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A Multilevel Domain Decomposition approach for solving time

constrained Optimal Power Flow problems

Philipp Gerstner, Vincent Heuveline, Michael Schick

September 14, 2015

Abstract

Solving Time Constrained Optimal Power Flow problems (TCOPF) is a major task for determining

optimal extensions of a given power grid. When employing any gradient based optimization algorithm

such as Interior Point Method or Sequential Quadratic Programming for TCOPF, the main computa-

tional effort lies in the solution of large and coupled linear systems. Even for medium-sized electrical

networks and time periods in the range of a few days, these systems can contain several millions of

equations. The corresponding matrix is block tri-diagonal with non-diagonal blocks corresponding to

intertemporal couplings. In our work, we exploit this fact by using Schwarz preconditioning techniques

in combination with iterative Krylov subspace methods such as GMRES for solving linear systems in

parallel. We propose a way of applying these domain decomposition methods in context of TCOPF

problems and present numerical experiments that illustrate their behaviour on two benchmark prob-

lems.

1 Introduction

In many countries the energy sector continues to undergo substantial changes. For instance, the expansion
of decentralized renewable energy sources requires to extend existing transmission grids which have been
designed for centralized and controllable power production in conventional power plants. Determining
such an optimal grid extension leads to a large-scale mixed-integer optimization problem and includes
finding optimal operating states for given power grids over a given time period.

The problem of finding an optimal operating state over a specific time period is known as dynamic
Optimal Power Flow or time constrained Optimal Power Flow (TCOPF) [20]. Since TCOPF itself is
a large-scale nonlinear optimization problem, solving it on a parallel computer architecture is of crucial
importance.

In this context, Interior Point Methods (IPM) have proven to be one of the most powerful optimization
algorithms, because their number of iterations to obtain convergence is rather insensitive to the problem
size. Moreover, the main computational effort when applying IPM lies in the solution of linear systems
of equations which is a suitable task to be carried out on many parallel processors.

There exist a few works on parallel solution of linear systems that arise from IPM applied to TCOPF.
One such approach is based on parallel LU-factorizations by means of Schur complement techniques [8],
[20]. Other strategies use Benders Decomposition to decompose the complete optimization problem into
smaller ones [1].

In this work, we propose the use of Schwarz Domain Decomposition Methods as a preconditioner
for Krylov-type iterative methods for solving linear systems in parallel. We apply these techniques by
decomposing the time period into several smaller sub-domains, allowing the use of multiple computing
processors. All modifications are done on an algebraic level and do not disturb the convergence behaviour
of the underlying IPM algorithm. Furthermore, iterative linear solvers allow the use of Inexact Interior
Point Methods which may significantly reduce the overall computational effort.
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On the basis of two benchmark problems, we show that our method can achieve a significant speedup
compared to sequential and parallel direct solvers. However, the standard Schwarz method suffers from
the well-known increase in Krylov iterations for an increasing number of processors. To remedy this
issue, we propose a two-level method and numerical experiments indicate that this method is capable of
conserving a stable number of iterations.

This paper is structured in the following way: In section 2 we state the TCOPF problem and the
application of a suitable IPM. Further, we briefly describe the structure of the arising linear systems.
In section 3.1 we propose a Schwarz method for solving these linear systems in parallel. In section 3.2
and 3.3 we formulate an extension of the previously defined method, leading to the concept of Multilevel
Methods. In section 4, we investigate the numerical behaviour of our methods based on two test cases.
We summarise our results in section 5.

2 Time Constrained Optimal Power Flow

In this section we begin with formulating the TCOPF problem we want so solve. Afterwards a common
way of solving this nonlinear optimization problem by means of IPM is presented. In the last subsection
we give a short description of the linear systems arising in every IPM-iteration.

2.1 TCOPF Formulation

We consider a power grid of NB nodes denoted by B := {1, . . . , NB} and NE transmission lines denoted
by E ⊂ B × B with corresponding admittance matrix

Y = G+ jB ∈ C
NB×NB with G,B ∈ R

NB×NB and j =
√
−1.

Note that Y = Y T and Ykl 6= 0 if and only if there is a transmission line connecting node k and l, i.e.,
kl ∈ E . Therefore, Y is a sparse matrix for most real world power grids.

The complex voltage at every node k ∈ B is given by

Vk = Uk exp jΘk,

with voltage amplitude Uk and voltage phase angle difference Θk between node k and the reference node
1, i.e., Θ1 = 0.

Furthermore, let P := {1, . . . , NP} and Q := {1, . . . , NQ} denote the set of active and reactive power
injection processes, respectively. For every l ∈ P, PG,l is the variable of active power injection and for
every l ∈ Q, QG,l is the variable of reactive power injection. Every power injection process is assigned to
a specific node by means of power injection matrices CP ∈ R

NB×NP and CQ ∈ R
NB×NQ with

(CP )kl =

{

1, active power of process l is injected at node k

0, else

(CQ)kl =

{

1, reactive power of process l is injected at node k

0, else.

Denoting the active and reactive power load at node k ∈ B with PD,k and QD,k respectively, the AC
power flow equations read [18]

CPPG − PD − PF (U,Θ) = 0 ∈ R
NB , (2.1)

CQQG −QD −QF (U,Θ) = 0 ∈ R
NB , (2.2)

with

PF,k(U,Θ) =

NB∑

l=1

UkUl(Gkl cosΘkl +Bkl sinΘkl), k ∈ B,

QF,k(U,Θ) =

NB∑

l=1

UkUl(Gkl sinΘkl −Bkl cosΘkl), k ∈ B,
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where Θkl = Θk−Θl. PF,k and QF,k can also be written in terms of active and reactive power flow pkl, qkl
over all lines incident to node k:

PF,k(U,Θ) =
∑

l 6=k,Ykl 6=0

pkl(Uk, Ul,Θk,Θl),

QF,k(U,Θ) =
∑

l 6=k,Ykl 6=0

qkl(Uk, Ul,Θk,Θl).

Equation (2.1) can be seen as balance equation where the difference (CPPG − PD)k of injected and
extracted power at node k equals the power flow PF,k to all nodes adjacent to k. This is a direct
consequence of Kirchhoff’s circuit law. The same holds for (2.2).

In the following we rewrite equations (2.1), (2.2) as

AC(Θ, U, PG, QG, PD, QD) = 0. (2.3)

With this definitions at hand, we can formulate the Optimal Power Flow (OPF) problem [7]:

(OPF )







min
Θ,U,PG,QG

f(Θ, U, PG, QG) s.t.

AC(Θ, U, PG, QG, PD, QD) = 0

Θ1 = 0

p2kl(U,Θ) + q2kl(U,Θ) ≤ Skl, ∀k 6= l ∈ B, Ykl 6= 0

Umin ≤ U ≤ Umax

PG,min ≤ PG ≤ PG,max

QG,min ≤ QG ≤ QG,max.

Here, ≤ is understood componentwise and Umin, Umax, PG,min, PG,max, QG,min, QG,max are lower and upper
bounds for node voltages and injected power, respectively. Skl denotes the upper limit for the power flow
over transmission line kl.

The cost function f accounts for costs of generated active power (e.g., in $ per MWh) and has the
form [7]

f(U,Θ, PG, QG) =
∑

l∈P

al2P
2
G,l + al1PG,l, al2, al1 ≥ 0, al2 + al1 > 0.

The optimization problem (OPF ) can be interpreted as finding the operation state of minimal generating
costs for a given power grid described by the admittance matrix Y at a single point in time with current
power load PD, QD.

In contrast to OPF, TCOPF states the problem of finding an optimal operation state over a given
time period instead at a single point in time. To be more precise, let 0 = T1 < T2 < . . . < TNT

= T

denote a uniform partition of a time period of interest [0, T ] with constant step size τ = Tt − Tt−1. To

every time step Tt one can assign a vector of corresponding optimization variables xt ∈ R
nx,t

with

xt =







Θt

U t

P t
G

Qt
G







,

where Θt, U t ∈ R
NB , P t

G ∈ R
NP , Qt

G ∈ R
NQ correspond to the optimization variables in (OPF ). Conse-

quently, nx,t = 2NB +NP +NQ.
Furthermore, the power demand may vary over time, i.e., for every time step t there are vectors

P t
D, Qt

D describing the power demand at every node k. When dealing with renewable energy sources,
varying upper and lower bounds for power generation P t

G,min, P
t
G,max, Q

t
G,min, Q

t
G,max are possible as well.

