be enabled. However,

patient-specifity and workflow automation often do not fit together, and are sometimes conflict-

ing, such that the respective biomechanical models and the results of corresponding simulation

scenarios quickly turn unrealistic or even misleading for surgery assistance.

Therefore, we have set up a comprehensive pipeline of geometry analytics tools and simu-

lation setup operators, which allow for defining and facilitating patient-specific MVR surgery

simulation scenarios. Based on these scenarios and on the therein referred pipeline-produced

simulation input data, we can feed and run our dedicated MVR simulation application which

is built on top of the open-source C++ FEM software toolkit HiFlow3.

In our work, we thus explain the concept and implementation of the pre- and post-

processing operators of such MVR simulations, and point out specific features and problems

arising therein. Also, we describe the integration of our operator pipeline into the framework

of the Medical Simulation Markup Language (MSML), which shall allow for an automated

and more general usage. Finally, we present a set of exemplary results of an application of

our operator pipeline to real MVR patient data and explain how the respective model and

simulation represent real anatomy and the surgical intervention of an MVR. Concluding, we

discuss the suggested setup and give an outlook on possible future developments.
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1 Introduction and Motivation

Biomechanical simulations of the human body play an increasingly important role in today’s
clinical and surgical treatment processes, in training systems, assistance systems, and for clinical
diagnosis. Especially when dealing with very complex surgical operations, such as a mitral valve
reconstruction, numerical simulations may provide surgeons with valuable insights and additional
information for diagnosis and therapy, see, e.g., [16].

This is also part of the vision of the German research project Cognition-Guided Surgery,
where an intelligent surgery support system recognizes situations in the operation room and
suggests adequate surgical actions to the operating surgeon.

In our work, we specifically consider the surgical treatment of incompetent mitral valves by
means of minimally-invasive mitral valve reconstructions (MVR). During an MVR, an artificial
annuloplasty ring is implanted into the heart in order to reestablish the functionality of an
incompetent mitral valve [8]. For a successful operation this requires the surgeon to have a well-
established experience and detailed surgical expert knowledge, in order to considerately adapt
the course of the annuloplasty ring implantation strategy to respective current situations and
intraoperative assessments [9].

Surgery simulations may support surgeons in their work, however, the applicability and
usefullness of simulation-based surgery support for MVR is controversially discussed [16], as the
simulation technology in comparable assistance systems can not yet fully satisfy the surgical
requirements, see, e.g., [3, 10, 12]. On the one hand, surgery assistance by means of simulations
has to deliver simulation results that are highly accurate and efficiently computed in almost
real-time. On the other hand, these simulations and their underlying models not only need to
integrate the above-named surgical expert knowledge with respect to the MVR itself, and hence
accordingly adapt the model and simulation boundary condition specifications to current states
in the OR. It also has to analyze and consider patient-individual organ geometries and material
properties, and accordingly represent these in the biomechanical model setup.

In the previous work [13], which specifically addresses the expert knowledge-based adaptation
capability, we suggested a concept for a workflow to overcome this challenge, by integrating
a biomechanical simulation for MVR into a knowledge-based surgery assistance system, see
Figure 1.

Figure 1: Workflow concept of the knowledge-based simulation-supported MVR surgery

assistance system.
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Built up on a common data and knowledge base, we semantically represent and perform the
various surgery-preparing steps taking place before and during MVR.

Using 4D transesophageal ultrasound images, we carry out semi-automatic segmentations of
the valvular apparatus and perform clinically important quantifications, such as of the area of
the coaptation zone of the mitral valve and of the bending of the leaflets [4]. In a subsequent
step, a deductive system then interprets the given patient-specific data and geometries by means
of semantically represented surgical guidelines, in order to perform reasoning and to derive
potentially suitable annuloplasty rings for implantation during MVR. Based on this information
– the segmented mitral valve geometry and the type of annuloplasty ring which is to be implanted
–, the biomechanical soft tissue simulation must accordingly be set up by means of defining
the corresponding simulation scenario (i.e., input geometries, boundary conditions, material
properties, etc.). This is what this work aims at facilitating in a patient-individual and expert-
knowledge-considering way, and what is represented in the workflow draft, Figure 1, as simulation
scenario management. It then allows for simulating the wanted behavior of the mitral valve
subject to the natural external factors of influence (like forces and momentums) and with respect
to the virtual implantation of the annuloplasty ring. In the last step of the MVR assistance
workflow, the simulation results are presented to a surgeon for a final visual and quantitative
assessment, and thus help him during the decision process, where the type of ring and the way
of sewing it onto the native annulus of the valve have to be determined.

Based on this work, we want to provide the tools and operators to automatically process
the information coming from the imaging step, namely ultrasound imaging and subsequent
semi-automatic segmentation, and from the deductive system, which detects potentially suit-
able rings. We have therefore set up a comprehensive pipeline of miscellaneous Python- and
VTK-based scripts. First, it transforms the segmented mitral valve geometries into 3D images
and further into 3D volume meshes which are compatible for simulations based on the Finite
Element Method (FEM) in general, and particularly for FEM simulations based on our inhouse-
developed HiFlow3 MVR simulation application. Second, it considers the above mentioned
specific expert knowledge-based information about the annuloplasty ring implantation strategy
by means of processing the respective data into the boundary condition data structures for the
simulation.

In the following, we begin with a short introduction to the anatomy and functionality of the
human heart and the mitral valve, and point out the biomechanical framework and requirements
of our MVR simulation for surgery assistance. Subsequently, we explain the structure and
implementation of our preprocessing pipeline, and how it is integrated into the framework of the
Medical Simulation Markup Language (MSML) for generalist usage. Using real MVR patient
data, we also present an exemplary result of our operator pipeline, and explain how the respective
biomechanical model and simulation are set up, which illustrates the applicability of our work in
the biomechanical modeling workflow and in clinical environments. Concluding, we discuss the
suggested setup and give an outlook on possible future developments.

2 Context and Setup of MVR Simulations

In this section, we first give a short introduction to the anatomy and functionality of the human
heart and of the mitral valve, specifically pointing out the circumstances which require surgical
treatment by means of a mitral valve reconstruction (MVR).We explain the surgical procedure
of an MVR and describe how we want to facilitate the virtual simulation of such a procedure
and its physiological results by providing the corresponding boundary conditions for the setup
for our numerical simulation.
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2.1 Short Excursion: Anatomy of the Human Heart and the Surgical Proce-

dure of an MVR

In order to understand the structure and functionality of the human heart, and especially of the
mitral valve, we make a brief excursion into anatomy. The anatomic structure of the mitral valve
comprises leaflets, annulus, chordae tendinae, papillary muscles, and underlying left ventricular
myocardium, see Figure 2 (a).

