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An analytically solvable benchmark problem for fluid-structure

interaction with uncertain parameters

Jonas Kratzke, Vincent Heuveline

December 21, 2016

In simulating fluid-structure interaction, e.g. for the biomechanical dynamics of aortic blood flow, a
profound benchmarking of the numerical solver is a basic prerequisite. We consider a test scenario for a
fluid-structure interaction solver including uncertain model parameters that has an analytical solution.
The solver is developed to simulate the flow and movement of the human aorta. In simulating the
biomechanical dynamics of aortic blood flow, there are usually high uncertainties with respect to the
model itself and with respect to the input parameters such as the stiffness of the vessel wall. If numerical
simulation is considered to provide assistance in a clinical context, these uncertainties also have to be
reflected in the simulation results for reliability.

To verify a solver for fluid-structure interaction with uncertain parameters, we introduce a benchmark
problem for which we derive an analytical solution. The benchmark is based on the Taylor-Couette flow
system with an additional solid domain surrounding the fluid domain. Whereas the analytical solution
is stated in polar coordinates, the problem is non-trivial for solvers based on the Cartesian coordinate
system. The stochastic space is discretised by means of a generalised Polynomial Chaos expansion. By
Galerkin projection on the stochastic basis, we obtain an intrusive Uncertainty Quantification method.
The benchmarking results for the implemented solver are in well accordance with the theoretically ex-
pected convergence properties.

1 Introduction

Several test scenarios have been published for the verification and benchmarking of fluid-structure inter-
action (FSI) simulations, e.g. the flow around a cylinder with an elastic bar by Turek et al. [13] or the
benchmarking examples by Bathe et al. [2]. However, to the knowledge of the authors, an FSI benchmark
with an analytical solution has not been stated yet, especially for the case of incorporating uncertain
parameters. An area, in which the verification of applicable FSI simulations is a basic prerequisite, is
given by the biomechanics of blood flow in elastic vessels. Blood flow is modelled by the equations of fluid
dynamics. Elasto-mechanical models can describe the movement of the vessel wall. For the interaction of
the two phases, suitable coupling conditions at the interface have to be stated [5].

Numerical simulation, such as FSI simulations, can provide crucial information in medical applications.
A recent review by Chung and Cebral [3] on the role of numerical simulation in the treatment planning of
aneurysms, for example, emphasised the potential of taking simulation results for clinical risk assessment
into account. Hereby, medical imaging of blood vessels can be enhanced with additional parameters
obtained by blood flow simulations [8]. One of these parameters is given by the wall shear stress which
correlates with endothelial cell remodelling by elongation and realignment. Its evaluation can give further
indications on the rupture risk of the vessel wall.

The outcome of a numerical simulation is subject to uncertainties on several levels. For reliable in-
formation based on simulations, they have to be carefully considered and questioned. The main levels
of uncertainties include the modelling of the relevant physiological dynamics, the calibration by medical
imaging measurements and data as well as the numerical error with respect to the discretisation and com-
putation. Methods of Uncertainty Quantification can give necessary tools for quantifying the reliability
of simulation results [9].
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This work presents the benchmarking of a finite element simulation for solving FSI problems with
uncertain parameters by means of a test case with an analytical solution.

2 Fluid-structure interaction with uncertain parameters

In general, the biomechanical behaviour of blood flow and vessel wall elasticity is highly complex and
patient-specific. Being a solution of blood plasma and cells, blood is a Non-Newtonian fluid. Only in
large vessels, it approximately behaves Newtonian [10]. Blood vessel walls consist of two or three layers
of different anisotropic nonlinear soft tissue materials [7]. For the ease of benchmarking an implementa-
tion of a fluid-structure interaction simulation, we focus on the incompressible Navier-Stokes equations
for the flow field (1), (2) and the linear elasticity equations for the solid material (3). We model the
boundary velocity and the stiffness of the solid material as uncertain parameters. The latter addresses
the circumstance, that with current medical techniques, the stiffness of a material can only be assessed
highly invasive if at all.