Additionally the change of active power generation between consecutive time steps is bounded from above,
i.e., one has to impose ramp constraints of the form

|P t+1
G,l − P t

G,l| ≤ τRl, ∀l ∈ P, t = 1, . . . , NT − 1.
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Finally, our TCOPF problem is given as [20]

(TCOPF )







min
(Θt,Ut,P t

G
,Qt

G
)t

NT∑

t=1

τf(Θt, U t, P t
G, Q

t
G) s.t.

AC(Θt, U t, P t
G, Q

t
G, P

t
D, Qt

D) = 0, t = 1, . . . ,NT

Θt
1 = 0, t = 1, . . . ,NT

p2kl(U
t,Θt) + q2kl(U

t,Θt) ≤ Skl, t = 1, . . . ,NT

Umin ≤ U t ≤ Umax, t = 1, . . . ,NT

P t
G,min ≤ P t

G ≤ P t
G,max, t = 1, . . . ,NT

Qt
G,min ≤ Qt

G ≤ Qt
G,max, t = 1, . . . ,NT

P t+1
G − P t

G ≤ τR, t = 1, . . . ,NT − 1

P t
G − P t+1

G ≤ τR, t = 1, . . . ,NT − 1.

One can rewrite this optimization problem in a more compact form as







min
(xt)t

NT∑

t=1

τf(xt) s.t.

gt(xt) = 0, t = 1, . . . ,NT

ht
I(x

t) ≤ 0, t = 1, . . . ,NT

ht
R(x

t+1, xt) ≤ 0, t = 1, . . . ,NT − 1.

(2.4)

or 





min
x

F (x) s.t.

g(x) = 0

h(x) ≤ 0

with x =
(
x1 . . . xNT

)
∈ R

nx

, nx =
∑NT

t=1 n
x,t and twice continuously differentiable functions

F : Rnx → R

g : Rnx → R
NT (2NB+1)

h : Rnx → R
2NT (NE+NB+NP+NQ)+2(NT−1)NP .

Note that the ramp constraints given by hR establish the only couplings between variables of different
time steps. Without them, a solution to (TCOPF ) could be computed by solving NT independent (OPF )
problems.

There exist other possible formulations of (TCOPF ) as well. For example, one could include changes in
active power generation in the cost function f or add additional intertemporal constraints corresponding
to energy storage systems or power generation contracts (e.g., [20]).

2.2 Primal Dual Interior Point Method for TCOPF

Due to the nonlinearity of the AC equations (2.3), (TCOPF ) is a nonlinear and non-convex optimization
problem where the number of optimization variables x is proportional to the grid size 2B + P + Q and
to the number of considered time steps NT . When considering real world scenarios involving national
transmission grids and time horizons of several days, typical grid sizes are of order 104 and number of
time steps are of order 102. For such kind of large-scale optimization problems, the use of Interior Point
Methods is a common approach. We briefly describe the application of a Primal Dual Interior Point
Method (PDIPM) for our problem (e.g., [7]).

For (TCOPF ) we define the corresponding Lagrangian function by

L : Rnx × R
nλ × R

nµ → R, (x, λ, µ) 7→ F (x) + λT g(x) + µTh(x),
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with nλ = NT (2NB + 1) and nµ = 2NT (NE +NB +NP +NQ) + 2(NT − 1)NP .
Assuming additional constraint qualifications like (LICQ), for every local minimum x∗ of (TCOPF )

there exist corresponding Lagrangian multipliers λ∗, µ∗ such that (x∗, λ∗, µ∗) solves the following KKT-
conditions [7]:

(KKT )







∇xL(x, λ, µ) = ∇F (x)T +∇g(x)Tλ+∇h(x)Tµ = 0 (stationarity)

∇λL(x, λ, µ) = g(x) = 0 (primal feasibility)

∇µL(x, λ, µ) = h(x) ≤ 0 (primal feasibility)

∀i = 1, . . . , nµ : µihi(x) = 0 (complementary slackness)

µ ≥ 0. (dual feasibility)

The idea of PDIPM is based on solving the system of nonlinear equations and inequalities (KKT ) by
means of a perturbed Newton’s method. In a first step, one removes nonlinear inequalities by introducing
additional slack variables s ∈ R

nµ

, resulting in an equivalent system:

(KKT0)







∇F (x)T +∇g(x)Tλ+∇h(x)Tµ = 0

g(x) = 0

h(x) + s = 0

∀i = 1, . . . , nµ : µisi = 0

s ≥ 0

µ ≥ 0.

At first glance, one might think of solving (KKT0) with Newton’s method by starting at a feasible point
(s(0), µ(0)) ∈ Ω := {(s, µ) ≥ 0} and restricting the step size for each Newton update (∆x,∆s,∆λ,∆µ) to
ensure (s(l), µ(l)) ∈ Ω for all l ≥ 0. Due to µisi = 0, the exact solution of (KKT0) lies at the boundary
of the feasible region Ω. Thus, the Newton iterates (s(l), µ(l)) might be forced towards ∂Ω to achieve
µisi = 0 while other components of the corresponding nonlinear residual are far from being close to 0.
This may lead to very short step sizes and therefore poor convergence.

To remedy this effect, the complementary slackness condition is relaxed to µisi = γ for some γ > 0,
yielding the following perturbed KKT system:

(KKTγ)







∇F (x)T +∇g(x)Tλ+∇h(x)Tµ = 0

g(x) = 0

h(x) + s = 0

∀i = 1, . . . , nµ : µisi = γ

s ≥ 0

µ ≥ 0.

(KKTγ) can be written in a more compact form as

Fγ(x, s, λ, µ) :=







∇F (x) +∇g(x)Tλ+∇h(x)Tµ
g(x)

h(x) + s

Sµ− γe







= 0, s, µ ≥ 0, (2.5)

with S = diag(s1, . . . , snµ) and e = (1, . . . , 1) ∈ R
nµ

. Solving Fγ = 0, γ > 0 by applying Newton’s
method is in general much faster then using Newton’s method for F0 = 0.

Finally, the PDIPM is obtained by solving a sequence of nonlinear systems of equations Fγk
= 0 with

Newton’s method, where γk is chosen such that γk → 0. An additional step size control ensures that
(s(k,l), µ(k,l)) ∈ Ω for all obtained iterates. Under certain assumptions (including second order sufficient
conditions, strict complementary condition and (LICQ)) one can show that for sufficiently small γk a
locally unique solution (x(k,∗), s(k,∗), λ(k,∗), µ(k,∗)) of

Fγk
(x, s, λ, µ) = 0, s, µ ≥ 0 (2.6)
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exists. This sequence of points is also known as central path and it converges to the exact solution
(x∗, s∗, λ∗, µ∗) of (KKT0) if γk → 0. Furthermore, these assumptions imply that ∇Fγk

(x, s, λ, µ) is
nonsingular if (x, s, λ, µ) is sufficiently close to (x∗, s∗, λ∗, µ∗) and if γk is sufficiently close to 0 (e.g.,
chapter 19 in [14]).

In practical implementations the sequence of nonlinear problems (2.6) is not solved exactly. Instead,
each system (2.6) is solved with a termination criterion of the form ‖Fγk

(x(k,l), s(k,l), λ(k,l), µ(k,l))‖ ≤ ǫγk

and accordingly defined tolerance ǫγk
(e.g., [5]).

We use the approach of updating γk after each Newton iteration via

γk = σ
(µ(k))T s(k)

nµ

with centering parameter σ = 0.1 and complementary gap (µ(k))T s(k) [7], yielding the following algorithm
[21]:

Algorithm 1. Primal Dual Interior Point Method for TCOPF

Set λ(0) = 0, µ(0) = e, γ0 = 1, k = 0

Choose x(0), s(0)

Compute r0 := Fγ0
(x(0), s(0), λ(0), µ(0))

Do until convergence

Compute Āk := ∇Fγk
(x(k), s(k), λ(k), µ(k))

Solve Āk∆k = −rk, ∆k = (∆x(k),∆s(k),∆λ(k),∆µ(k))

Compute primal and dual step size αp, αd

Set (x(k+1), s(k+1)) = (x(k), s(k)) + αp(∆x(k),∆s(k))

Set (λ(k+1), µ(k+1)) = (λ(k), µ(k)) + αd(∆λ(k),∆µ(k))

Set γk+1 = σ
(µ(k+1))T s(k+1)

nµ

Compute rk+1 := Fγk+1
(x(k+1), s(k+1), λ(k+1), µ(k+1))

Check convergence criteria

Set k ← k + 1

Here, we choose x(0) by setting

Θt = 0, U t =
1

2
(Umax + Umin), P

t =
1

2
(P t

max + P t
min), Q

t =
1

2
(Qt

max +Qt
min), t = 1, . . . , NT

and s(0) by

s
(0)
i =

{

−hi(x
(0)), hi(x

(0)) < −1
1, else

.