Figure 2: (a) Draft of the left ventricle of the human heart and the mitral valve. (b) Draft

of an annuloplasty ring implantation during an MVR.

The mitral valve, also known as the bicuspid or left atrioventricular valve, is a dual-flap valve
in the heart, which lies between the left atrium and the left ventricle, and which along with the
aortic valve helps control the flow of blood. During diastole, a properly-functioning mitral valve
opens as a result of increasing pressure from the left atrium as it fills with blood. The open
valve thus facilitates the passive flow of blood into the left ventricle. Diastole ends with atrial
contraction, and the mitral valve closes to prevent a reversal of blood flow.

The mitral valve has two leaflets (the anterolateral leaflet and the posteromedial leaflet) to
guard the opening and closing procedures. A ring-shaped fibrous tissue named annulus surrounds
the opening. The leaflets are prevented from prolapsing into the left atrium by the action
of the so-called chordae tendineae. These inelastic tendons are attached at one end to the
posterior surface of the valve leaflets and at the other to the papillary muscles, which are fingerlike
projections from the wall of the left ventricle. When the left ventricle contracts at the beginning
of systole and when the intraventricular pressure forces the valve to move up and close, they
ensure that the coapting (i.e., touching) leaflets keep together by preventing the valve from
over-opening in the wrong direction. The blood is thus prevented from flowing back to the left
atrium, see Figure 2 (a).

The size of the coaptation zone, i.e., the area where the leaflets are pressed together by the
blood during the left ventricle contraction, is important for the valve’s closing functionality.
Incomplete closure of the valve may result in mitral insufficiency, which is a regurgitation or
backflow of blood into the atrium. Improperly coapting leaflets and hence leaking valves may
be corrected by mitral valve annuloplasty or reconstruction, a common surgical procedure that
aims at restoring proper leaflet coaptation, cf. [8, 9]. During this procedure, a stiff artificial
annuloplasty ring prosthesis is sewed and implanted onto the natural annulus in order to stabilize,
reshape and shrink the valve geometry, and to hence allow for proper closing after the surgical
intervention, see Figure 2 (b) and Figure 3 (a).
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Figure 3: (a) Endoscopic image of the mitral valve captured during an MVR, showing the

fixation and implantation of an annuloplasty ring prosthesis. (b) Optimal (distance-based)

annuloplasty ring sizing in MITK.

There are different annuloplasty ring types which vary in size and shape, in order to allow
for perfect fitting to the patient-specific annulus. Surgeons in different institutions have access
to different certified and commercially available subsets of rings, so, for instance, in the German
Cancer Research Center (DKFZ) and the Department for Cardiology in the University Clinic
Heidelberg, Germany, we are provided with the Carpentier and Physio II ring prostheses only.

During the MVR operation, the surgeon has to decide – on the basis of his experience and
his expert knowledge – which ring fits best to the patient-individual annulus, which is crucial
for the proper restoring of the valve closure.

The optimal shape can be derived on the basis of a set of surgical MVR guidelines, considering
patient-individual factors like age, sex, former heart diseases, current diagnostic characteristics
and symptoms (fainting, dizziness, swellings, etc.), or specifically with respect to the heart: size of
the annulus, curvature, thickness or perforation of the leaflets, length, ruptures and fibroelasticity
of the chordae, healthy or degenerative valves, and many more. – These factors are semantically
represented in our knowledge base, such that a deductive system, in which these surgical expert
guidelines are implemented, can perform an intelligent reasoning, and hence provide decision
support to the surgeon.

The optimal sizing of rings is identified using the open-source software Medical Imaging
Toolkit (MITK) [11], and a therein provided plugin named Mitralyzer [7], such that it minimally
reshapes the natural geometry of the annulus at specifically sensitive points, while still allowing
for best coaptation of the leaflets, cf. Figure 3 (b).

We refer to [2, 9], as well as to thorough online documentation1 for additional background
information.

2.2 Setup of the FEM-based MVR Soft Tissue Simulation

In the context of surgery assistance applications, elastomechanical simulations are intended to
reproduce the effects of prescribed displacements, forces and momentums on soft tissue, subject
either to surgical manipulation through surgery instruments or to natural organ motion. The

1Detailed information on the mitral valve: http://www.TheMitralValve.org/.
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equations of elasticity theory describe the relation between stress and strain in soft tissues, and
hence set the basis for an FEM simulation of a body’s deformation behavior.

In our work, we simulate the behavior of the mitral valve subject to natural blood pressure
and to the artificial implantation of the annuloplasty ring prosthesis, cf. Figure 4.

Figure 4: Visualization of HiFlow3-based MVR simulation results, showing the initial

geometry of the mitral valve leaflets before surgery (wireframe), and the manipulated ge-

ometry after implantation of an annuloplasty ring prosthesis and subject to blood pressure

(colored).

Based on the formulation as a boundary value problem (for background information, see,
e.g., [1] for standard elasticity problems, or [17] for elasticity problems considering the occurrence
of contact), we can prescribe different types of boundary conditions that shall be taken into
account during the simulation.

On the one hand, we need to model the implantation of the annuloplasty ring, and on the
other hand, we have to consider the blood pressure onto the leaflets and the back-pulling effects
of the chordae. Additionally, the event of contact must be handled appropriately. In order to
consider all these constraints in the simulation, we implemented the data structures for four
different types of boundary conditions (BCs) and have to accordingly facilitate their setup in
our preprocessing pipeline:

• Pointwise Dirichlet BCs: We gather all prescribed point displacements arising from the
annuloplasty ring implantation step during MVR surgery, where points on the natural
annulus are moved to the ring surface by means of a sewing procedure, cf. Figure 2 (b).
In a preprocessing step, the corresponding points xnatural and displacement vectors du =
ximposed − xnatural have to be computed using the given information on valve and ring
geometries, and then processed into the Dirichlet data structures during the simulation
setup.

• Facetwise Neumann BCs: Modeling the blood pressure onto the valve’s leaflets during the
cardiac cycle, we implemented facetwise Neumann BCs, which represent a time-dependent
force on the boundary surface elements. Time-dependence is given in two ways: On the one
hand, we interpolate by trigonometric functions the strength of the blood pressure, accord-
ing to a mean pressure profile by Wigger, see [2, 5]. On the other hand, we have changing
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force directions, e.g., during systole from ventricle-centerline-directed to towards-the-center-
of-the-atrium-directed due to the ventricle contraction (such that the valve closes), and
similarly, during diastole it is bottom-of-the-valve-directed (such that the valve opens), cf.
Figure 2 (a). We therefore need to precompute the respective geometric information (center
point of atrium, centerline of ventricle) in our preprocessing pipeline, and mark the leaflets’
surface facets accordingly, such that they can be detected and processed by the simulation.