The considered stochastic FSI equations are given by

(v · ∇)v +
1

ρ
∇p− ν∇ · (∇v +∇vT ) = 0, in Df × Ω, (1)

∇ · v = 0, in Df × Ω, (2)

−∇ ·
(
λ(∇ · u)I + µ(∇u+∇uT ))

)
= 0, in Ds × Ω, (3)(

ρν(∇v +∇vT )− pI
)
nf +

(
λ(∇ · u)I + µ(∇u+∇uT )

)
ns = 0, on Bi × Ω. (4)

The equations (1) - (4) describe a stationary state of a velocity field v and pressure distribution p
in the fluid domain Df and a displacement field u on the solid domain Ds. These variables also have a
probability distribution over the stochastic space Ω. Equation (4) describes the balance of forces on the
fluid-solid interface Bi. The material parameters are given by the density ρ, the kinematic viscosity ν,
and the Lamé parameters λ and µ. The latter depend on the Poisson’s ratio γ and the Young’s modulus
Y via the relations

λ =
Y γ

(1 + γ)(1− 2γ)
, (5)

µ =
Y

2(1 + γ)
. (6)

As a measure of stiffness, we model the Young’s modulus as stochastically distributed. As the stiffness
is hard to assess, we assume a uniform distribution (7) as a so called ”ignorance model”. Hereby, we
do not assume any preferred values of the probability of Y. To close the system of partial differential
equations (1) - (4) appropriate Dirichlet and Neumann boundary conditions have to be defined on the
outer fluid boundary Bf and the outer solid boundary Bs. We parametrise the fluid flow Dirichlet boundary
conditions with a uniformly distributed parameter V as denoted in (8). The two stochastic parameters
of the Young’s modulus and the boundary velocity are assumed to be stochastical independent.

Y (ω) := Y0 + ωY1, ω ∼ U(−1, 1), (7)

V (ω) := V0 + ωV1, ω ∼ U(−1, 1). (8)

3 A benchmarking problem with an analytical solution

Most benchmarks for FSI simulations rely on the comparison against a highly resolved computation as
a reference solution or the comparison of several numerical approaches as it has been done for example
in [2] and [13]. The available benchmarks focus on various aspects of deterministic FSI models and do
not include uncertain parameters. Fluid flow problems with an analytical solution of the incompressible
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Navier-Stokes equations have been described for example by [4]. Yet, scenarios with an analytical solution
of an FSI system have not been published, to the knowledge of the authors. For finding an analytical
solution of an FSI problem, the challenge especially is to satisfy the coupling conditions at the fluid-solid
interface (4).

vθ2vθ1

R1
R2

(a) A three-dimensional Taylor-Couette flow sys-

tem. A fluid is contained in a cylindrical tank with

an cylindrical inner wall. Both walls are arranged

concentrically and rotate at different speed vθ1 and

vθ2 . Depending on the boundary velocities, differ-

ent fluid flow fields emerge.

vθf = Vf
uf = 0

vs = 0

us = 0

DsDf

Bf

Bi

Bs

Rf

Ri

Rs

(b) A two-dimensional cut-plane of the Taylor-

Couette flow system with an additional solid do-

main Ds surrounding the fluid domain Df . The

illustration indicates the geometry and boundary

conditions of the benchmark problem.

Figure 1: The Taylor-Couette flow system in three dimensions and with a surrounding solid domain.

In the following, we analytically derive a non-trivial solution of the FSI equations (1) - (4) based
on the Taylor-Couette flow system. As shown in fig. 1a, a Taylor-Coutte flow system consists of two
concentrically arranged cylinders, which rotate at different angular paces. At moderate to high angular
speed, the flow field develops circular revolutions. At lower speed, a laminar velocity field develops. On
a cut plane in two dimensions, this velocity field can be described explicitly in polar coordinates. This
scenario can be extended to a setup in which another solid domain is located around the fluid domain as
shown in fig. 1b. The figure also indicates the Dirichlet boundary conditions of the problem. Velocity
and displacement of the solid domain, vs and us, are set to zero at the outer solid boundary Bs, (9), (10).
The displacement uf of the inner fluid boundary Bf is also set to zero, (13). The fluid boundary velocity
in angular direction vθf is of a non-zero value Vf , (11). The radial velocity vrf at the boundary is set to
zero, (12). To summarise the Dirichlet boundary conditions, we have

vs|Bs
= 0, (9)

us|Bs
= 0, (10)

vθf |Bf
= Vf , (11)

vrf |Bf
= 0, (12)

uf |Bf
= 0. (13)

At the fluid-solid interface Bi the shear stress of the flow field yields to a displacement force of the
solid material in angular direction.