The primal and dual step sizes are obtained by the fraction to the boundary rule [14] in order to prevent
s(k) and µ(k) from becoming negative:

αp = max{α ∈ (0, 1], s+ α∆s ≥ (1− ρ)s}
αd = max{α ∈ (0, 1], µ+ α∆µ ≥ (1− ρ)µ}

with ρ = 0.99995. The iteration terminates if all of the following conditions are satisfied [21]:

max{‖g(x)‖∞,maxi{hi(x)}}
1 + max{‖x‖∞, ‖z‖∞}

< ǫfeas feasibility condition

‖∇xL(x, λ, µ)‖∞
1 + max{‖λ‖∞, ‖µ‖∞}

< ǫgrad gradient condition

(µT s)

1 + ‖x‖∞
< ǫcomp complementary condition

|F (x)− F (x−)|
1 + |F (x−)| < ǫcost cost condition

6



where we omitted the iteration index k + 1 and denote xk by x−.

Remark Algorithm 1 is a very basic PDIPM implementation without any globalization strategy. There
exist more sophisticated implementations using line-search and trust-region methods for ensuring global
convergence (e.g., [19]). Since we focus on parallel linear algebra techniques for TCOPF problems, for
our purpose a locally convergent algorithm is sufficient.

2.3 KKT Matrix in PDIPM

When applying Interior Point Methods, the main computational effort lies in the solution of arising linear
systems. In our case we have to solve the system

∇Fγk
(x(k), s(k), λ(k), µ(k))∆(k) = −Fγk

(x(k), s(k), λ(k), µ(k))

in every step of the PDIPM algorithm 1. In the following, we omit the iteration index k. The Newton
matrix is given by

Ā := Ā(x, s, λ, µ) = ∇Fγ(x, s, λ, µ) =







∇2
xxL(x, λ, µ) 0 (∇g(x))T (∇h(x))T

0 M 0 S

∇g(x) 0 0 0
∇h(x) I 0 0







(2.7)

with diagonal matrices M = diag(µ1, . . . , µnµ), S = diag(s1, . . . , snµ) and identity matrix I ∈ R
nµ×nµ

.
Eliminating the second and fourth row yields a reduced matrix (see appendix),

A := A(x, s, λ, µ) :=

(
∇2

xxL(x, λ, µ) + (∇h(x))TΣ(∇h(x)) (∇g(x))T
∇g(x) 0

)

(2.8)

with diagonal matrix Σ = diag(µ1

s1
, . . . , µnµ

snµ
).

Note that A is a symmetric saddle point matrix and thus indefinite. Matrices of this structure are
also labelled as KKT matrix.

The dimension of A is nx + nλ = NT (4NB +NP +NQ + 1). In contrast, Ā is of dimension nx + nλ +
2nµ = NT (8NB + 7NP + 5NQ + 4NE + 1) − 2NP . Since NE ' 2NB for real world transmission grids,
dim(Ā) ' 3dim(A). Additionally, the sparsity structure of (∇h(x))TΣ∇h(x) is almost a subset of the
sparsity structure of ∇2

xxL(x, λ, µ). There are just few additional non-zeros due to ramp constraints hR

and lower / upper bounds on P,Q,U . This is due to the fact, that the sparsity structure of all Jacobian
matrices of nonlinear constraints equals the sparsity structure of the admittance matrix Y .

To summarise, the dimension of A is reduced by a factor of ≈ 3 compared to Ā and the (1, 1)-block
of A has almost the same sparsity structure than the (1, 1)-block of Ā. In the following, we work with
matrix A.

When dealing with linear systems arising from IPM, one generally has to face the problem of ill-
conditioning. To see this, assume that strict complementary holds at the exact solution (x∗, s∗, λ∗, µ∗) of
(KKT0), i.e.,

s∗iµ
∗
i = 0, s∗i + µ∗

i > 0, s∗i , µ
∗
i ≥ 0 for all i.

If the inequality constraint i is active at x∗, i.e., s∗i = hi(x
∗) = 0, then s

(k)
i → 0 and µ

(k)
i → µ∗ > 0 for

k →∞. Consequently, the corresponding entry in the diagonal matrix Σ becomes very large as the IPM
iterate approaches the exact solution:

σ
(k)
i = (Σ(k))ii =

µ
(k)
i

s
(k)
i

→∞ for k →∞,

which yields an increasing condition number κ(A) = ‖A‖‖A−1‖. For this reason, many IPM software
packages (like IPOPT [9]) use direct methods such as LDLT -factorizations to solve the arising linear
systems. In contrast, iterative linear solvers like GMRES [15] are very sensitive to ill-conditioned matrices,
unless a good preconditioner is used. In exchange, they offer a higher potential of parallelization and allow
the use of inexact Interior Point methods [3].
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The distribution of the spectrum S(K) = {λ ∈ C, λ is eigenvalue of K} of a matrix K is an indicator
for the convergence behaviour of GMRES applied to Kv = b. If K ∈ R

N×N is diagonalizable, i.e.,
K = V ΓV −1 with Γ = diag(λ1, . . . , λN ), V ∈ R

N×N , then it can be shown that the residual rk = b−Kvk
in the k-th step of GMRES satisfies

‖rk‖2
‖r0‖2

≤ ‖V ‖2‖V −1‖2 min
p∈Pk,p(0)=1

max
λ∈S(K)

|p(λ)|

with Pk being the space of polynomials of degree less then or equal to k. This estimate indicates that
a spectrum which is clustered away from 0 is beneficial for the speed of convergence of GMRES. In
particular, GMRES terminates with the exact solution after at most |S(K)| steps.

For general nonlinear optimization problems with corresponding KKT matrix

K =

(
H BT

B 0

)

, H ∈ R
n×n, B ∈ R

m×n, m ≤ n

the so called constraint preconditioner is an example of a widely used preconditioner. It is given by

K̃ =

(

H̃ BT

B 0

)

,

with H̃ being an approximation to H that is easy to factorize, e.g., H̃ = diag(H) [14].
One can show that S(K̃−1K) = {1} ∪ {λ, ∃u ZTHZu = λZT H̃Zu} with Z being a basis of the

nullspace nullB of B [12]. Since K is assumed to be nonsingular, it holds rankB = m and dim(nullB) =
n−m according to Lemma 3.2. Therefore, at most n−m eigenvalues of K̃−1K are not equal to 1. The
distribution of these remaining eigenvalues depends on how well H̃ approximates H on the nullspace of
B. For (TCOPF ) it holds

n−m = nx − nλ = NT (NP +NQ − 1).

For many optimization problems, the constraint preconditioner shows a good performance when combined
with GMRES. However, factorizing K̃ in parallel might be difficult.

In section 3 we describe how to exploit the special structure given by (TCOPF ) to construct a
parallelizable preconditioner. To get further insight into this structure, note that the linear system to be
solved is of the following form (compare (2.8)):

(
∇2

xxL+ (∇h)TΣ(∇h) (∇g)T
∇g 0

)(
∆x

∆λ

)

=

(
rx
rλ

)

. (2.9)

One can construct a permutation matrix P ∈ {0, 1}(nx+nλ)×(nx+nλ) such that

P

(
∆x

∆λ

)

= P













∆x1

...
∆xNT

∆λ1

...
∆λNT













=










∆x1

∆λ1

...
∆xNT

∆λNT










,

where xt is defined in section 2.1 and λt denotes the Lagrangian multipliers corresponding to the equality
constraints gt(xt) = 0. Applying this permutation to A yields a block tri-diagonal matrix

Â := PAPT =














A11 A12 0 0 . . . . . . 0
AT

12 A22 A23 0 . . . . . . 0
0 AT

23 A33 A34 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 AT
NT−2NT−1

ANT−1NT−1
ANT−1NT

0

0 . . . . . . 0 AT
NT−2NT−1

ANT−1NT−1
ANT−1NT

0 . . . . . . . . . 0 AT
NT−1NT

ANTNT














. (2.10)
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Each diagonal block Att is of saddle point structure and can be interpreted as KKT matrix for a single
(OPF ) problem at time step t. The off-diagonal blocks Att+1 describe the couplings between consecutive
time steps t and t + 1. For (TCOPF ) presented in section 2.1, these couplings are given by the ramp
constraints |P t+1 − P t| ≤ τR. Since there aren’t any couplings between variables xt, xs with |t − s| > 1
in our TCOPF formulation, the corresponding off-diagonal blocks Ats vanish.

3 Multilevel Domain Decomposition for TCOPF

We describe the construction of a parallelizable preconditioner that allows the use of iterative linear
solvers inside the PDIPM algorithm 1. We make use of domain decomposition techniques that are well
established for solving partial differential equations (PDEs) in parallel. The additive Schwarz Method
(ASM) is such kind of method. In section 3.1 we present the application of ASM in context of TCOPF
problems. In section 3.2 and 3.3 we propose an extension to ASM, involving the concepts of Coarse Grid
Correction and Multilevel ASM.

