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Block-asynchronous and Jacobi smoothers for a multigrid solver

on GPU-accelerated HPC clusters

Martin Wlotzka, Vincent Heuveline

Abstract

We investigate CPU- and GPU-based damped block-asynchronous iteration as an alternative for

the damped CPU-based Jacobi smoother in a geometric multigrid linear solver. We depict the imple-

mentation for distributed memory systems as well as for CUDA-capable accelerators. Our numerical

experiments are based on the linear problem arising from a finite element discretization of the Poisson

equation. Runtime and energy measurements are presented for a dual-CPU test system equipped with

a GPU. We find that the smoothing properties of the block-asynchronous smoothers are diminished

by their asynchronous nature. When using a domain decomposition, damped synchronized Jacobi

iteration as smoother with CPU-only computation on multiple host processes yields better perfor-

mance and lower energy consumption than the block-asynchronous variants for both CPU and GPU

execution. However, for a single host process without domain decomposition, the GPU-accelerated

block-asynchronous method can compensate the diminished smoothing property and outperforms the

CPU-only execution both in terms of runtime and energy consumption.

1 Introduction

Multigrid solvers belong to the most efficient numerical methods for solving symmetric positive definite
linear systems. The computational complexity is O(n) for sparse systems with n unknowns. The efficiency
of a multigrid method strongly depends on the smoothing method employed. The role of the smoother
is to remove high frequency error contributions from the solution. Classical relaxation schemes such as
Jacobi or Gauss-Seidel iteration and their damped variants are often used as smoothers. In the context of
high-performance computing (HPC), scalability of all building blocks of the multigrid solver is crucial for
good parallel performance. At the same time, the smoothing properties must be maintained to sustain
the efficiency.
In this work, we briefly present our geometric multigrid solver which is parallelized for distributed memory
HPC clusters. The multigrid framework is seamlessly integrated in the general purpose parallel finite
element package HiFlow3 [4]. The main part of this work is dedicated to an investigation of the usefulness
of a damped block-asynchronous multigrid smoother as opposed to a classical damped Jacobi smoother
on a GPU-accelerated distributed memory host system. Asynchronous methods have the potential of
exploiting parallel hardware architectures such as multi-core CPUs, many-core accalerators or independent
host processes more efficiently thanks to their relaxed synchronization requirements. By conducting
a series of numerical experiments, we address the question whether these methods still show suitable
smoothing properties in spite of their asynchronous nature. The tests are based on the finite element
solution of the 2D Poisson problem, a prototypical second order elliptic partial differential equation.

1.1 Related work and paper contribution

The idea of “chaotic relaxation” was proposed by Rosenfeld [17], who used “parallel-processor computing
systems” to simulate the distribution of current in an electrical network. Chazan and Miranker in 1969 [7]
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were the first to study this type of methods on a rigorous theoretical basis. They established a charater-
ization of the chaotic relaxation schemes for the solution of symmetric positive definite linear problems
and gave conditions for convergence, as well as examples for divergence. Meanwhile, the denomination
“asynchronous iteration” has been established in the literature for this type of methods. An overview of
asynchronous schemes and convergence theory can be found in [10]. Asynchronous iteration has success-
fully been used in the context of high-performance computing, see e.g. [8] and references therein.
For GPU-accelerated systems, works reported in [2] and [3] investigate numerical convergence and per-
formance of block-asynchronous iteration, both as plain solver and in combination with mixed precision
iterative refinement. The usage of block-asynchronous smoothers in the context of multigrid methods
has been investigated in [1]. However, these works are restricted to single node configurations and the
host CPUs are not taken into account for block-asynchronous computations. We extend this setup to
the case of distributed memory machines with several host processes sharing a device. Additionally, we
compare to asynchronous CPU-only smoothers which also benefit with respect to parallel performance
from relaxed synchronization requirements. Finally, we assess runtime performance and conduct actual
energy measurements to investigate the energy consumption of the methods.