• Pointwise Neumann BCs: In order to account for the action of the chordae tendinae, which
prevent the leaflets from prolapsing into the atrium during systole, we implement a pointwise
Neumann BC, to pull down the leaflets when they are pushed up too far due to the blood
pressure (i.e., due to the effects of the above facetwise Neumann BCs). The strength of the
pull is increased in dependence of the distance between the chordae’s attachment points
on the leaflets and a representation of the initial location of the top point of the papillary
muscles (which is assumed to move along with the ventricle over the course of systole),
cf. Figure 2 (a). We have to represent the (primary) chordae’s attachment points on the
leaflets according to a mean distribution as suggested by [10], and account for the pulling
forces by means of a bottom-of-the-ventricle directed set of vectors. These vectors hence
coincide with and point into the direction of the chordae.

• Facetwise Penalty Contact BCs: Accounting for contact in an instationary simulation first
of all requires the search for potential contact occurrences in every time step. This is a
highly critical and very costly task, and the algorithms for detecting contact are of utmost
importance. The number of operations needed to check O(N) surfaces of a discretized
domain for potential contact is O(N2), such that carrying out these checks in every time
step easily lets the search dominate the overall time for the computation. The contact
analysis hence needs to be designed to be most efficient, and complexity must be maximally
reduced. – We therefore edit the boundary mesh in a cheap preprocessing step in a way such
that, firstly, the two leaflets are assigned with two different IDs, and secondly, the upper
and lower sides of the leaflets can be distinguished, cf. Figure 7. Like this, the contact
search directly requires only approximately 1

16 of the original computation time. For more
information on the thus facilitated contact search algorithm, we refer to [14]. Once the
contact facets are found, we apply a penalty method to penalize the advent of contact.

In the following section, we explain, how this setup of data structures, which is suitable for
FEM soft tissue simulations, is computed by means of a dedicated pipeline of preprocessing
operators.

3 Setup of Data Structures and Implementation Issues

In order to have a clearly defined basis and namespace for the subsequent description, we intro-
duce some notation: Let S′ be the segmented mitral valve geometry which is a polygonal grid,
whose 2D cells are triangles. In our case, we obtain this segmentation from the German Cancer
Research Center (DKFZ) and in the Department of Cardiology of the University Hospital in
Heidelberg, Germany. For detailed information on the image and geometry acquisition process,
starting with 3D+t transesophageal ultrasound imaging and ending with 3D segmentations of
the mitral valve leaflets, we refer to specific documentation: For their inhouse-developed open-
source Medical Imaging Toolkit2 (MITK), see [11], for the dedicated Mitralyzer Plugin, see [7],
and we point out the work of Engelhardt et al. [4] with respect to the specific semi-automatic
segmentation steps taken to obtain the geometries, which we use for further preprocessing.

2Official Website of the Medical Imaging Toolkit (MITK): http://www.mitk.org/.
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In a previous work, we presented the Medical Simulation Markup Language3 (MSML),
which allows for simplifying the biomechanical modeling workflow, see [15]. In the following,
we start our workflow pipeline using a sequence of general image data processing operators,
which we already integrated into the MSML for usage in the context of universal preprocess-
ing pipelines, also beyond MVR-related tasks. Namely, these operators are: a VTK4 -based
SurfaceToVoxelData operator (which converts a 2D polydata surface in 3D space in a vtp
file into a 3D voxel image in a vti file), a VTK-based MarchingCube operator (which extracts
a polygonal surface mesh in a vtu file of an isosurface from voxel data in the vti file, and allows
for smoothing, too), and a CGAL5 -based SurfaceToVolumeMesh operator (which generates
a 3D volume mesh in a vtu file inside the above mentioned polygonal surface mesh).

Altogether, these operators allow for obtaining from the segmented mitral valve geometry S′

a volume mesh V of the mitral valve which is suitable for FEM-based simulations. The mesh V
is an unstructured grid, whose 3D cells are tetrahedra.

The surface S of V can be extracted as a polygonal grid with the VTK classes vtkDataSet-
SurfaceFilter or vtkGeometryFilter. The geometry filter is more flexible than the
surface filter, but for our purposes, both filters suffice.

Since S is a closed surface, we can compute its unit outer normal vector field N with the
VTK class vtkPolyDataNormals. The corresponding normal vector of a cell c of S is denoted
by N(c). With the same filter, we can also compute a normal vector field N ′ for the surface
S′. Since S′ is not closed, we need to make a choice concerning the orientation of N ′. In the
following, as shown in Figure 5a, N ′ is oriented towards the center line of the left ventricle (see
again Figure 2 (a)).

Finally, the artificial annuloplasty ring, which tightens the natural annulus, is represented as
a polygonal grid and will be denoted by R.

Based on this notation, we now start outlining the series of operators, which we conceptually
developed and implemented in order to build up a comprehensive operator pipeline that allows
for the automated setup of patient-individual, situation-adaptive and surgical expert knowledge-
based simulation scenarios for MVR operations. It is designed to produce patient-individual sim-
ulation scenario setups through processing patient-specific data (ultrasound images and medical
records) from our clinic partners, and it is situation-adaptive and also considers surgical expert
knowledge as it employs and integrates into its MVR ring implantation scenarios the results
of an MVR guidelines-based deductive system. This system derives patient-individual possible
suitable sets of annuloplasty rings on the basis of a surgery knowledge data base and specifically
important patient factors, as already mentioned above in section 2.1.

First, we need to explain how, on the basis of the segmentation, we derive the upper and
lower sides of the leaflet geometry and accordingly annotate the data structure, see 3.1. Second,
we present an algorithm to distinguish the anterior and posterior leaflets in order to facilitate
an efficient contact simulation, see 3.2. In section 3.3, we describe the MVR-specific setup of
pointwise Dirichlet boundary conditions considering the annuloplasty ring implantation proce-
dure. Last, in section 3.4, we depict the patient-individual representation of the back-pull effects
of the chordae tendinae on respective mitral valve geometries in terms of pointwise Neumann
boundary conditions.

3Online sources of the Medical Simulation Markup Language (MSML): see the GitHub-based source code

repository on https://github.com/CognitionGuidedSurgery/msml, and the corresponding documentation

on http://msml.readthedocs.org/.
4Official Website of the Visualization Toolkit (VTK): http://www.vtk.org/.
5Official Website of the Computational Geometry Algorithms Library (CGAL): http://www.cgal.org/.
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Following these preprocessing steps, we execute the HiFlow3-based MVR elasticity simula-
tion in order to obtain simulation results according to the given MVR scenarios. In the post-
processing procedure, i.e., after the HiFlow3-based MVR elasticity simulation, we conclude with
a stress visualization step, explained in section 3.5. We fully integrated the pre- and postpro-
cessing operators into the framework of the MSML, which is described in the last section 3.6 of
this chapter.