3.1 Additive Schwarz Method

The original Schwarz method was formulated in 1870 as theoretical tool for proofing existence of elliptic
PDEs on complicated domains [16]. Later on, modifications of it have been used as stand-alone iterative
methods for solving PDEs and have become a standard technique for preconditioning Krylov methods in
context of PDEs [17]. In this work we use the additive variant of Schwarz Methods as preconditioner for
GMRES in order to solve linear systems given by (2.9).

3.1.1 Mathematical Formulation

To apply ASM as preconditioner for the KKT matrix A = A(x, s, λ, µ) ∈ R
n×n defined by (2.9), we

decompose the set of time steps T = {1, . . . , NT } into q nonoverlapping sub-domains:

T =

q
⋃

l=1

T̃l, T̃l ∩ T̃k = ∅ for k 6= l, T̃l = {t̃−l , t̃−l + 1, . . . , t̃+l }.

Afterwards, each sub-domain T̃l is augmented by additional sol time steps on both ends, yielding an
overlapping decomposition of T (see Figure 1):

T =

q
⋃

l=1

Tl, Tl := {t−l , t−l + 1, . . . , t+l },

with

t−l =

{

t̃−l − sol, l > 1

t̃−l , l = 1
, t+l =

{

t̃+l + sol, l < q

t̃+l , l = q
.

Typically, sol ∈ {1, 2}.

Figure 1: Decomposition of time steps with overlap sol = 1.
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We fix the following notation:

nx,t : dimension of xt

nλ,t : dimension of λt

nx
l =

∑

t∈Tl

nx,t, nx =

NT∑

t=1

nx,t,

nλ
l =

∑

t∈Tl

nλ,t, nλ =

NT∑

t=1

nλ,t,

nl = nx
l + nλ

l , n = nx + nλ.

When restricting optimization variables to their components contained in Tl, we write

x[l] = [xt]t∈Tl
, λ[l] = [λt]t∈Tl

,

µI,[l] = [µt
I ]t∈Tl

, sI,[l] = [stI ]t∈Tl
,

µR,[l] = [µt
R]t∈Tl∪{t−

l
−1}, sR,[l] = [stR]t∈Tl∪{t−

l
−1},

with primal variables x, multipliers λ corresponding to equality constraints, slack variables s and multi-
pliers µ corresponding to inequality constraints. The latter ones are split into components assigned to hI

and hR, see (2.4). For all expressions involving ,̃ Tl is replaced by T̃l. The constraint functions g and h

are restricted in the same way:

g[l](x[l]) = [gt(xt)]t∈Tl
,

hI,[l](x[l]) = [ht
I(x

t)]t∈Tl
,

hR,[l](x[l], x
t
−

l
−1, xt

+
l
+1) = [ht

R(x
t+1, xt)]t∈Tl∪{t−

l
−1},

h[l](x[l], x
t−
l
−1, xt+

l
+1) =

(
hI,[l](x[l])

hR,[l](x[l], x
t−
l
−1, xt+

l
+1)

)

and

ΣI,[l] = diag

(

µI,[l],1

sI,[l],1
, . . . ,

µI,[l],|µI,[l]|

sI,[l],|µI,[l]|

)

,

ΣR,[l] = diag

(

µR,[l],1

sR,[l],1
, . . . ,

µR,[l],|µR,[l]|

sR,[l],|µR,[l]|

)

,

Σ[l] =

(
ΣI,[l] 0
0 ΣR,[l]

)

.

For l = 1, . . . , q we define by

(
∆x

∆λ

)

[l]

:=

(
∆x[l]

∆λ[l]

)

∈ R
nl ,

(
∆x

∆λ

)

[l̃]

:=

(
∆x[l̃]

∆λ[l̃]

)

∈ R
ñl ,

the components of the solution vector of (2.9) that can be assigned to time steps in Tl and T̃l, respectively.
Let further Rl ∈ {0, 1}nl×n, R̃l ∈ {0, 1}ñl×n be restriction matrices corresponding to the subsets Tl and
T̃l such that

Rl

(
∆x

∆λ

)

=

(
∆x

∆λ

)

[l]

and R̃l

(
∆x

∆λ

)

=

(
∆x

∆λ

)

[l̃]

(3.1)

holds. The restriction matrices are given as

Rl =

(
Rx

l 0
0 Rλ

l

)

and R̃l =

(
R̃x

l 0

0 R̃λ
l

)

(3.2)
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with sub-restriction matrices of the following form

Rx
l =

(
0 Inx

l
0
)
∈ {0, 1}nx

l ×nx

,

Rλ
l =

(
0 Inλ

l
0
)
∈ {0, 1}nλ

l ×nλ

,

R̃x
l =

(
0 Iñx

l
0
)
∈ {0, 1}ñx

l ×nx

,

R̃λ
l =

(
0 Iñλ

l
0
)
∈ {0, 1}ñλ

l ×nλ

.

Here, Im denotes the identity matrix in R
m and the size of the zero matrices may vary for each restriction

matrix and each l.
With this definitions at hand, one can define local sub-matrices of A by

Al := RlART
l . (3.3)

In section 3.1.3 we analyse the structure and invertibility of these sub-matrices.
In the following, we assume that all sub-matrices Al are nonsingular. Then the multiplicative Schwarz

Method for (approximately) solving Av = b is given by [17]:

Algorithm 2. Multiplicative Schwarz Method v = MSM(b)

Set v = 0

For l = 1, . . . , q

v ← v +RT
l A

−1
l Rl(b−Av)

In every iteration l, the current residual b − Av is restricted to sub-domain Tl. Solving with A−1
l gives

a local approximation to the error and prolongating the error back with RT
l yields a correction on Tl.

Thus, the multiplicative Schwarz method can be seen as sequential defect correction algorithm. Omitting
residual updates in each iteration yields the parallelizable ASM:

Algorithm 3. Additive Schwarz Method v = ASM(b)

Set v = 0

For l = 1, . . . , q

v ← v +RT
l A

−1
l Rlb

which can be written as

v = MASMb with MASM :=

q
∑

l=1

RT
l A

−1
l Rl.

The right preconditioned linear system for solving Av = b is then given by

AMASMu = b, v = MASMu. (3.4)

Since MASM is symmetric but in general not positive definite, we use GMRES for solving the unsymmet-
ric system (3.4).

Remark By means of coloring techniques, it is possible to parallelize the multiplicative Schwarz method
up to a certain degree (e.g., [17]).

3.1.2 Implementation

In our implementation, we use one processor per sub-domain Tl and distribute A such that every processor
stores R̃lA in its local memory. R̃lA contains the nonoverlapping rows of Al = RlART

l .
To set up MASM once, every process first has to form its local sub-matrix Al, i.e., in this step the

overlapping part of Al has to be communicated to process l by process l − 1 and l + 1. Afterwards, each
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process computes an LU-factorization of Al, i.e., Al = LlUl. This step doesn’t involve any communication
and can be done in parallel.

Applying ASM as preconditioner of an iterative method requires computation of vk = MASMbk in
each iteration k. For this step, each process l first restricts b to its overlapping part bl := Rlb which
requires communication with process l − 1 and l + 1. The computation of A−1

l bl is done by one forward
and backward solve with Ll and Ul. This step doesn’t involve any communication. As final step, the local
solution vl := A−1

l bl is prolongated back to update the global solution vector v. This step again requires
communicating the overlapping part of vl to process l − 1 and l + 1.

One can further improve the performance of ASM by using the so called restricted version of ASM [6]
which is given by

MrASM :=

p
∑

l=1

R̃T
l A

−1
l Rl.

For this preconditioner just the nonoverlapping part of the local solution vl is prolongated instead of
the entire (overlapping) vector. Experiments show a beneficial behaviour in terms of GMRES iterations
compared to standard ASM [6]. Furthermore, prolongation by R̃l doesn’t involve any communication.

3.1.3 Analysis of Local KKT Matrices

In this section, we investigate the structure of the local sub-matrices Al. For convenience, let 1 < l < q.
For l = 1 and l = q the same results hold with minor modifications.

By definition,

Al(x, s, λ, µ) = RlA(x, s, λ, µ)RT
l

=

(
Rx

l 0
0 Rλ

l

)(
∇2

xxL+ (∇h)TΣ(∇h) (∇g)T
∇g 0

)(
(Rx

l )
T 0

0 (Rλ
l )

T

)

=

(
Rx

l

(
∇2

xxL+ (∇h)TΣ(∇h)
)
(Rx

l )
T Rx

l (∇g)T (Rλ
l )

T

Rλ
l (∇g) (Rx

l )
T 0

)

.