1.2 Paper organization

This paper is structured in the following way: We outline the experimental setup describing the test
problem and the numerical methods in Section 2. In particular, we present the main features of our
geometric multigrid implementation and the smoothers using MPI [13] for distributed memory systems
and CUDA [15] for graphics processing units (GPUs). Section 3 is devoted to the discussion of the results,
and Section 4 concludes the work.

2 Experimental setup

In this work, we investigate the performance and energy consumption of a parallel geometric multigrid
linear solver using the damped Jacobi method as well as damped asynchronous iteration schemes as
smoothers. Our test problem is the 2D Poisson equation discretized by Lagrange finite elements. In this
section, we describe the mathematical background of the methods and the test problem.

2.1 Linear problem

In our experiments, we use the linear system of equations arising from a finite element discretization of the
two-dimensional Poisson equation. This equation can be used to model the equilibrium heat distribution
in a physical domain Ω ⊂ R2 with given environmental temperature and heat sources or sinks. The
problem definition reads

−∆u = f in Ω ,

u = g on ∂ΩD ,

∇u · n = 0 on ∂ΩN ,

where f represents any heat sources or sinks inside the domain and g is the environmental temperature
given through the Dirichlet condition on the boundary part ∂ΩD. Thermal insulation is modeled by the
homogeneous Neumann boundary condition on the boundary part ∂ΩN. We use Lagrange finite elements
to discretize the partial differential equation on a mesh Ωh leading to the linear system Ahxh = bh with

(Ah)ij =

∫
Ω

∇(φh)j · ∇(φh)i dx

bi =

∫
Ω

f(φh)i dx , u =

n∑
i=1

xi(φh)i ,

where the (φh)i (i = 1, ..., n) denote the finite element basis functions on Ωh. The resulting system
matrix Ah is symmetric and positive definite [9]. It is also called stiffness matrix and bh the load vector



Algorithm 1 Basic linear iteration scheme

1: Set initial solution x0, tolerance ε > 0, n = 0.

2: Compute the residual r0 = b−Ax0.

3: while ‖rn‖ > ε do

4: Solve Ae = rn approximately: ê = Brn

with B ≈ A−1.

5: Update xn+1 = xn + ê.

6: Compute the residual rn+1 = b−Axn+1.

7: n← n+ 1

8: end while

for historical reasons, when this type of discretization was applied to elasticity problems. The matrix Ah

is sparse due to the small support of the Lagrange finite element basis functions embracing only mesh
cells which are adjacent to the corresponding Lagrange point.
For our experiments, we choose the unit square Ω = (0, 1)× (0, 1), ∂ΩD to be the left and right side and
∂ΩN to be the top and bottom side of Ω. The source term is defined as f(x, y) = 200x(1 − x)y(1 − y),
and the boundary value is

g(x, y) =

{
1 + 3y(1.5− y) if x = 0 ,

(y + 0.5)(y − 1) if x = 1 .

Figure 1 shows a visualisation of the solution to this Poisson problem.

Figure 1: Visualization of a finite element solution for the Poisson equation.

2.2 Geometric multigrid linear solver

Our geometric multigrid linear solver belongs to a group of algorithms that can be described in a very
general framework of linear iterative schemes [20]. In an abstract setup, the goal is to solve a linear system

Ax = b ,

where A is a symmetric positive definite operator on a finite-dimensional vector space V . A linear
iterative scheme which uses an old approximation xn to compute a new approximation xn+1 can often be
characterized by the steps in Algorithm 1. This scheme is also called iterative refinement method. The
algorithm grants full flexibility with respect to the solution of the error equation in step 4. The idea of
multilevel methods is to compute the error correction in a space V̂ of smaller dimension dim(V̂ ) < dim(V )



[11]. In the context of finite element discretizations of partial differential equations, the spaces V and
V̂ may result from discretizations on a fine and a coarse grid, respectively. In this case, the scheme
is also called geometric multigrid method to emphasize its construction from the discretization of the
problem on different grids. A simple way to contruct the spaces is by uniform refinement of a coarse grid
Ω2h yielding the fine grid Ωh and corresponding spaces V̂ = V2h and V = Vh. The transition between
the two grid levels h and 2h is defined by a prolongation and a restriction operator. The prolongation
operator Ph