In our work, we make use of algorithms and functionalities available in the open-source li-
braries and toolkits VTK and specifically Python-VTK, as well as the fundamental packages for
scientific computing with Python, NumPy6 and SciPy7. We hence assume that future users of
our algorithms have these packages installed and linked on their workstations. A documentation
for the VTK classes and methods used in the following sections can be found on the internet8,
too.

3.1 Derivation of upper and lower side of the leaflets (Preprocessing)

We describe two methods for finding the leaflet’s surface facets on the upper and lower side of
the mitral valve. Thereby, the upper side of the valve’s surface is the side on which the blood
pushes during diastole. Accordingly, we define the surface’s lower side. We approached this
problem in two ways, each using the normal vector fields N or N ′.

The first idea is based on a local comparison between both vector fields, see Algorithm 1: Let c
be a cell in S and let v be one of its vertices. With the VTK method FindClosestPoint()
which is a member of the class vtkCellLocator we find a closest point to v in S′ and a cell c′

which contains this point. Now, c is on the upper side of the mitral valve’s surface if the normals
N(c) and N ′(c′) roughly point in the same direction, i.e., the Euclidean inner product of both
vectors is greater than zero. Figure 5a shows a cross-section of the surfaces S and S′ and their
normal fields characterizing the upper and lower side of S.

Algorithm 1 Upper and lower side (via comparison of cell normals)

1: for all cells c in S do

2: choose a vertex v of c

3: find a closest point p′ to v in S′

4: find a cell in S′ that contains p′

5: if N(c) ·N ′(c′) > 0 then

6: c is on the upper side

7: else

8: c is on the lower side

9: end if

10: end for

The disadvantage of this method is that it completely relies on a correct computation of both
normal vector fields. We experienced that the filter vtkPolyDataNormals produces correct

6Official Website of NumPy : http://www.numpy.org/.
7Official Website of SciPy : http://www.scipy.org/.
8Official Website of VTK including documentation: http://www.vtk.org/documentation/.
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(a) Ideal world case. (b) Exception case.

Figure 5: Cross-sections of the segmented mitral valve leaflet geometry and the surface of

the volume mesh with normal vector fields.

results for the segmented mitral valve geometry, whereas the normals of the surface of the volume
mesh were not always computed correctly, since the results were not deterministic.

Consequently, we developed another algorithm, see Algorithm 2, that solves the same prob-
lem, but does not rely on the normals of the surface mesh anymore: As before, choose a cell c
in S. We introduce a variable called upLowIndicator which, as the name suggests, will indicate
whether the cell c is classified as a cell on the upper or lower side of the surface. We proceed as
follows.

First, set upLowIndicator to 0. Then, we iterate over the vertices v of c. Using the same
VTK methods as in Algorithm 1, we find a closest point p′ to v in S′ and a cell c′ that contains
p′, and consider the plane with origin p′ and normal N ′(c′), which can be described as the set of
points x that satisfy the plane equation N ′(c′) · (x − p′) = 0. This plane separates R3 into two
half spaces, a positive and a negative half space. If v is contained in the positive half space, i.e.,
N ′(c′) · (v − p′) > 0, we increase the variable upLowIndicator by one. Otherwise we decrease
the indicator variable by one. The evaluation of the term N ′(c′) · (v − p′) can be done with the
VTK method Evaluate() of the class vtkPlane.

After the iteration the indicator variable is either positive or negative. It cannot be equal to
zero, since the cells of the surface mesh are triangles which have an odd number of vertices. In
the positive case, we classify the cell c as a cell on the upper side, otherwise it will be classified
as a cell on the lower side.

The reason why we still need to iterate over all the vertices of a cell is as follows: In an ideal
world, since the segmented mitral valve geometry S′ would be nicely nested inside the volume
mesh, and be completely covered by its surface S as it is the case in the Figure 5a, so we would
not need to iterate over all vertices. However, locally the surface S can have sharp bends, e.g.,
in cases where the volume meshing operator is too coarse, as it is shown in Figure 5b, such that
a cell can have vertices in positive and negative half spaces. Hence, by iterating over all the
vertices of a cell we obtain a more reliable classification, with only few relatively small locally
limited exceptions.

Figure 6 shows the color-coded representation of the up/low cell identification of a surface mesh
that was generated with Algorithm 2.

10



Figure 6: Color-coded up/low cell identification of a surface mesh using Algorithm 2.

Algorithm 2 Upper and lower side (via half spaces)

1: for all cells c in S do

2: upLowIndicator ← 0

3: for all vertices v of c do

4: find a closest point p′ to v in S′

5: find a cell in S′ that contains p′

6: if N ′(c′) · (v − p′) > 0 then

7: upLowIndicator ← upLowIndicator + 1

8: else

9: upLowIndicator ← upLowIndicator − 1

10: end if

11: end for

12: if upLowIndicator > 0 then

13: c is on the upper side

14: else

15: c is on the lower side

16: end if

17: end for

3.2 Derivation of anterior or posterior leaflets (Preprocessing)

In this section, we depict a method to determine, whether a cell on the surface mesh belongs to
the anterior (anterolateral) or posterior (posteromedial) leaflet of the mitral valve.

The segmented mitral valve geometry, which comes from the DKFZ and the Department
of Cardiology of the University Hospital in Heidelberg, is annotated with vertex IDs. These
MITK-produced IDs indicate, whether the vertex belongs to the anterior or posterior leaflet, or
whether it is a sewing point of the surgical suture which fixes the artificial annuloplasty ring
to the natural annulus. In the following algorithm, see Algorithm 3, we use the IDs of the
segmented geometry for a classification of the cells of the surface mesh.
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Algorithm 3 Anterior or posterior leaflet

1: for all cells c in S do

2: antPostIndicator ← 0

3: for all vertices v of c do

4: N ← 1

5: pointNotClassified← true

6: while pointNotClassified do

7: find closest N vertices to v in S′

8: for all closest points p′ do

9: if ID of p′ is ’anterior’ then

10: antPostIndicator ← antPostIndicator + 1

11: pointNotClassified← false

12: end if

13: if ID of p′ is ’posterior’ then

14: antPostIndicator ← antPostIndicator − 1

15: pointNotClassified← false

16: end if

17: end for

18: N ← N + 1

19: end while

20: end for

21: if antPostIndicator > 0 then

22: mark c as anterior

23: else

24: mark c as posterior

25: end if

26: end for

Let c be a cell in S. Similar to the problem of the classification of cells on the upper and lower
side of the mitral valve, we will iterate over the vertices of c and decide for each vertex to which
leaflet it belongs. Then, we mark the cell accordingly, based on the classification of its vertices.
For this purpose, as in Algorithm 2, we introduce an indicator variable antPostIndicator and
initialize it with the value zero. Now, we classify the vertices v of the cell. An intuitive approach
is the following: For any vertex v we find a closest point p′ in S′ and mark v according to the
ID of p′. Indeed, this would work for most points in S, but it can happen that the closest point
we find in S′ is marked as a sewing point for the artificial ring and thus carries no information
about the leaflets. Consequently, we need to find more closest points to v.