Since there are no temporal couplings in the equality constraints g, ∇g is of block diagonal form:

∇g(x) =










∇x1g1(x1) 0 0 . . . 0
0 ∇x2g2(x2) 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 ∇xNT −1gNT−1(xNT−1) 0
0 . . . 0 0 ∇xNT g

NT (xNT )










(3.5)

and
Rλ

l (∇g(x)) (Rx
l )

T = ∇g[l](x[l]). (3.6)

Further,

Rx
l (∇h)TΣ(∇h)(Rx

l )
T = Rx

l

(
NT∑

t=1

(∇ht
I(x

t))TΣt
I(∇ht

I(x
t))

)

(Rx
l )

T

+Rx
l

(
NT−1∑

t=1

(∇ht
R(x

t+1, xt))TΣt
R(∇ht

R(x
t+1, xt))

)

(Rx
l )

T

=
∑

t∈Tl

Rx
l (∇ht

I(x
t))TΣt

I(∇ht
I(x

t))(Rx
l )

T

+

t+
l∑

t=t−
l
−1

Rx
l (∇ht

R(x
t+1, xt))TΣt

R(∇ht
R(x

t+1, xt))(Rx
l )

T

= (∇x[l]
hI,[l](x[l]))

TΣI,[l](∇x[l]
hI,[l](x[l]))

+ (∇x[l]
hR,[l](x[l], x

t−
l
−1, xt+

l
+1))TΣR,[l](∇x[l]

hR,[l](x[l], x
t−
l
−1, xt+

l
+1))

= (∇x[l]
h[l](x[l], x

t
−

l
−1, xt

+
l
+1))TΣ[l](∇x[l]

h[l](x[l], x
t
−

l
−1, xt

+
l
+1))
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where we used that ∇hI is of similar form as ∇g.
Note that hR,[l] is a function of xt for t ∈ Tl ∪ {t−l − 1} ∪ {t+l +1}, whereas ∇x[l]

hR,[l](x) is a constant

matrix. In the following, we consider hR,[l] as a function of x[l] with some fixed vectors v−, v+ in place of

xt−
l
−1 and xt+

l
+1.

Define the local Lagrangian function

L[l](x[l], λ[l], µ[l]) =
∑

t∈Tl

τf(xt) + λT
[l]g[l](x[l]) + µT

[l]h[l](x
[l]).

Since all temporal couplings are linear, ∇2
xxL is block diagonal and it holds

Rx
l ∇2

xxL(x, λ, µ)(Rx
l )

T = ∇2
x[l]x[l]

L(x, λ, µ) = ∇2
x[l]x[l]

L[l](x[l], λ[l], µ[l]).

Thus, Al can be written as

Al(x, s, λ, µ) =

(
H[l](x[l], λ[l], µ[l]) (∇g[l](x[l]))

T

∇g[l](x[l]) 0

)

(3.7)

with H[l](x[l], λ[l], µ[l]) = ∇2
x[l]x[l]

L[l](x[l], λ[l], µ[l]) + (∇h[l](x[l]))
TΣ[l](∇h[l](x[l])).

Therefore, Al is the KKT matrix obtained when applying algorithm 1 to the optimization problem
corresponding to the Lagrangian function L[l]. This problem has the form of (TCOPF ) with T replaced
by Tl and additional ”boundary conditions” v−, v+:

(TCOPFl(v
−, v+))







min
(xt)t∈Tl

∑

t∈Tl

τf(xt) s.t.

gt(xt) = 0, t ∈ Tl
ht
I(x

t) ≤ 0, t ∈ Tl
ht
R(x

t+1, xt) ≤ 0, t ∈ Tl \ {t+l }

h
t−
l
−1

R (xt−
l , v−) ≤ 0

h
t+
l

R (v+, xt+
l ) ≤ 0.

Using the results above, one can show that the restriction of global KKT points are KKT points of the
local problem:

Lemma 3.1. Let (x∗, λ∗, µ∗
I , µ

∗
R) be a KKT point of (TCOPF ). Then (x∗

[l], λ
∗
[l], µ

∗
I,[l], µ

∗
R,[l]) is a KKT

point of (TCOPFl(x
∗,t−

l
−1, x∗,t+

l
+1)).

Proof The validity of primal feasibility, dual feasibility and complementary slackness condition in the

KKT conditions for (TCOPFl(x
∗,t−

l
−1, x∗,t+

l
+1)) follows directly from the corresponding conditions in

(KKT ). The stationarity condition for (TCOPFl(x
∗,t−

l
−1, x∗,t+

l
+1)) can be obtained by restricting the

stationarity condition in (KKT ) with Rx
l . �

In order to analyse the invertibility of Al we use the following result which is variant of Theorem 3.2
in [4]:

Lemma 3.2. Let

K =

(

H BT

B 0

)

with H ∈ R
n×n, B ∈ R

m×n, m ≤ n

and Z ∈ R
n×l denote a basis of nullB. Then it holds:

i) If K is invertible then rankB = m.

ii) If rankB = m and ZTHZ is invertible then K is invertible.
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Proof See Appendix.

Assuming nonsingularity of the global KKT matrix A, Lemma 3.2 (i) yields that the Jacobian of equality
constraints ∇g has full row rank. Due to the block diagonal structure of ∇g, see (3.5), ∇g[l] has full row
rank as well. Thus, to ensure nonsingularity of Al, by means of Lemma 3.2 (ii) it is sufficient to ensure
nonsingularity of ZT

[l]H[l]Z[l], with Z[l] being a basis of null∇g[l].
By choosing a basis of orthonormal vectors Z[l] and adding a multiple of the identity matrix ǫI, ǫ > 0

to H[l], Z
T
[l]H[l]Z[l] is modified to ZT

[l]H[l]Z[l]+ ǫI. Therefore, nonsingularity of ZT
[l]H[l]Z[l] can be obtained

for ǫ being large enough. In a practical implementation this can be done if the LU-factorization of Al

without modification fails. Since Al is just used as preconditioner, this modification only influences the
convergence of the linear solver, but not the result of solving Av = b.

3.1.4 Relationship between ASM and Constraint Preconditioner

Let
Ãl := R̃lAR̃T

l ∈ R
ñl×ñl

be the restriction of A to the nonoverlapping sub-domain T̃l = {t̃−l , . . . , t̃+l }. In this case, the corresponding
ASM

M̃ASM =

q
∑

l=1

R̃T
l Ã

−1
l R̃l

reduces to a block Jacobi method with omitted couplings between variables assigned to t̃+l and t̃−l+1 for

each sub-domain l. Permuting M̃ASM with P defined by (2.10), yields a block diagonal matrix which is
the inverse of the permuted KKT matrix Â with neglected off-diagonal blocks At+

l
t−
l+1

for l = 1, . . . , q− 1.

Since these omitted couplings only arise in the (1, 1)-block of A, namely in (∇h)TΣ(∇h), M̃ASM has
the form of constraint preconditioner for A:

M̃ASM =

(

H̃ (∇g)T
∇g 0

)−1

.

As pointed out in section 2.3, 1 is an eigenvalue of M̃ASMA of multiplicity 2nλ and the remaining nx−nλ

eigenvalues are solutions of a generalized eigenvalue problem of the following form:

ZT (∇2
xxL+ (∇h)TΣ(∇h)

︸ ︷︷ ︸

=:H

)Zv = λZT H̃Zv.

For a low number of sub-domains q, one might expect H̃ to be a good approximation to H, leading
to a clustered spectrum S(M̃ASMA) close to one. However, the more sub-domains, the more neglected
couplings and the less accurate does H̃ approximate H. This results in a more scattered eigenvalue
distribution of M̃ASMA, but still a large number of eigenvalues are equal to 1. The corresponding
behaviour of GMRES preconditioned by M̃ASM is illustrated by the numerical example in section 4.1.

3.2 Coarse Grid Correction

The main computational effort remains in factorizing Al and applying MASM . Obviously, increasing
the number of sub-domains q results in smaller sub-matrices Al and therefore significant reduction of
computing time for the factorization step. However, since information about the solution on different
sub-domains is only exchanged between neighbouring sub-domains, an increasing number of sub-domains
generally leads to an increasing number of GMRES iterations. To remedy this effect, a common approach
consists of augmenting ASM with a mechanism that ensures the exchange of global information across all
sub-domains. This leads to the concept of Coarse Grid Correction [17].
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3.2.1 Abstract Coarse Grid Correction

To augment MASM with a coarse grid correction, we need a restriction operator similar to Rl in Section
3.1.1:

R0 :=

(
Rx

0 0
0 Rλ

0

)

∈ R
n0×n with Rx

0 ∈ R
nx
0×nx

, Rλ
0 ∈ R

nλ
0×nλ

. (3.8)

In contrast to Rx
l , R

x
0 extracts components of x that are distributed over the whole vector instead of a

locally clustered part. The same holds for Rλ
0 . In the next section, we describe Rx

0 and Rλ
0 in more detail.