2h : V2h → Vh maps a vector from the coarse grid to the fine grid. In our method, we use
linear interpolation for the prolongation. The restriction operator Rh

2h : Vh → V2h maps a vector from
the fine grid to the coarse grid. We choose the restriction to be the transpose of the interpolation. A
crucial ingredient of multigrid methods is the smoother. Its purpose is to remove high frequency error
contributions on the fine grid, so that the smoothed error can be represented on the coarse grid. Relaxation
schemes such as Jacobi or Gauss-Seidel iteration and their damped variants are often used as smoothers.
For efficient smoothing methods, often a small number µ ≤ 3 of smoother iterations is sufficient to damp
out the high frequencies. In this work, we investigate the applicability of asynchronous iteration schemes
as smoothers and compare them to classical synchronized Jacobi-type iteration.
Note that Algorithm 1 can be applied recursively. For our geometric multigrid method, this amounts to
choosing a number L of levels and a coarsest grid parameter H > 0, yielding a grid hierarchy

{
Ωh |h =

H/2l−1 , l = 1, 2, ..., L
}

and corresponding finite element spaces Vh. The operator A and the vectors x and
b from the abstract scheme have to be replaced by their analogons Ah, xh and bh on the corresponding
grid level. One solution update cycle of the geometric multigrid method is stated in Algorithm 2. It
is characterized by the number γ of recursive cycle calls. The choices γ = 1 and γ = 2 lead to the V-
and W-cycle, respectively, depicted in Fig. 2. The term Sh(Ah, xh, bh, µ) indicates the execution of µ
smoothing iterations on the coresponding grid level. On the coarsest grid, the error correction equation
is solved with high accuracy. In our setup, we use the Conjugate Gradient [18] method as coarse grid
solver.

Algorithm 2 Cycle(Ah, xh, bh, γ, µ)

1: if h = H then

2: xh ←− A−1
h bh (coarse grid solution)

3: else

4: xh ←− Sh(Ah, xh, bh, µ) (pre-smoothing)

5: rh ←− bh −Ahxh (residual computation)

6: b2h ←− Rh
2h(rh) (restriction)

7: x2h ←− 0

8: for k = 1, 2, ..., γ do

9: Cycle(A2h, x2h, b2h, γ, µ) (recursion)

10: end for

11: ch ←− Ph
2h(x2h) (prolongation)

12: xh ←− xh + ch (correction)

13: xh ←− Sh(Ah, xh, bh, µ) (post-smoothing)

14: end if

The number of smoother iterations executed on a certain level l withing one cycle is given as

µ(γ, l) = 2µγl−1 (l < L) (1)

when counting from the finest level l = 1 to the coarsest level l = L. Note that the smoother is not active
on the coarsest grid itself.



  

Figure 2: Visulaization of V- and W-cycle on four grids. Small dots indicate smoothing, larger

dots indicate coarse grid solving.

2.3 Damped Jacobi and block-asynchronous iteration smoothers

The goal of this work is to investigate the applicability of parallel asynchronous iteration schemes for
smoothing as an alternative to synchronized methods like the Jacobi iteration. The asynchronous iteration
methods considered in this work can be derived from the classical Jacobi relaxation method [3]. In the
context of multigrid methods, often the damped variants of the relaxation schemes are used, since they
show better smoothing properties in many cases [21]. Assuming the diagonal part D of the system matrix
A ∈ Rn×n to be regular, the damped Jacobi iteration with damping parameter ω > 0 reads [12]

xk+1 = xk + ωD−1
[
b−Axk

]
= B(ω)xk + d(ω)

(k = 0, 1, ...) , (2)

where B(ω) = I − ωD−1A is the iteration matrix and d(ω) = ωD−1b.
The parallelization of this method is straightforward. Each compute unit, may it be a process in a
distributed system, a thread on an accelerator device, or a hybrid form of the aforementioned, may
compute a part of the new iteration vector xk+1. More precisely, let I ⊂ {1, ..., n} be the index set of all
components of the iteration vector which are computed by one such compute unit. The componentwise
form of the damped Jacobi iteration for that part of the vector reads

i ∈ I : xk+1
i = xk +

ω

aii

[
bi −

n∑
j=1

aijx
k
j

]
.