This can be done very efficiently using the VTK method FindClosestNPoints(), which
is a member of vtkKdTreePointLocator. Here N is the number of closest points we want
to find in S′ to v. Starting with just one point, we increase N until we find a point that is not a
sewing point. If v is closest to a point on the anterior leaflet we increase the indicator variable
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antPostIndicator by one, otherwise we decrease by one. After the iteration over the vertices
we can mark the cell. It is on the anterior leaflet if the indicator variable is greater than zero,
otherwise it is on the posterior leaflet.

With Algorithm 3, one can of course also classify certain subsets of cells on the surface like,
for example, cells that had been marked with an indicator according to Algorithm 2. Figure 7
shows a corresponding color-coded representation of the anterior/posterior cell identification of
the upper side of a surface mesh that was generated with Algorithm 3.

Figure 7: Color-coded anterior/posterior cell identification of the upper side of a surface

mesh, generated with Algorithm 3.

3.3 Derivation of the Pointwise Dirichlet BCs (Preprocessing)

During MVR, the natural annulus is sutured to a stiff artificial annuloplasty ring at selected
points, see sections 2.1 and 2.2. The points on the annulus and the annuloplasty ring are
denoted by xnatural and ximposed, respectively. Figure 2 (b) shows a draft of the annulus, the
artificial ring and the suture. During this surgical procedure, the specific points on the annulus
are pulled towards the ring.

As shown in Figure 8a, it commonly occurs that folds are formed between the sewing points.
If a fold is too large, it is recommended to suture additional points to the ring, in order to
correct the unintended deformation, which would enormously stiffen the tissue in the subsequent
simulation, see Figure 8b.

This procedure is modeled by imposing Dirichlet boundary conditions on a finite set of
prescribed suture points on the natural annulus. These points are represented by accordingly
marked vertices of S′, given in consecutive order in counter-clock-wise direction around the
annulus, where each of them was assigned a unique ID, see Table 1.

For each suture point x̃inatural in S′, there is a corresponding point xiimposed on the annuloplasty
ring R, which is tagged with the same ID. Given these pairs of distinguished points, for every
x̃inatural, we compute a closest point xinatural on the mitral valve’s surface S and the resulting
displacement vector dui = xiimposed − xinatural, see Figure 9a.
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(a) Fold between two points. (b) Situation after correction.

Figure 8: Draft of the natural annulus and the annuloplasty ring with suture points. The

dotted line indicates the position of the natural annulus before the application of the

corrections.

Table 1: List of annulus point IDs and their corresponding anatomical names and

meaningsa (set around the annulus in clockwise direction).

0 Anterolateral commissure 8 Posteromedial commissure

1 - 3 Control point 9 - 11 Control point

4 Saddle-horn 12 Posterior annulus

5 - 7 Control point 13 - 15 Control point

a List of annulus point IDs as chosen and prescribed by our clinic partners in the DKFZ.

(a) Computation of additional boundary

conditions.

(b) Situation after closest point search.

Figure 9: Draft of the natural annulus and the annuloplasty ring with suture points and

corresponding displacement vectors.

We also take the unintended formation of folds between the prescribed suture points into
account: As shown in Figure 9a, for every pair of consecutive suture points on the surface S and
on the ring R, we compute the midpoints of the line segments connecting them. We call those
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midpoints ”virtual points”, xvirtualnatural and xvirtualimposed, since, in general, they are neither elements of

S nor of R. For the additional suture point xaux, we use a closest point to xvirtualnatural in S with
the corresponding displacement vector duaux = xvirtualimposed − xvirtualnatural, as shown in Figure 9b. The
closest point search can be carried out with the VTK method FindClosestPoint() of the
class vtkKdTreePointLocator. Algorithm 4 summarizes the above explained steps.

Algorithm 4 Pointwise Dirichlet BCs

1: Prescribed points and displacements:

2: for all suture points x̃inatural in S′ do

3: find the corresponding point xiimposed on R

4: find a closest point xinatural on S to x̃inatural

5: compute the displacement vector dui = xiimposed − xinatural
6: end for

7: Auxiliary points:

8: for all pairs of consecutive distinguished points on S and R, (xinatural, x
i+1
natural) and

(xiimposed, x
i+1
imposed) do

9: compute the midpoint xvirtualnatural of the line segment connecting xinatural and xi+1
natural

10: compute the midpoint xvirtualimposed of the line segment connecting xiimposed and xi+1
imposed

11: compute the displacement vector duaux = xvirtualimposed − xvirtualnatural

12: end for

3.4 Derivation of the Pointwise Neumann BCs (Preprocessing)

As described in sections 2.1 and 2.2, we account for the action of the chordae tendinae on the
leaflets by imposing pointwise Neumann BCs. Here, we present a method to distribute the chor-
dae’s attachment points on the lower rim of the leaflets by means of a Farthest-First Traversal
algorithm, see [6]. In the following, we define the lower rim of the leaflets and describe how it is
computed as a subset of cells of S. Afterwards, we depict the Farthest-First Traversal algorithm.

The lower rim of the leaflets can be computed as follows: First, we find the cells on the up-
per and lower side of the cardiac valve’s surface with algorithm 2 in section 3.1. Figure 6 shows
a color-coded representation of this classification of cells. Let C ′ be the set of cells on the lower
side of the surface neighboring a cell on the upper side. Generally, the set of neighbors to a given
cell can be found with the VTK method GetCellNeighbors() from the class vtkPolyData,
where one cell is defined as a neighbor of another cell if it shares a vertex. The set C ′ is depicted
in Figure 10a.

Second, find a cell in C ′ such that one of its vertices has a minimal z-coordinate among
all the vertices of cells in C ′. The lower rim C of the cardiac valve’s surface is the connected
component of cells in C ′ that contains the previously specified cell with minimal z-coordinate,
see Figure 10b.