Similar to (3.3) we define a coarse system matrix by restricting the global matrix A:

A0 = R0ART
0 .

Now, a two-level ASM is given by the following algorithm [17]:

Algorithm 4. Two-Level Additive Schwarz Method v = ASM2(b)

Set v = 0

For l = 1, . . . , q

v ← v +RT
l A

−1
l Rlb

Compute r = b−Av

Set v ← v +RT
0 A

−1
0 R0r

or equivalently,

v = MASMb+RT
0 A

−1
0 R0

︸ ︷︷ ︸

=:M0

(b−AMASMb) = (M0 + (I −M0A)MASM )b =: MASM2b.

Thus, the standard ASM algorithm 3 is extended by an additional defect correction step. ASM2 is an
hybrid algorithm with parallelized sub-domain approximation and coarse grid correction being performed
in sequential.

Defining the error eASM = v∗−vASM w.r.t. the exact solution v∗ and the ASM approximation vASM ,
it holds

r = b−AvASM = Av∗ −AvASM = A(v∗ − vASM ) = AeASM .

Assuming that local error components are rather small due to the exact sub-domain solutions by A−1
l ,

e0 = RT
0 A

−1
0 R0r

should yield a good approximation to eASM . Therefore, by

v = vASM + e0 ≈ vASM + eASM = v∗

one might obtain an improved approximation to the exact solution.

3.2.2 Construction of a Coarse Restriction Operator

In this section we describe the construction of our coarse restriction operator R0 in more detail. This
approach is motivated by the usage of coarse grid corrections in context of numerical solution of PDEs.
In this area, coarse systems are usually obtained by discretizing the arising differential operators on the
complete domain but with lower resolution [17]. Therefore, our coarse grid T0 should also cover the whole
range of time steps T but with lower temporal resolution. To this end, define the coarse grid

T0,c := {t = cs+ 1, t ∈ T , s ∈ N0} ∪ {NT } with c ∈ N, c ≥ 2.

T0,c contains every c-th time step in T and both end points. In the following, set c = 2 and write T0 = T0,2.
As in section 3.1.1, we define restrictions of vectors x ∈ R

nx

, λ ∈ R
nλ

by

x[0] = [xt
[0]]t∈T0

= [xt]t∈T0
∈ R

nx
0

λ[0] = [λt
[0]]t∈T0 = [λt]t∈T0 ∈ R

nλ
0

nx
0 =

∑

t∈T0

nx,t, nλ
0 =

∑

t∈T0

nλ,t, n0 = nx
0 + nλ

0 .
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Figure 2: One side extrapolation of variables from coarse to fine space

Figure 3: Two side interpolation of variables from coarse to fine space

Furthermore, we define for t ∈ T the nearest points in T0 by

I−(t) := max{t0 ∈ T0, t0 ≤ t} and I+(t) := min{t0 ∈ T0, t0 ≥ t}.

We construct the restriction operator R0 by giving a form of its transpose RT
0 , i.e., the prolongation

from coarse to fine space variables. Thus, we have to describe how to obtain values for those variables
xt, λt, t 6∈ T0 that are not part of the coarse space.

Note that in the optimization problem (TCOPF ) the equality constraints gt(xt) = 0 are completely
decoupled. In order to preserve this structure, the prolongation operator for multipliers (Rλ

0 )
T should not

introduce any couplings between λt
[0], λ

s
[0] for t 6= s. Therefore, we use a one side extrapolation to obtain

values for λt, t 6∈ T0.
The prolongation operator for multipliers (Rλ

0 )
T : Rnλ

0 → R
nλ

is now given such that a coarse multiplier

λ̃ = [λ̃t]t∈T0
∈ R

nλ
0 is mapped to the space of fine multipliers by

(Rλ
0 )

T λ̃ =






λ1

...
λNT




 with λt = λ̃I−(t).

For primal variables xt =
(
Θt U t P t

G Qt
G

)T
the situation is slightly different. Since there is no

coupling between Θt, Θs for t 6= s in (TCOPF ), we use the same type of prolongation as for dual
variables λ. The same holds for U t and Qt

G. In contrast, P t
G, P t+1

G are coupled via ht
R. This type of

variables are prolongated by interpolation. To sum up, the prolongation operator for primal variables

(Rx
0)

T : Rnx
0 → R

nx

maps a coarse primal variable x̃ = [x̃t]t∈T0
∈ R

nx
0 , x̃t =

(

Θ̃t Ũ t P̃ t
G Q̃t

G

)T
into

the fine space via

(Rx
0)

T x̃ =






x1

...
xNT




 , xt =







Θt

U t

P t
G

Qt
G







such that

Θt = Θ̃I−(t)

U t = ŨI−(t)

Qt
G = Q̃

I−(t)
G

P t
G =

t− I−(t)
I+(t)− I−(t)

P̃
I−(t)
G +

I+(t)− t

I+(t)− I−(t)
P̃

I+(t)
G

Both kind of prolongation operators are illustrated in Figure 2 and 3.

3.2.3 Implementation

The setup of MASM2 consists of setting up MASM and two additional steps, namely constructing and
factorizing the coarse system matrix A0. These steps can be done either in sequential or in parallel.
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In the sequential case, construction of A0 requires communication between one master processor (com-
putes and stores A0 in its local memory) and all other other processors l (each storing R̃lA in its local
memory). Afterwards, the restriction operator R0 is applied by the master process to obtain A0 and a
LU-factorization is computed.

In the parallel case, each processor l stores the local part R̃lR
T
0 of R0 in its local memory and

construction of A0 is done in parallel which involves communication with processors l − 1 and l + 1. To
compute an LU-factorization of A0 one can use a parallel direct solver. Since the parallel efficiency for
these kind of solvers often deteriorates with increasing number of processors, it might be advantageous
to use just a subset of all available processors.

When applyingMASM2, the residual r = b−AvASM has to be computed after the application ofMASM .
This computation is done in parallel by all processors that were used to compute vASM = MASMb. Here,
communication is necessary for distributing vASM over all processors. The computation of RT

0 A
−1
0 R0r

is done by those processors that were previously used to set up A0. Each such processors extracts its
local part of the residual r and performs one forward and backward solve. Finally, the result of A−1

0 R0r

is prolongated to the fine space and added to the global vector v. Each of these steps involves global
communication.

3.3 Multilevel ASM

The numerical experiments in section 4 will show that the previously defined coarse grid correction can
substantially reduce the number of iterations of ASM-preconditioned GMRES. However, the dimension
of the corresponding coarse system matrix A0 is only divided by a factor of 2 compared to the dimension
of the original matrix A. So A0 might still be too large to be factorized in reasonable time. Fortunately,
there exists a (quite straightforward) solution for this problem: Instead of factorizing A0 and computing
an exact solution of e = A−1

0 R0r in algorithm 4, we solve the system A0e = R0r approximately by
applying again the two-level ASM algorithm 4. This can be done recursively, leading to the concept of
Multilevel Methods [11].

3.3.1 Mathematical Formulation

In the following, we consider a hierarchy of K + 1 grids of different temporal resolution given by

T K = T
T k = {t = 2s+ 1, t ∈ T k+1, s ∈ N0} ∪ {NT }, k = K − 1, . . . , 0

Each grid, except of the coarsest, is decomposed into q overlapping sub-grids, see section 3.1.1,

T k =

q
⋃

l=1

T k
l , k = 1, . . . ,K

and for each sub-grid T k
l let Rk

l ∈ {0, 1}n
k
l ×nk

denote the corresponding restriction operator as defined
in (3.1) and (3.2). Here,

nk
l =

∑

t∈T k
l

nx,t + nλ,t, nk =
∑

t∈T k

nx,t + nλ,t.

With Rk
0 we denote the restriction operator from T k to T k−1, see (3.8). For each level, we define the

corresponding global system matrix by

AK = A

Ak = Rk+1
0 Ak+1(Rk+1

0 )T , k = K − 1, . . . , 0

and sub-matrices by
Ak

l = Rk
l A

k(Rk
l )

T , l = 1, . . . , q, k = 1, . . . ,K.