Note that for computing its part of the new iterate xk+1, any compute unit potentially uses components
of the preceding iterate xk which belong to other compute units. This requires a synchronization of the
compute units after each iteration to make sure that all needed values are updated from the last iteration.
The idea of asynchronous iteration is to overcome the synchronization requirements. On the theoretical
level, this is accomplished by introducing a shift function s and an update function u in the iteration:

xk+1
i =

{
xki + ω

aii

[
bi −

∑n
j=1 aijx

k−s(j)
j

]
if i = u(k)

xki if i 6= u(k)

The shift function allows to use not only values from the last iteration, but also older or newer values.
The update function chooses one component at a time to be updated, leaving the other components
unchanged [1]. A sufficient condition for convergence is uniform boundedness of s, and u must take each
value in {1, ..., n} infinitely often, and ρ(|B(ω)|) < 1 [7].
A natural modification of the basic asynchronous scheme is the aggregation of components into blocks [5].



Let P be the number of blocks, and Ip ⊂ {1, ..., n} be the index set of all components belonging to block
p ∈ {1, ..., P}. The block-asynchronous iteration reads

i ∈ Ip : xk+1
i = xki +

ω

aii

[
bi −

∑
j /∈Ip

aijx
k−s(k,j)
j −

∑
j∈Ip

aijx
k
j

]
.

This scheme is synchronized only with respect to the vector components within each block. The block
scheme implies a decomposition of the systems matrix A into diagonal and offdiagonal parts

Dp =
(
aii
)
i∈Ip

, Adiag
p =

(
aij
)
i,j∈Ip

, Aoffdiag
p =

(
aij
)
i∈Ip,j /∈Ip

and a decomposition of the vectors x and b into local parts

xlocal
p =

(
xi
)
i∈Ip

, blocal
p =

(
bi
)
i∈Ip

,

xnon-local
p =

(
xj
)
j /∈Ip,∃i∈Ip : aij 6=0

.

Such block decomposition is sketched for A and x in Figure 3. The update step for any block l then reads

xlocal
p ← xlocal

p + ωD−1
l

[
blocal
p −Adiag

p xlocal
p −Aoffdiag

l xnon-local
p

]
.

  

 

Figure 3: Decomposition of the system matrix A and solution vector x into blocks.

The block-asynchronous scheme can be extended by performing multiple iterations on the local block
before updating the values in the non-local vector part. We denote the resulting algorithm as damped
async-(mouter, minner) to indicate mouter outer iterations with non-local vector updates and minner inner
asynchronous steps for each outer iteration. Obviously, each block can be mapped to one compute unit,
resulting in Algorithm 3. In terms of the smoother denomination Sh(Ah, xh, bh, µ) in Algorithm 2, the
number of smoothing iterations for the block-asynchronous method is µ = mouter ×minner. Accordingly,
we indicate by damped Jacobi-(µ) the use of µ synchronous damped Jacobi iterations as defined in Eq.
(2).

2.4 Implementation

Our implementation spans two levels of parallelism. It supports multi-node distributed memory systems
where the nodes are connected by a network. Communication between the nodes is done by data transfer
over the network using MPI [13]. On the node level, it supports CUDA-capable devices [15].
The implementation is integrated in the HiFlow3 package [4]. It uses a decomposition of the computational
domain into subdomains and corresponding MPI-parallelized matrix and vector data structures. The



Algorithm 3 damped async-(mouter, minner)

1: for kouter = 1, 2, ...,mouter do

2: Update non-local vector parts with corresponding values from other blocks.