In two dimensions the system of partial differential equations (1) - (4) in Cartesian coordinates can be
transformed into a system of ordinary differential equations in polar coordinates. For laminar flow, it can
be assumed, that there is no radial velocity or displacement. Additionally, the angular derivative of the
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velocity and displacement field can be assumed to be zero. With these two assumptions, the coordinate
transformation leads to the following system of stochastic ordinary differential equations on a centerline
[Rf , Rs]:

ρν

(
∂rrv

θ(r, ω) +
1

r
∂rv

θ(r, ω)− 1

r2
vθ(r, ω)

)
= 0, r ∈ [Rf , Ri], ω ∈ Ω, (14)

ρ

r
(vθ(r, ω))2 − ∂rp(r, ω) = 0, r ∈ [Rf , Ri], ω ∈ Ω, (15)

µ(ω)

(
∂rru

θ(r, ω) +
1

r
∂ru

θ(r, ω)− 1

r2
uθ(r, ω)

)
= 0, r ∈ [Ri, Rs], ω ∈ Ω, (16)

ρν∂rv
θ(Ri, ω) + µ(ω)

(
∂ru

θ(Ri, ω)− 1

Ri
uθ(Ri, ω)

)
= 0, ω ∈ Ω. (17)

Next, we decouple the dependency of the state variables vθ, p and uθ on the geometric and the
stochastic domain. We describe the stochastic part by means of the generalised Polynomial Chaos (PC)
expansion [14]. This approach utilises series of orthogonal polynomials in order to represent the de-
pendency of the random variables on the stochastically distributed input parameters. According to the
Askey-scheme, Legendre polynomials ψk can be used for uniformly distributed input parameters. For
r ∈ [Rf , Rs] and ω ∈ Ω we expand the variables and parameters to

[
vθ(r, ω), p(r, ω), uθ(r, ω)

]
=

[ ∞∑
k=0

vθk(r)ψk(ω),

∞∑
k=0

pk(r)ψk(ω),

∞∑
k=0

uθk(r)ψk(ω)

]
, (18)

[µ(ω), V (ω)] =

[ ∞∑
k=0

µkψk(ω),

∞∑
k=0

Vkψk(ω)

]
. (19)

The coefficients of the random input parameters can be calculated by the projection

µk =
1

‖ψk‖2L2(Ω)

∫
Ω

µ(ω)ψk(ω)dω, k = 0, . . . . (20)

The expansion coefficients of the velocity, pressure and displacement are the variables, the system of
stochastic ordinary equations (14) - (17) is to be solved for. We insert (18) and (19) into the system (14)
- (17) and apply a Galerkin projection on the stochastic space spanned by the Legendre polynomials.
With that, we obtain

ρν

(
∂rrv

θ
k(r) +

1

r
∂rv

θ
k(r)− 1

r2
vθk(r)

)
= 0, r ∈ [Rf , Ri], (21)

ρ

r

∞∑
j,l=0

vθj (r)vθl (r)cjlk − ∂rpk(r) = 0, r ∈ [Rf , Ri], (22)

∞∑
j,l=0

µj

(
∂rru

θ
l (r) +

1

r
∂ru

θ
l (r)−

1

r2
uθl (r)

)
cjlk = 0, r ∈ [Ri, Rs], (23)

ρν∂rv
θ
k(Ri) +

∞∑
j,l=0

µj

(
∂ru

θ
l (Ri)−

1

r
uθl (Ri)

)
cjlk = 0, (24)

for each PC mode k = 0, . . . .

Hereby, the third order stochastic Galerkin tensor is defined by

cjlk :=

〈
ψjψl, ψk

〉〈
ψk, ψk

〉 , j, l, k = 0, . . . . (25)

The equations defining the velocity and the displacement field, (21) and (23), respectively, are Euler
equations, for which analytical solutions are known [11]. The pressure distribution can be calculated from
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the first order differential equation (22). Taking into account the boundary conditions (9) - (13) and the
coupling condition (24), one can derive the following analytical solution.

vθk(r) =
VkRf

R2
f −R2

i

(
r − R2

i

r

)
, (26)

pk(r) =
ρR2

f

(R2
f −R2

i )
2

(
r2

2
+ 2R2

i (ln(Ri)− ln(r))− R4
i

2r2

) ∞∑
j,l=0

VjVlcjlk, (27)

uθk(r) = akr +
bk
r
, (28)

with ak = − bk
R2
s

,

∞∑
j,l=0

µjcjlkbl = ρν
RfR

2
iVk

R2
f −R2

i

, (29)

for k = 0, . . . .