The ASM preconditioner on each level k ≥ 1 is then obtained by

Mk
ASMb :=

q
∑

l=1

(Rk
l )

T (Ak
l )

−1Rk
l b.
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Our multilevel additive Schwarz method (MLASM) is now given as V-cycle in the standard multilevel
framework with an ASM-preconditioned Richardson Iteration as pre- and post-smoother, see chapter 4
in [11]:

Algorithm 5. Multilevel Additive Schwarz Method v = MLASM(r, k)

If k = 0

Compute v = (A0)−1r (0) exact coarse solution

Return v

Else

vk = Sk(0, r, ν1) (1) pre smoothing

rk = r −Akvk (2) residual computation

rk−1 = Rk
0r

k (3) restriction

ek−1 = MLASM(rk−1, k − 1) (4) approximate error

ek = (Rk
0)

T ek−1 (5) prolongation

vk ← vk + ek (6) defect correction

v = vk + Sk(vk, r, ν2) (7) post smoothing

Return v

The preconditioned Richardson iteration at level k is defined by

Algorithm 6. Preconditioned Richardson Iteration v = Sk(x, r, ν)

Set v = x

For i = 1, . . . , ν

v ← v +Mk
ASM (r −Akv)

where ν denotes the number of smoothing steps. Typical values for νi are in the range of 1 to 5. We use
the Richardson iteration, because it is one of the simplest iterative methods for solving linear systems. It
only consists of applying ASM ν times with a residual update after each iteration.

3.3.2 Implementation

Like in the previous cases, we use MLASM as right preconditioner for GMRES applied to Av = b, i.e.,
we solve

Bu = b, v = MLASM(u,K)

with the operator
B : Rn → R

n, u 7→ A MLASM(u,K).

For the parallel implementation of algorithm 5 on q processors we combine the data structurs presented
in section 3.1.2 and 3.2.3, i.e., every processor l stores R̃k

l A
k, k = 1, . . . ,K in its local memory. The

coarse system matrix A0 is distributed over a subset of q0 processors, where q0 depends on the dimension
of A0. As mentioned in section 3.2.3, using q0 < q might be computationally more efficient if T 0 just
covers a few time steps. Setting up Mk

ASM and L0U0 = A0 is done successively for k = 1, . . . ,K but
parallel within each level k.

The costs for the setup phase are dominated by LU-factorizations of Ak
l . Assume that the number

of floating point operations for computing LU = Ak
l is approximately given by C(T k

l ) ≈ c(T k
l )

α with
T k
l = |T k

l |, α ≥ 1 and c being independent of k, l. For simplicity, assume further that T k
l = 1

q
NT

2K−k , i.e.,
we ignore the overlap of sub-domains sol. Then the number of floating point operations Cl for computing
factorizations of Ak

l for all levels k = 1, . . . ,K on each processor l can approximately be computed by

Cl =

K∑

k=1

C(T k
l ) = c

K∑

k=1

(
NT

q2K−k

)α

= cNα
T

1

qα

K∑

k=1

(
1

2α

)K−k

= C̄
1

qα
1− 1

2αK

1− 1
2α

.
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If the factorization of A0 is computed in sequential, the total number of floating point operations on each
processor l is given by

C̄l = C̄

(

1

qα
1− 1

2αK

1− 1
2α

+
1

2αK

)

=: C̄ ρα(q,K)

with C̄ denoting the number of operations for computing LU = A. Thus, the maximal possible speedup
that can be obtained by GMRES + MLASM compared to a sequential LU-factorization is bounded from
above by ρα(q,K).

When applying MLASM, the operations (1-7) within level k ≥ 1 are done consecutively, but every
single operation is parallelized. Communication between processors assigned to neighbouring sub-domains
T k
l is necessary in steps 1,4 and 7. The final coarse grid correction MLASM(r0, 0) is done as described in

section 3.2.3.

4 Numerical Experiments

In this section, we present some results for our previously proposed methods applied to two differ-
ent (TCOPF ) problems. For both test cases we use the grid data case3120sp provided by MAT-
POWER [21]. This grid consists of 3120 nodes, 248 generators and 3693 transmission lines. We con-
sider a time period T = {1, . . . , 64} with step size τ = 1 hour and constant upper and lower bounds
P t
G,max, P

t
G,min, Q

t
G,max, Q

t
G,min with values provided by case3120sp. In order to obtain temporal varying

demand data P t
D, Qt

D, we use a scaling function δ : [0, 24] → [0.65, 1] that roughly models a typical
demand curve for one day. We set

P t
D = δ(t mod24)P̄D, Qt

D = δ(t mod24)Q̄D,

with reference demands P̄D, Q̄D contained in case3120sp.
The ramp constraints |P t+1

G − P t
G| ≤ τR are modelled in two different ways. For the first test case

we set R = RI = 0.2PG,max and for the second one we set R = RII = 0.8∆P,max. Here, ∆P,max,i :=
max1≤t≤63 |P t+1

G,i − P t
G,i| with PG being the result of solving (TCOPF ) with the configuration defined

above but without any ramp constraints. It holds RII,i = βiPG,max,i with βi ∈ (0, 0.5).
For solving (TCOPF ) we use the PDIPM algorithm mips which is written in Matlab code and part of

MATPOWER. In this algorithm we replace the standard Matlab backslash operator \ for solving linear
systems by our own linear solver. This solver consists of GMRES with right preconditioner given by the
restricted versions of ASM, ASM2 and MLASM, respectively. For computing LU-factorizations of local
systems Al and the coarse system A0 we use SuperLU DIST [13]. Our solver is written in C++ and
makes use of the KSPFGMRES, PCASM and PCMG methods provided by PETSc [2] which is compiled in
Release mode. All tests are performed on a Linux workstation with Intel Core i7-4770 CPU @ 3.40GHz
x 8 processor and 31,4 GB of RAM.

We set the PDIPM termination criteria ǫfeas = ǫgrad = ǫcomp = ǫcost = 10−6 and solve the arising

linear systems with relative residual tolerance ‖b−Av‖
‖b‖ ≤ 10−10, where ‖ · ‖ denotes the Euclidean norm.

When solving linear systems with this accuracy, mips needs as many iterations to converge as when applied
with direct solver \ for our test cases. GMRES is used without restarting and the maximum number of
iterations is set 200. The overlap sol is set to 1 for all tests.

4.1 Test Case 1

In a first step, we apply the one-level ASM to test case 1 and compare its performance with a block Jacobi
preconditioner. As showed in section 3.1.4, the block Jacobi preconditioner has the form of a constraint
preconditioner (CP).

Figure 4 shows the progress of PDIPM termination criteria ǫfeas, ǫgrad, ǫcomp, ǫcost obtained for q = 2
sub-domains. One can observe that convergence towards a feasible point is rather fast, whereas it takes
much longer to fulfill the optimality criteria ǫgrad < 10−6 and ǫcomp < 10−6.

In Figure 5 the number of GMRES iterations is plotted over the number IPM iteration index k. For
k ≤ 70 one can observe a slight increase in GMRES+ASM iterations for increasing q. This increase
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in iterations is typical for one-level domain decomposition methods and is due to the fact, that the
local subspace correction operators RT

l A
−1
l Rl allow exchange of information only between neighbouring

sub-domains. The more sub-domains, the more iterations it takes to propagate information across all
sub-domains. This effect becomes more intense as the PDIPM iterate converges to the exact solution
because the entries Σii corresponding to active constraints tend towards ∞, leading to an increasingly
ill-conditioned matrix A.

CP given by block Jacobi shows a similar behaviour as ASM in the first 30 IPM steps. Afterwards,
only CP with two sub-domains can conserve a stable number of iterations, whereas the performance of
CP-4 and CP-8 deteriorates.

Figure 6 shows the progress of speedup su(k) for the first k IPM iterations of GMRES+ASM and
SuperLU DIST with q = 2, 4, 8 processors compared to the reference solution time obtained by sequential
SuperLU DIST:

su(k) =

∑k
i=1 C1(i)

∑k
i=1 C(i)

with C1(i) denoting the solution time of sequential SuperLU DIST in iteration i and C(i) denoting the
solution time in iteration i of GMRES+ASM and parallel SuperLU DIST, respectively. Obviously, the
increase in GMRES iteration leads to a decreasing speedup for ASM. Nevertheless, the speedup obtained
by GMRES+ASM is significantly higher than the one obtained by parallel SuperLU DIST.