3: for all blocks p = 1, ..., P in parallel do

4: for kinner = 1, 2, ...,minner do

5:

xlocal
p ← xlocal

p + ωD−1
p

[
blocal
p −Adiag

p xlocal
p

−Aoffdiag
p xnon-local

p

]
6: end for

7: end for

8: end for

matrix and the vectors are distributed among the MPI processes, thus defining the block decomposition.
The communication pattern is derived from the matrix structure and avoids any unnecessary data transfer.
Only vector components corresponding to non-zero entries in the offdiagonal matrix blocks of other MPI
processes are transferred.
We use matrix-based prolongation and restriction operators which exploit the MPI-parallelized data
structures, as well as the coarse grid CG solver. For the smoother, the parallelism of the local block
updates in Algorithm 3 corresponding to steps 3-7 is achieved by concurrency of the MPI processes. All
computations of the smoother are either executed on the host CPUs, or on the accelerator devices. The
update step 2 implies MPI communication and, if the CUDA version is used, data transfer between host
and device. One or multiple MPI processes may be scheduled onto each node. Within each node, the MPI
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Figure 4: Supported configurations of MPI process scheduling among compute nodes and GPU

usage.

processes can use multiple GPUs. The actual utilization may be configured depending on the number
of MPI processes and on the number of available devices. If only one MPI process is scheduled onto a
node, this process may use all available devices on that node, as sketched in the two left configurations
in Figure 4. In case of multi-GPU usage of a single MPI process, the matrix and vector blocks of this
process are further split into sub-blocks as depicted in Figure 5. However, if multiple MPI processes are
scheduled onto the same node, GPU utilization must be split such that each process uses only one of the
available devices, see the two right configurations in Figure 4. This limitation is imposed by the Nvidia
multi-process service (MPS) [16], which is necessary to maintain the HyperQ feature of Kepler GPUs [14].
A practical way for preparing the host system to meet this technical requirement is described in [19].
Our geometric multigrid solver is implemented in C++ for execution on CPUs, including the damped



Jacobi and block-asynchronous iteration smoothers. In addition, there is an alternative implementation
of the block-asynchronous iteration smoother in CUDA for execution on accelerators.

  

Figure 5: Sub-block decomposition in case of multi-GPU usage by a single MPI process.

2.5 Parameter definitions

The parameter definitions for our numerical experiments are detailed in Table 1.

Table 1: Parameter definitions.

finite elements Lagrange Q2

finest grid l = 1 1,050,625 unknowns

l = 2 263,169 unknowns

l = 3 66,049 unknowns

coarsest grid l = 4 16,641 unknowns

fine grid residual tolerance ε = 10−12

coarse grid CG tolerance δ = 10−13

cycle type W-cycle (γ = 2)

damping w = 0.5

2.6 Hardware, build system, and measurement system

Our test system consisted of one compute node equipped with 2 x Intel Xeon E-4650, 512 GByte DDR3
main memory and an Nvidia Tesla K40. We used GCC compiler version 4.8.2, OpenMPI version 1.6.5,
CUDA version 6.5.12, and NVIDIA device driver version 340.65.
For power measurement, we used the ZES Zimmer Electronic Systems LMG450 external power meter.
The sensors were attached to the input lines of the power supply units of the node. Thus, we measured
the total power consumption of the whole node. We used the maximum possible sampling rate of 20 Hz of
the LMG450 power meter. The measurement was controlled using the pmlib tool [6]. We instrumented
the solver code using the pmlib client API to measure exactly that portion of the overall program which
constitutes the solution process. This excluded all initialization overhad from the measurements. The
pmlib server ran on a separate machine to avoid a perturbation of the system under investigation. The
setup is shown in Figure 6.
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Figure 6: Measurement setup using an external power meter controlled by the pmlib tool.

3 Results

We carried out three series of tests for our geometric multigrid solver with different smoother methods:

1. CPU damped Jacobi-(3) Geometric multigrid solver using a damped synchronous Jacobi smoother
which runs on the host CPUs, 3 smoothing steps.