The connected component can be computed in the following way: Initialize C as the set that
contains the cell with the minimal z-coordinate. Then, recursively add cells to C which are in
C ′ and neighbor a cell in C.
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(a) Upper and lower rim of the leaflets with

irregularities.

(b) Lower rim of the leaflets.

Figure 10: Color-coded representation of the cells on the lower side of the mitral valve’s

surface neighboring a cell on the upper side.

Having computed the lower rim of the mitral valve’s surface, we can now use the Farthest-
First Traversal algorithm to distribute the chordae’s attachment points on the vertices of the
lower rim. The Farthest-First Traversal algorithm, see Algorithm 5, is a greedy algorithm which
computes a 2-approximation to the optimal solution of the k-center clustering problem. This
problem reads as follows:

Given a metric space X, a finite subset S ⊆ X and a positive integer k, find a subset T ⊆ S,
the center set, with #T = k, which is a solution to the problem

min
T⊆S, |T |=k

max
p∈S

d(p, T ).

Algorithm 5 Farthest-First Traversal

1: Choose x ∈ X.

2: T ← {x}
3: while #T < k do

4: Find x ∈ arg maxp∈S d(p, T )

5: T ← T ∪ {x}
6: end while

We use a greedy algorithm, since there exist no methods that solve this optimization problem
while still running in polynomial time. Figure 11 depicts a distribution of 16 points on the lower
rim of the mitral valve’s surface, computed as explained in this subsection, with the hence
combined Algorithm 6.
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Figure 11: Distribution of 16 points on the lower rim of the mitral valve’s surface computed

with the Farthest-First Traversal algorithm.

Algorithm 6 Pointwise Neumann BCs

1: find cells on the upper and lower side of S, see algorithm 2

2: find the set C ′ of cells on the lower side of S neighboring a cell on the upper side

3: find a cell in C ′ such that one of its vertices has a minimal z-coordinate among all the

vertices of cells in C ′

4: the lower rim C of S is the connected component of cells in C ′ that contains the

previously specified cell

5: perform the Farthest-First Traversal algorithm, see algorithm 5, on the set of vertices

of cells in C to distribute the chordae’s attachment points

After executing these preprocessing steps and having produced the corresponding output
data, our HiFlow3-based MVR elasticity simulation (see [14]) is fully defined and set up, such
that we can run the simulation to obtain mitral valve behavior simulation results according to
the given MVR scenarios, cf. Figure 14.

In the subsequent post-processing procedure, i.e., after the MVR elasticity simulation, we
conclude with a stress analysis and visualization step, in order to provide the surgeons with
additional information on the von Mises stress distribution and behavior of the mitral valve
leaflets after the virtual annuloplasty ring implantation. Critically high stress values – occurring
after the implantation of a suboptimal annuloplasty ring – may indicate the yielding of the tissue,
or in worse cases even lead to stenosis, ring dehiscence, or obstruction of the ventricular outflow
tract.

3.5 Von Mises stress evaluation and visualization (Postprocessing)

In this section, we outline the von Mises stress measure, which is commonly used as an indica-
tor for material failure, and depict its computation using VTK methods. A detailed derivation
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of the formula for the von Mises stress would entail a portrayal of hydrostatic and deviatoric
components of stress and strain tensors, Hooke’s Law, and strain energy density, which is not
the aim of this work. Here, we only define terms that are necessary to understand the definition
of the von Mises stress, and refer to detailed online documentation9 .

Let ε and σ denote the infinitesimal strain tensor and the Cauchy stress tensor. By Hooke’s
Law, stress can be written as a function of strain and vice versa:

σ = λ tr(ε) I +2µε, ε =
1

2µ
σ − λ

2µ(3λ+ 2µ)
tr(σ) I,

where λ and µ are Lamé’s parameters. Both tensors, strain and stress, can be decomposed into
a hydrostatic and deviatoric part, where the hydrostatic part is related to the change in volume
and the deviatoric part is related to the change in shape. We define

σhyd =
1

3
tr(σ) I, σdev = σ − σhyd and εhyd =

1

3
tr(ε) I, εdev = ε− εhyd.

From Hooke’s Law, one can derive that deviatoric stress is proportional to deviatoric strain:

σdev = 2µεdev.

The scalar value of the von Mises stress is defined in terms of deviatoric stress:

σvM =

√
3

2
σdev : σdev =

√
3

2
(σdev)ij (σdev)ij .

With the above-mentioned equations, the term σdev can also be interpreted as a function of
the deviatoric strain. We remark that there exist other alternative algebraic equation forms for
the computation of the von Mises stress, which are investigated on. Here, we refer to standard
literature for material sciences and to the above mentioned the webpage on continuum mechan-
ics, only, and go on with the computation of the von Mises stress in the implementation of our
postprocessing operator.

The simulation produces three scalar arrays u0, u1 and u2, which contain the x-, y-, and z-
coordinates of the displacement vectors u for every vertex in the volume mesh V . In order to
visualize the deformed state of the mitral valve, we use the VTK class vtkWarpScalar to
successively add the scalars in the arrays ui to the coordinates of the respective points in V , and
hence obtain the vertex coordinates of the deformed object.

The computation of the von Mises stress entails three steps: First, we use the VTK class
vtkArrayCalculator to compute an array of displacement solution vectors for every ver-
tex in V from the scalar arrays u0, u1 and u2. Then, one can compute the strain tensor with
the class vtkCellDerivatives using the previously generated array of displacement vectors.
Finally, again using the class vtkArrayCalculator, we compute the von Mises stress from
the strain tensor according to the above equation.

Figure 12 shows the results of an exemplary MVR simulation scenario at a stage, where the
valve is half-closed, including the von Mises stress distribution. The corresponding scenario was
defined in the context of the collaborative research center Cognition-Guided Surgery (SFB TRR
125) in a cooperation with the cardiac surgeons at the University Hospital in Heidelberg.

9See comprehensive documentation on the website ContinuumMechanics:

http://www.continuummechanics.org.
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Figure 12: MVR simulation scenario result, obtained with HiFlow3, showing the mitral

valve leaflets before (wireframe) and after (colored) the implantation of an annuloplasty

ring prosthesis. The von Mises stress distribution (in MPa) as computed in our postpro-

cessing operator is projected and color-coded onto the leaflet surface.

Since we not only plan to provide surgeons with the pure simulation of the deformation
behavior of the mitral valve, but also want to visualize the stress distribution in every time step,
we need to apply the von Mises stress evaluation script to the current result of every simulation
time step, too.