NB 3120

NE 3693

NP 248

NQ 248

NT 64

τ 1

nx,t 6736

nλ,t 6241

nx 431,104

nλ 399,424

n 830,528 0 20 40 60 80
1e-10

1e-05

1e+00

1e+05

1e+10

IPM iteration k

feas

grad

comp

cost

Table 1: Dimensions of test

case 1

Figure 4: Test case 1: Progress of ǫfeas, ǫgrad, ǫcomp, ǫcost

4.2 Test Case 2

When applying one-level ASM to test case 2, the number of GMRES iterations changes drastically. In
this case, one can observe a large increase in iterations for both increasing number of sub-domains q and
increasing IPM iteration index k, see Figure 8. The critical index k until which the number of GMRES
iterations is stable, decreases from ≈ 70 in case 1 to ≈ 11 in case 2. This different convergence of GMRES
preconditioned by ASM is a result of tighter ramp constraints hR, leading to corresponding entries Σii that
grow much faster than in case 1. Therefore, the algebraic coupling in A between variables corresponding
to different sub-domains Tl is stronger. The higher the number of sub-domains q, the more of this strong
couplings are ignored by the preconditioner MASM and the less accurately does it approximate the exact
inverse A−1.

Using a coarse grid correction can significantly reduce this effect. As one can observe in Figure 9,
the number of GMRES iterations just slightly increases for an increasing number of sub-domains q and
it is even lower than in case 1. Moreover, the convergence of GMRES preconditioned by two-level ASM
is rather insensitive to k, except of the final 10 iterations. Note that the increase in the average number
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method av. GMRES it.

ASM-2 10.6

ASM-4 18.6

ASM-8 19.6

CP-2 23.7

CP-4 42.4

CP-8 56.6

0 20 40 60 80
0

50

100

150

200

IPM iteration k

#

#2

#4

#8

#2-CP

#4-CP

#8-CP

Table 2: Average number of

GMRES iterations

Figure 5: Test case 1: Number of GMRES+(ASM/CP) iterations

per PDIPM step for q = 2, 4, 8

method av. comp. time (s)

ASM-2 12.0

ASM-4 10.5

ASM-8 7.2

LU-1 17.5

LU-2 14.4

LU-4 14.5

LU-8 16.2

0 20 40 60 80
1

2

3

4

5

IPM iteration k

#2

#4

#8

#2-LU

#4-LU

#8-LU

Table 3: Average solution time Figure 6: Test case 1: Progress of speedup for GMRES+ASM and

SuperLU for q = 2, 4, 8

of GMRES iterations from 9.0 for q = 8 to 14.8 for q = 16 is mainly due to the final IPM iterations.
Considering only the first, say, 70 IPM iterations, the average number of GMRES iterations reduces to

MLASM 1-2 MLASM 1-4 MLASM 1-8 MLASM 1-16
4.3 4.6 4.7 6.2

Concerning a practical algorithm, one might think of reducing the number of sub-domains for the final
stage of IPM.

Finally, we apply multilevel ASM to case 2 with different number of levels K = 1, 2, 3, where MLASM
with K = 1 reduces to two-level ASM. As MLASM can be interpreted as two-level ASM with inexact
coarse grid correction, one might expect less accuracy in approximating A−1 for an increasing number
of levels K, resulting in a higher number of GMRES iterations. This is exactly what can be observed in
Figure 10. However, this increase is rather moderate in our example.
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case 2

Figure 7: Test case 2: Progress of ǫfeas, ǫgrad, ǫcomp, ǫcost

5 Conclusions

In this work we propose a way of solving linear systems arising from TCOPF problems in parallel by means
of overlapping Schwarz domain decomposition methods. It was shown how to apply these methods in the
context of TCOPF and that the local sub-matrices correspond to localized formulations of TCOPF with
additional boundary conditions. Numerical tests showed that ASM can lead to a speedup of order 3-4 for 8
processors compared to sequential and parallel direct solvers. However, for tight intertemporal constraints
the performance of ASM deteriorates with an increasing number of sub-domains. We augmented ASM
with a coarse grid correction and numerical tests indicated that this combination is rather insensitive to
the number of sub-domains. Further, we applied the previously developed ASM and coarse grid correction
in a multilevel framework.

For our test cases we observed an almost linear complexity of SuperLU DIST for computing LU-
factorization of the KKT matrix, leading to a suboptimal speedup of GMRES+ASM.

In our future work, we will apply our methodology to TCOPF problems with a higher number of
intertemporal constraints. For such kind of problems we expect an increasing complexity of direct solvers
and therefore larger speedup of our method. Furthermore, we will employ inexact Interior Point methods
in order to take advantage of using iterative instead of direct linear solvers. The use of inexact local
solvers could lead to additional reduction of computational effort.

From a theoretical point of view, we will investigate whether the abstract Schwarz theory for indefinite
matrices [10] is applicable in order to obtain results concerning convergence of GMRES+ASM. The use
of nonoverlapping domain decomposition methods for TCOPF could be of further interest.

Acknowledgements

This work was carried out with the support of the German Research Foundation (DFG) within the project
HE 4760 / 8-1 in collaboration with the Institute for Industrial Production and the Institute of Electric
Energy Systems and High-Voltage Technology at Karlsruhe Institute of Technology.

Further, we want to thank the Heidelberg Institute for Theoretical Studies (HITS) for their support.

22



method av. GMRES it.

ASM-2 27.8

ASM-4 40.8

ASM-8 61.5

ASM-16 70.4
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Figure 8: Test case 2: Number of GMRES+ASM iterations per

PDIPM step for q = 2, 4, 8, 16

method av. GMRES it.

MLASM 1-2 8.4

MLASM 1-4 8.7

MLASM 1-8 9.0

MLASM 1-16 14.8
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Figure 9: Test case 2: Number of GMRES+MLASM iterations per

PDIPM step for q = 2, 4, 8, 16, K = 1

method av. GMRES it.

MLASM 1-8 9.0
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MLASM 3-8 13.6
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Figure 10: Test case 2: Number of GMRES+MLASM iterations

per PDIPM step for q = 8, K = 1, 2, 3
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Appendix

Obtaining a Reduced Form of Ā

Consider a linear system with matrix Ā defined in (2.7) as







H 0 JT
g JT

h

0 M 0 S

Jg 0 0 0
Jh I 0 0













x

s

λ

µ







=







rx
rs
rλ
rµ







.

Note that M and S are diagonal matrices with positive entries. Multiplying the second equation by S−1

yields






H 0 JT
g JT

h

0 Σ 0 I

Jg 0 0 0
Jh I 0 0













x

s

λ

µ







=







rx
S−1rs
rλ
rµ







.

Eliminating s = −Σ−1µ+M−1rs given by the second equation yields





H JT
g JT

h

Jg 0 0
Jh 0 −Σ−1









x

λ

µ



 =





rx
rλ

rµ −M−1rs





with Σ = S−1M . Eliminating µ = ΣJhx − Σ(rµ + M−1rs) = ΣJhx − Σrµ − S−1rs finally yields the
reduced KKT system

(
H + JT

h ΣJh JT
g

Jg 0

)(
x

λ

)

=

(
rx + JT

h Σ(rµ +M−1rs)
rλ

)

.

Proof of Lemma 3.2

i) Assume rankB < m. Then the columns of BT ∈ R
n×m are linearly dependent, so there is a λ ∈ R

m\{0}
with BTλ = 0. Setting v =

(
0
λ

)

6= 0 yields Kv = 0 which is a contradiction to K being nonsingular.

ii) Let Z ∈ R
n×l be a matrix with columns forming a basis of nullB. Since rankB = m, dim(nullB) =

n− dim(rangeB) = n−m. Further, there is a matrix Y ∈ R
n×m such that the columns of [Z Y ] ∈ R

n×n

form a basis of Rn and BY ∈ R
m×m is nonsingular.

Let v =

(
x

λ

)

∈ R
n+m such that Kv = 0. Then Bx = 0 and therefore x = Zz for some z ∈ R

n−m.

Multiplying the first equation
HZz +BTλ = 0

by ZT yields
0 = ZTHZz + (BZ)Tλ = ZTHZz.

Thus, z = 0 and x = Zz = 0. Multiplying the first equation again by Y T gives

(BY )Tλ = 0

and therefore λ = 0. �
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[16] H.A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich. Zürcher u. Furrer, 1870.

[17] Barry Francis Smith, Petter E. Bjrstad, and William D. Gropp. Domain decomposition : parallel
multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge,
1996. 1re dition en 1996 et 1re dition broche en 2004.

[18] Andréa A. Sousa, Geraldo L. Torres, and Claudio A. Canizares. Robust Optimal Power Flow Solution
Using Trust Region and Interior-Point Methods. IEEE Transactions on Power Systems, PP(99),
2010.
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Rüdiger Dillmann, Vincent Heuveline: Simulation of Complex Cuts in Soft Tissue with

the Extended Finite Element Method (X-FEM)

No. 2014-01 Martin Wlotzka, Vincent Heuveline: A parallel solution scheme for multiphysics

evolution problems using OpenPALM
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