2. CPU damped async-(3,5) Geometric multigrid solver using a damped block-asynchronous iteration
smoother which runs on the host CPUs, 3 outer smoothing steps with non-local vector updates, and
5 asynchronous inner iterations for each outer step.

3. GPU damped async-(3,5) Geometric multigrid solver using a damped block-asynchronous iteration
smoother which runs on the GPU, 3 outer smoothing steps with non-local vector updates, and 5
asynchronous inner iterations for each outer step.

We defined these test series to evaluate the effect on performance and energy consumption of using an
asynchronous iteration scheme in contrast to the synchronous damped Jacobi smoother. In addition,
our goal is to investigate the effect of executing the asynchronous smoother on accelerators instead of
CPU-only computations. For each of the three test series, we executed the computation with varying
number of MPI processes p = 1, 2, 4, 8, 16. We repeated all experiments five times and report average
results in Table 2. Time and energy are given in seconds and Watt-seconds, respectively, rounded to
three decimals. In the last three columns of the table, we report the number of W-cycles needed to reach
the desired accuracy, the accumulated number of coarse grid CG iterations and the accumulated number
of smoothing iterations. According to Eq. (1), the accumulated number of smoother iterations m is
determined as

m = (no. W-cycles)×
3∑

l=1

µ(2, l) .

For the asynchronous smoother methods, the accumulated number of coarse grid CG iterations represents
the average from the five repetitions, rounded to the next integer. In addition, we report time-to-solution
and number of CG iterations for a plain CG solver on the finest grid in the lower block of the table.



Table 2: Measurement results.

method p time [s] energy [Ws] cyc. CG iter. smoother

CPU damped 1 6.597 3,051.213 11 2,523 462

Jacobi-(3) 2 3.543 1,779.145 11 2,523 462

4 1.868 1,040.641 11 2,523 462

8 1.035 629.727 11 2,523 462

16 0.706 470.709 11 2,523 462

CPU damped 1 6.898 3,106.624 4 1,421 840

async-(3,5) 2 6.386 3,152.513 7 2,877 1,470

4 3.093 1,792.762 7 3,014 1,470

8 1.745 1,132.060 7 3,078 1,470

16 1.223 863.091 7 3,187 1,470

GPU damped 1 4.845 2,465.331 7 2,872 1,470

async-(3,5) 2 4.121 2,264.939 7 3,165 1,470

4 3.325 1,961.846 7 3,229 1,470

8 2.840 1,781.422 7 3,264 1,470

16 2.669 1,771.580 7 3,319 1,470

plain CG 1 46.113 1,620

on CPU 2 23.712 1,620

4 13.003 1,620

8 7.074 1,620

16 5.283 1,620

The test series CPU damped Jacobi-(3) yielded a number of 11 W-cycles with 462 accumulated
smoother iterations and 2,523 accumulated coarse grid CG iterations. As expected, these numbers were
constant among all parallel configurations, since the smoother method used in this test series is syn-
chronous. The runs showed a reduction in runtime from 6.597 seconds to 0.706 seconds for p ranging
from 1 to 16, see also Fig. 7. However, speedups were clearly inferior than theoretical linear speedup.
The reason lies in the smaller problem sizes of the coarser grids in the hierarchy. Since the majority
of the overall number of smoother iterations is executed on coarser grids, and since all CG iterations
are performed on the coarsest grid, the poorer parallel efficiency for smaller problem sizes affects the
overall performance. Nevertheless, comparing with the runtimes from the lower block on the table, the
performance of our geometric multigrid solver is by far superior over the plain fine grid CG solver. The
test series CPU damped async-(3,5) contains the special case p = 1. In this case, the smoother method is

Figure 7: Time to solution in seconds. Figure 8: Energy to solution in Watt-seconds.



Figure 9: Accumulated number of smoothing

iterations.