We therefore make use of the Python module glob, which basically returns an iterator of
files in a directory using shell pattern matching. We specify the simulation output directory
(where our HiFlow3-based MVR simulation application stores the simulation results in vtu or
pvtu format) in order to have the von Mises stress evaluation script run over all simulation
results one after the other. Using iglob even allows to perform this task in real-time as soon as
new simulation results are available, as the data is not all stored in one buffer or list in memory,
but can be read out one at a time.

3.6 Integration of the operators into the MSML and facilitation of an auto-

mated biomechanical modeling and simulation pipeline for MVR

In a previous publication [15], we presented the Medical Simulation Markup Language (MSML),
and how it simplifies the biomechanical modeling workflow.

In short, the MSML modeling approach aims at constructing patient-specific biomechanical
models (which are suitable for FEM-based simulations) from tomographic data. It seeks to
flexibly describe both the preprocessing workflow leading to the model and the simulation with
the model itself in a generalized way, therein integrating a range of different tools that are used
within the workflow (from segmentation, to meshing, and model setup), cf. Figure 13.
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Figure 13: MSML workflow for biomechanical MVR modeling and simulation.

The foundation of the MSML is the MSMLalphabet, which allows to define and specify a
comprehensive range of parameters (e.g. the object’s material regions, physics model equations,
solid mechanics or fluid dynamics setups, boundary conditions, etc.) as well as operators (e.g.
mesh size calculators, etc.). Subsets of the parameters may then be employed in the MSMLscene
and in the MSMLworkflow to describe the respective object under consideration, the simulation
scenario (including boundary conditions, FE solvers, etc.), and the way how the model and the
simulation shall be set up in a preprocessing workflow, or how the simulation results shall be
processed in a postprocessing workflow. All components of the alphabet are defined by means
of a flexibly extensible hierarchy of XML files.

The different items in the workflow are associated with certain data types and linked by
so-called operators.After completion of all preprocessing steps, so-called export operators or ex-
porters take over the whole set of information that was computed so far, and process it into
physics engine-specific simulation scenario descriptions, which can then be used for executing
the simulation by means of those specific physics engines (e.g. SOFA, Abaqus, FEbio, HiFlow3,
etc.).

Being implemented as a hybrid Python/C++ system, the MSML scheme allows for all high
level functionalities (such as XML-parsing, compatibility checking, and operator calls) to be
performed by the Python part, and for all operators to be executed either as function calls or
as command line tools. Like this, the flexible inclusion of additional external tools (such as
algorithms based on VTK, CGAL, etc.) can easily be guaranteed.

Finally, this setup allows for defining both the MSMLscene and the MSMLworkflow in
MSML XML files, which can be read and processed by the MSML in order to automatically
perform all steps declared, from image to simulation. We refer to the open-source GitHub code
repository10 of the MSML and to the example showcases for more information.

Concluding, the central idea of the MSML is hence, to not only describe the final biome-
chanical simulation, but also the workflow how the biomechanical model is constructed from
tomographic data. This is exactly what we intend with the integration of our MVR operators
and what we describe in the following.

In the current preliminary setup, we took up the above depicted MVR simulation preprocessing

10Online sources of the Medical Simulation Markup Language (MSML): see the GitHub-based source

code repository on https://github.com/CognitionGuidedSurgery/msml.
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and postprocessing operators into the MSML framework, and integrated them for usage with
the HiFlow3 simulation exporter, in order to allow for the automated setup and execution of
HiFlow3-based MVR simulation scenarios.

Therefore, we introduced the operators to the MSML alphabet, such that they can be referred
to by the MSML, and we defined the physical and logical data types of their inputs/outputs, such
that these can be processed in MSML pipelines. All operators-deduced data are transferred into
MSML-internal data structures (such as geometry information, mesh properties, material IDs,
boundary condition specifications, etc.), and hence available for further usage and processing by
the respective physics engine exporters.

In our current implementation, we built up a special mitral exporter, which inherits its gen-
eral structure and features from the HiFlow3 exporter, and includes additional MVR simulation-
specific information, in order to set up specific HiFlow3-based MVR simulation scenarios. For
instance, it accounts for patient-specific mitral valve geometries, for the implantation of the
annuloplasty ring prosthesis via Dirichlet BCs, for the integration of blood pressure profiles via
Neumann BCs, and for upcoming contact between the two leaflets during the cardiac cycle via
Contact BCs.

Currently, these pieces of information are retrieved by the MVR operators and processed via
MSML data structures in order to be handed over to the specific mitral exporter for the creation
of HiFlow3 MVR simulation scene files. We implemented the corresponding interface between
the MSML (and the MSML-based data structures, respectively) and the HiFlow3-based MVR
simulation. Finally, we showed its compatibility by running MSML-produced simulation setups,
cf. Figure 12. This requires the simulation code to, e.g., facilitate time-dependent boundary
conditions, or to integrate geometry information into pressure directions, which cannot yet be
handled by other physics engines such as SOFA or Abaqus.

However, we intend to generalize this setup in some future work, such that not only HiFlow3-
based MVR simulations can be set up and executed, but in a way such that other exporters can
be fed and executed, too. Of course, first of all, this requires those other simulation engines to
be capable of processing the information correctly, which at this stage is not yet the case. We
remark that this is automatically taken care of in the MSML, since, due to the fact that every
exporter holds a tree of so-called compatible nodes, consistency between the MSML description
and the physics engine is ensured via compatibility checking.

Figure 14: Visualization of an example MVR simulation scenario setup, which is derived

by the presented series of MVR preprocessing operators in the MSML.
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In total, the described setup and implementation allows for using the MSML as a middleware
between all steps and tools in the modeling pipeline, see Figure 13. By means of the integration
of our MVR operators (and of their respective inputs/outputs) into the MSML, we enable the
execution of a fully-automated, holistic setup of patient-individual MVR simulation scenarios.
Furthermore, as opposed to just simply writing a single script to combine the operators in a
fixed workflow, we allow anyone to use our developments via a generalistic and easily accessible
interface, with respect to which one does not need to care about inputs/outputs, file formats,
shared operator and pipeline activities, and compatibility of data structures anymore. This is of
great value not only for surgeons and clinical staff due to easy and automated usage in surgery
assistance systems, but also for developers, as flexibility is maintained throughout the complete
workflow and complex tools that have once been integrated can be accessed and used via this
general interface.

Figure 14 visualizes an example for an outcome of the MSML-based MVR preprocessing
pipeline, representing the complete set of boundary conditions and geometry features of our
biomechanical MVR model. The underlying geometry data were produced in both HiFlow3-
readable format and in VTK-based file formats, such that the combined set is compatible with
the software MITK and the special CGS Workbench release version, so our clinic partners
can directly use and visualize it in the context of their surgery assistance environments and
devices. Like this, we guarantee for maximal transparency and understandability of our model
and simulation setups for the operating surgeons. The corresponding features for the MSML
workflow integration in MITK are implemented as part of the MSML CLI developments.