The PC modes of the angular velocity vθk in the fluid domain and the angular displacement uθk of
the solid domain show the same basic dependency on the radius r, see (26) and (28). The coefficients
of all three state variables depend on the radii and the uncertain input parameters. The calculation of
the coefficients of the displacement field ak and bk involves the evaluation of an infinite linear system of
equations (29). As only the first two values of µk are non-zero, and bk converges linearly to zero, we can
truncate the sum on the left hand side of (29) at a moderate number. Solving the resulting finite system
of linear equations directly, approximates the coefficients bk at a still high accuracy.

4 Numerical Results

We consider the analytically solvable problem from the previous section to verify a numerical solver for
FSI problems with uncertain parameters. The solver has been implemented by the authors within the
open-source finite element software package HiFlow3 [1,12]. The handling of the stochastic space is again
based on the generalised PC expansion with Legendre polynomials. By means of a Galerkin projection
on the PC space, the solver follows an intrusive approach. For the numerical solver, the PC expansion is
truncated at a certain number of modes M :

[v(x, ω), p(x, ω)] ≈

[
M∑
k=0

vk(x)ψk(ω),

M∑
k=0

pk(x)ψk(ω)

]
, x ∈ Df , ω ∈ Ω, (30)

u(x, ω) ≈
M∑
k=0

uθk(x)ψk(ω), x ∈ Ds, ω ∈ Ω. (31)

We have the following relation between the maximal degree of the Legendre polynomials P , the number
of stochastical independent parameters N , and the number of PC modes M [6]:

M + 1 =
(N + P )!

N !P !
. (32)

FSI problems naturally have the dualism of the fluid flow equations being formulated in the Eularian
perspective (1), (2) and the structure equations being stated in the Lagrangian perspective (3). There
are several numerical approaches in matching the two perspectives. With the aim to develop an intrusive
solver, it is suitable to use a monolithic approach for the interaction of fluid and structure, as for example
the arbitrary Lagrangian-Eularian (ALE) method [5]. However, the ALE-mapping of the fluid domain
incorporates further non-linearities in the fluid flow equations. Inserting the PC expansions (30) in these
equations leads to the occurrence of higher order stochastic Galerkin tensors. To reduce the complexity,
we model the PC modes of the ALE-displacement uALE

k |Df
not as coefficients of the regular PC expansion,

but as continuous continuation of the structural displacement PC modes:

uALE
k |Bi = uk|Bi (33)
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After inserting the PC expansions (30), (31) and (33) in the ALE version of the FSI equations (1) - (4)
and applying the Galerkin projection on the Legendre polynomial basis, the equations read as follows

M∑
j=0

M∑
l=0

JkF
−1
k (v̂j · ∇)v̂lcjlk +

1

ρ
∇ · Jkp̂kF−Tk − Jkν∇ · (∇v̂kF−1

k + F−Tk ∇v̂Tk )F−Tk = 0, in D̂f , (34)

Jktr(∇v̂kF−Tk ) = 0, in D̂f , (35)

α∆uALE
k = 0, in D̂f , (36)

−∇ ·

 M∑
j=0

M∑
l=0

(
λj(∇ · ul)Icjlk + µj(∇ul +∇uTl )

)
cjlk

 = 0, in Ds, (37)

(
ρν(∇v̂kF−1

k + F−Tk ∇v̂Tk )− p̂kI
)
nf

−

 M∑
j=0

M∑
l=0

(
λj(∇ · ul)I + µj(∇ul +∇uTl )

)
cjlk

ns = 0, on Bi, (38)

k = 0, . . . , M,

where Fk := ∇uALE
k + I and Jk := det(Fk) denote the deformation gradient tensor and the determinant

of the same in the respective PC mode k = 0, . . . , M . The hat sign indicates the definition of the fluid
flow variables with respect to the ALE reference domain D̂f . Equation (36) ensures a smooth transition
of the ALE displacement in the fluid flow domain. The diffusion parameter α has to be chosen very small,
minimising the diffusive effect on the solid displacement.

(a) Expected values of the velocity in x-direction, the pressure and the displacement in x-direction (from

left to right).

(b) Standard deviation of the velocity in x-direction, the pressure and the displacement in x-direction

(from left to right).