Figure 10: Accumulated number of conjugate

gradient iterations.

actually equivalent to a synchronous damped Jacobi-(15) smoother, since the whole problem resides on a
single process and no asynchronism is present. This resulted in a much smaller number of 4 W-cycles since
the smoother is doing five times the number of iterations per cycle compared to CPU damped Jacobi-(3).
In total, the accumulated number of smoother iterations was 840, and the accumulated number of coarse
grid CG iterations was 1,421. Although this meant a decrease of CG iterations by 1,102 while the increase
of smoother iterations was only 378, the time-to-solution of 6.898 seconds was similar to the run with
p = 1 from CPU damped Jacobi-(3). This is due to the fact that the smoother is executed on the grid
levels l = 1, 2, 3 where the problem size is a factor 44−l larger than on the coarsest grid, where the CG
iterations were saved.
In the other cases of test series CPU damped async-(3,5) with p = 2, 4, 8, 16, the introduction of asynchro-
nism diminished the smoothing ability of the smoother method. This is reflected by an increased number
of 7 W-cycles with 1,470 accumulated smoother iterations and an increased number of accumulated coarse
grid CG iterations between 2,877 and 3,187. Accordingly, the runtimes were larger than in the test series
CPU damped Jacobi-(3).
All runs from the GPU damped async-(3,5) test series yielded 7 W-cycles with 1,470 accumulated smoother
iterations, which is the same as for CPU damped async-(3,5) with p ≥ 2. This is clearly due to the asyn-
chronism in the smoother method. Also for p = 1, the execution of the smoother on the device has a
block-asynchronous nature, since the threads on the GPU are only synchronized with respect to their
CUDA thread block. Analogously, the accumulated number of coarse grid CG iterations was on a similar
level as for the asynchronous CPU-only test runs, namely ranging from 2,872 for p = 1 to 3,319 for p = 16.
The GPU damped async-(3,5) run with p = 1 showed the best performance among all three test series
for the single MPI process configuration. The execution of the block-asynchronous smoother on the GPU
with 4.845 seconds time-to-solution rendered a speedup factor of ≈ 1.36 over CPU-only computation.
However, the GPU-accelerated runs showed only small speedup when using more MPI processes. This is
due to the fact that the GPU always carries out the total smoother computations of all MPI processes,
such that the total problem size on the GPU is constant for all p. Also, GPU-usage imposes an overhead
for data transfer between host and device. Only the grid transfer operators and the coarse grid CG solver
can benefit from a greater number of MPI processes. As a consequence, in all the cases p = 2, 4, 8, 16 the
CPU damped Jacobi-(3) runs showed the best performance.
The energy consumption, plotted in Fig. 10, was strongly correlated to the runtimes. Also here, the
usage of the GPU-accelerated asynchronous smoother method yielded the lowest energy consumption for
the p = 1 case among all three test series, while for p ≥ 2 usage of the synchronous CPU-based smoother
consumed least energy.

4 Conclusion

We investigated a geometric multigrid linear solver using synchronous and asynchronous variants of a
damped Jacobi smoother. We introduced the mathematical background of the multigrid solver and of the
smoother methods, which were derived from the classical Jacobi method. We presented our implementa-
tion of these methods with support for distributed memory systems by means of an MPI parallelization, as
well as support of CUDA-capable devices. We ran three series of tests on a compute node equipped with



four Intel Xeon E-4650 CPUs and an Nvidia Tesla K40 GPU. We designed the tests to assess the effect
of introducing asynchronism in the smoother method for parallel execution in contrast to synchronized
methods, and to assess the effect of using accelerators instead of CPU-only computation. We measured
the performance in terms of runtime, and we used an external high-precision power meter to measure the
energy consumption.
We found that asynchronism generally diminishes the smoothing ability of the smoother method. All test
runs with block-asynchronous smoother needed substantially more multigrid cycles and thus smoother
iterations than their synchronous pendant to reach the same final accuracy. Using smaller local blocks,
and therefore increasing asynchronism through the independent local block updates, further reduces the
smoothing effect and results in an increased number of coarse grid CG solver iterations. In all but one
cases, this drawback could not be compensated by the reduced synchronization requirements in parallel
execution. Only the single host process configuration could benefit from an asynchronous smoother when
executing it on the GPU.
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