Finally, we conclude with the sample setup of an MSML XML file, which can be used for
processing ultrasound-imaging-based segmentation data of the mitral valve and optimally placed
annuloplasty ring prostheses into patient-individual MVR simulation scenarios, cf. Listing 1.

Listing 1: MSML description for MVR preprocessing/modeling/simulation.

<msml:msml xmlns:msml="http://sfb125.de/msml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sfb125.de/msml">

<variables>

<var name="input_mv_surf_mesh"

value="PatientID_XXX/Segmentations/MitralValve_annotated_ts0.vtp"

logical="TriangularSurface" physical="vtp" role="input" />

<var name="input_mv_ring"

value="PatientID_XXX/AnnuloplastyRings/OptimallyPlaced/PhysioII_size34.vtp"

logical="Object" physical="vtp" role="input" />

</variables>

<scene>

<object id="mitralvalve">

<mesh>

<linearTet id="mvVolMesh"

meshId="\${anHf3matIDsProducer.inpMeshFile}"/>

</mesh>

<material>

<region id="mvMaterial"

indices="\${aVtuToHf3inpIncMVmatIDsProducer.tet_material}">
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<materialID matID="10"/>

<linearElasticMaterial youngModulus="2350" poissonRatio="0.488"/>

<mass name="stdMass" massDensity="1.000"/>

</region>

</material>

<constraints>

<constraint name="bodyConstraint" forStep="\${MVR_simulation}">

<mvGeometryConstraint mvGeometry="\${anMvGeometryAnalyzer}"/>

<displacedPointsConstraint points="\${aBCdataForMVRsimProducer.points}"

displacements="\${aBCdataForMVRsimProducer.displacements}"/>

<surfacePressureConstraint indices="\${anHf3matIDsProducer.fixedSet}"

pressure="default_cardiac_pressure"/>

<pointwiseForceConstraint points="\${aBCdataForMVRsimExtender.points}"

forces="\${aBCdataForMVRsimExtender.forces}"/>

</constraint>

</constraints>

</object>

</scene>

<workflow>

<SurfaceToVoxelDataOperator id="aSurfaceToVoxelsOperator"

surfaceMesh="\${input_mv_surf_mesh}"

targetImageFilename="mvImage.vti"

accuracy_level="7" smoothing="1"/>

<vtkMarchingCube id="aVoxelToContourOperator" image="\${aSurfaceToVoxelsOperator}"

outFilename="mvVolumeSurface.vtk" isoValue="90"/>

<CGALMeshVolumeFromSurface id="aVolumeMesher"

meshFilename="mvVolumeMesh3D_CGAL.vtk"

surfaceMesh="\${aVoxelToContourOperator}"

preserveFeatures="false" facetAngle="20"

facetSize="0.5" facetDistance="0.4" cellSize="0.5"/>

<vtuToHf3inpIncMVmatIDsProducer id="anHf3matIDsProducer"

volume="\${aVolumeMesher}"

surface="\${input_mv_surf_mesh}"/>

<mvGeometryAnalytics id="anMvGeometryAnalyzer"

surface="\${aVolumeMesher}" ring="\${input_mv_ring}"/>

<mvrBCdataProducer id="aBCdataForMVRsimProducer"

volumeMesh="\${aVolumeMesher}" surfaceMesh="\${input_mv_surf_mesh}"

ring="\${input_mv_ring}"/>

<mvrBCdataExtender id="aBCdataForMVRsimExtender"

volumeMesh="\${aVolumeMesher}" surfaceMesh="\${input_mv_surf_mesh}"/>

</workflow>

<environment>

<solver linearSolver="CG" preconditioner="SGAUSS_SEIDEL"

hf3_chanceOfContactBoolean="1"
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processingUnit="CPU" numParallelProcessesOnCPU="16"

timeIntegration="Newmark"

dampingRayleighRatioMass="0.5" dampingRayleighRatioStiffness="0.5"/>

<simulation>

<step name="MVR_simulation" dt="0.05" iterations="300"

visualizeSimResultsEvery1inXtimesteps="5" />

</simulation>

</environment>

</msml:msml>

4 Summary, Conclusion and Outlook

In our work, we presented a comprehensive set of pre- and post-processing operators for biome-
chanical simulation scenarios of Mitral Valve Reconstruction operations in surgery assistance.
The operators are integrated into the Medical Simulation Markup Language (MSML) and thus
allow for generalistic usage in the complex biomechanical modeling workflow.

We depicted the conceptual development and algorithmic implementation of an operator
pipeline: from ultrasound-imaging-derived segmentations, via FE mesh generation and specifica-
tion, to MVR simulation scenarios. It has been shown how this pipeline allows for the automated
setup of patient-individual, situation-adaptive and surgical expert knowledge-based simulation
scenarios for MVR operation support. On the one hand, the pipeline produces patient-individual
simulation scenario setups through processing patient-specific data (ultrasound images and med-
ical parameters). On the other hand, as it employs and integrates into its MVR ring implantation
scenarios the results of an MVR guidelines-based deductive system, it is situation-adaptive and
also considers surgical expert knowledge. The resulting simulation scenario setups are specifically
compatible for subsequent usage with our HiFlow3-based MVR simulation application. Finaliz-
ing the biomechanical modeling workflow, the von Mises stress analytics postprocessing operator
can be applied on the simulation results and hence allow for additional surgery support through
visualization of critical stress distributions on the valve leaflets caused by surgical manipulation.

Through our developments, we expect to forster the applicability of biomechanical MVR simula-
tions in simulation-supported surgery assistance systems, since we not only allow for the consid-
eration of patient-specific parameters and surgical expert knowledge, but also fully integrated the
depicted analytics and setup operators into the biomechanical modeling and simulation workflow
framework of the MSML.

This enables a smooth execution of patient-individual, situation-adaptive and expert knowledge-
based FEM soft tissue simulations in order to obtain valuable insights and additional informa-
tion for cardiac diagnosis and therapy. We have shown the applicability by performing sample
MVR simulation scenarios including von Mises stress visualization postprocessing on the basis
of MSML-produced scenario setups.

Future work may include a more generalized integration of our operators and of their result-
ing data structure outputs within the MSML framework, e.g., in order to allow for a more
generic use with various simulation engines. Also, the model itself can of course be further
specified and optimized, considering, e.g., secondary and tertiary chordae, or flow profiles in the
ventricle, which have strong influence on the pressure distributions on the leaflet surfaces during
the cardiac cycle and hence, on the closing properties of the valve.
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