Figure 2: Visualization of the simulation results for the presented test problem.

We linearise the non-linear system of equations (34) - (38) with the exact Newton method. Spatial
discretisation is achieved by the stable combination of triangular finite elements of second order for the
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velocity and the displacement modes and of first order for the pressure modes. The resulting linear system
of equations is solved by a GMRES algorithm with incomplete LU-decomposition preconditioning.

Parameter Symbol Value

Radii Rf , Ri, Rs 0.2, 0.35, 0.5

Viscosity, density ν, ρ 1× 103, 1.5× 10−3

Boundary velocity V0, V1 1, 0.5

Reynolds number Re 50 - 150

Young’s modulus Y0, Y1 5.6, 2.8× 103

Poisson’s ratio γ 0.4

Table 1: List of parameters for the numerical simulation benchmark.

Fig. 2 shows the computed expected value and the standard deviation of several variables. The
parameters, which have been used for the test scenario in this paper are summarised in table 1. In the
fluid domain, the expected flow and pressure field develops as prescribed by the Taylor-Couette flow
equations. The angular displacement is highest at the fluid-structure interface and smoothly decreases
towards the inner and the outer boundary.
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Figure 3: Numerical convergence results with respect to the L2-error (39). The upper row shows

the error with respect to the resolution of the discrete geometric domain. For each resolution level,

the mesh size is halved. The lower row shows the error with respect to the maximal polynomial

degree of the stochastical polynomial basis.

We compute the error with respect to the analytical solution by the relative L2-error:

eL2 :=
‖Uh − U‖L2(D,Ω)

‖U‖L2(D,Ω)
, (39)

‖U‖2L2(D,Ω) :=

∫
Ω

∫
D
|U(x, ω)|2dxρ(ω)dω, (40)

where U can be any of the state variables. Fig. 3 shows the relative L2-error convergence of the computed
results with respect to the spatial domain resolution and with respect to the maximal polynomial degree
P of the PC expansion. With the choice of the parameters, the expected value and the first PC mode
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referring to the velocity field are non-zero. The other velocity PC-modes are zero. Hence, for P > 1, the
velocity error does note depend on the maximal polynomial degree of the PC expansion. The results for
the velocity are in accordance with the independence on the PC expansion truncation. The pressure has
one additional non-zero PC mode. For P = 1, this mode is not considered, but for P ≥ 2, it is taken into
account. Accordingly, we observe an accuracy gain for the pressure from P = 1 to P = 2. The PC modes
of the displacement are zero if the mode index refers to a polynomial degree of the velocity parameter
expansion of higher than one. This leads to a linear convergence of the displacement error with respect
to the polynomial degree. With regard to the spatial discretisation, the geometry has to be resolved fine
enough in order to observe convergence with respect to the PC expansion. Vice versa, the PC expansion
has to be accurate enough to observe a quadratic convergence with respect to mesh refinement.

5 Conclusion and Outlook

In this work, we presented a test problem for FSI simulations with uncertain input parameters. The
test problem is based on the Taylor-Couette flow with an additional solid domain surrounding the fluid
domain. We derived an analytical solution of the two-dimensional case in polar coordinates. For the
Uncertainty Quantification we utilised a Polynomial Chaos expansion. The test problem can be used
for benchmarking numerical FSI solvers relying on Cartesian coordinates. The intrusive UQ solver for
FSI problems implemented by the authors shows well accordance with the theory with respect to the
numerical convergence.

Future work will include the application of the verified solver to more complex three-dimensional FSI
problems with uncertain parameters. One of these applications is given by aortic blood flow with an
elastic vessel wall. Hereby, the imprecisely known stiffness of the vessel wall can be modelled as uncertain
input parameter. Measurement inaccuracies are also given with respect to the blood flow velocity field
and the pressure ratios. The propagation of inaccuracies can be described by simulations which include
the quantification of uncertainties.

For the scalability of the solver to a higher complexity in the considered problems, specific linear
solving routines can be developed. The discrete system of equations has a block structure, both with
respect to the fluid-structure components and with respect to the intrusive Uncertainty Quantification
approach. This structure can be exploited for the derivation of efficient preconditioners.

6 Acknowledgement

This work was performed on the computational resource bwForCluster MLS&WISO (Production) and the
authors acknowledge this support by the state of Baden-Württemberg through bwHPC and the German
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