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Zusammenfassung

For real-time simulations of stiff models on electronic control units, one important ingredient is
to reduce computation time within differentiation of the right-hand side of the underlying differential
equation. A sparsing method represents a powerful tool in this context. For a reliable use of a real-
time simulation of a stiff model in safety-critical conditions, it is important to be able to detect,
when sparsing leads to an improper influence on the considered system. In this work we propose an
extension which aims at addressing this numerically challenging problem in the context of real-time
simulation.

1 Introduction

This work focusses on the extension of a sparsing approach in the context of the computation of an
inexact Jacobian matrix for the purpose of enabling a real-time capable simulation of stiff models on
electronic control units. This work is strongly related to [8], where large parts of this work are excerpted
from and where central ideas of this work have been developed and formulated.
Differential equations offer a concise description of dynamic processes. Regarding software functions in
electronic control units, they are applied to describe models that are used in model-based control and
diagnosis and in virtual sensors (cf. [1, 5]). In comparison to data-driven approaches, a model described by
differential equations can have various advantages (cf. [16, 8]): it can admit comprehensible relations wi-
thin the model and support an understanding of the model. Furthermore, the computational and memory
needs of models described by differential equations can show a better scaling than several data driven
approaches in the case of a large number of model parameters. Additionally, the effort of parameterizing
can be small compared to data driven approaches, if the model parameters have physical meanings and
can be measured with moderate effort, as it might be the case, e. g., for lengths and weights (cf. [11]). One
further advantage of models described by differential equations is that they might lead to more plausible
results when used in operating points, where no measurements would be available for a data-driven model
(cf. [9]).
Especially in the case of models described by stiff differential equations, a real-time simulation in electronic
control units leads to numerical challenges. This is due to requirement that a time step of the real-time
simulation of the stiff differential equations within a software function in the electronic control unit has
to be performed with a comparatively reduced computational effort, e. g., in a hundred microseconds
of computation time of a core of a microchip like an Infineon TC29x that has two TriCore 1.6P with
300 MHz and one TriCore 1.6E with 200 MHz (cf. [12, 8]). For the simulation of a model with 25 to 75
states, as it is regarded in [8], it is therefore a central requirement to reduce the computational effort of
a time step of a simulation, in order to enable a real-time capable simulation of a model described by
an ordinary differential equation in a software function in an electronic control unit. Furthermore, it is
essential to avoid instabilities in the simulation as this might have critical consequences in the software
function that uses the simulation of the model.
In [8] a linearly implicit Euler method, i. e., an implicit Euler method that uses exactly one Newton
step to solve the arising potentially nonlinear equation system, is used as integration method. It is an
A-stable integration method of order 1 (cf. [4]) and leads to a computational effort that tends to be not
larger or even smaller than in the case of other integration methods as other variants of the implicit
Euler methods or exponential integrators. The computational effort consists of evaluating the right-hand
side of the differential equation, differentiating respectively computing an approximation of the Jacobian
matrix of the right-hand side and solving a linear equation system. For each part, there are approaches
to reduce the computational effort.
One kind of methods that can affect both the differentiation and the solution of the linear equation
system are sparsing methods. The underlying idea is to replace suitable entries of a Jacobian matrix of
the right-hand side by zeros. If these entries are determined offline, it is not necessary to compute these
entries of the Jacobian matrix during runtime. This can be used to reduce the computational effort of the
differentiation. A further consequence is that the structure of the linear equation system is sparsed hereby,
which gives the method its name and leads to a reduction of the computational effort of the solution of the
linear equation system, in case that a structure exploiting solution method is used. Sparsing is described
in more detail in the chapter 2.
A main challenge in sparsing is to identify entries that are suitable to be replaced by zeros and to be
able to detect, when a chosen sparsing leads to improper influences on the system dynamics. For this,
approximations can be used that quantify the impact of a sparsing on the system dynamics, as described
in chapter 2. With regard to an application in real-time simulations on electronic units, it is necessary to
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be able to detect improper influences reliably. For this purpose, an approximation is developed in chapter
3 that can be used to quantify the impact of a sparsing on the systems dynamics in conditions, where this
is not case for an established approach and therefore increases the ability to detect improper influences
of the system dynamics due to sparsing and increase the reliability of the usage of sparsing.

2 Related Work

In this chapter, an introducing overview about sparsing approaches that have been discussed in the context
of real-time simulations in automotive applications, is given. Furthermore, related methods as mixed-mode
integration respectively IMEX-integration that has the idea to use an implicit integration method only
for some states and an explicit integration method for the remaining states and that can be regarded
as a special case of a sparsing method, is described. Additionally, the approach of a colored Jacobian
matrix that supports to exploit the sparsed structure of the Jacobian matrix for runtime reductions
during differentiation, is summarized. Then, a sparsing approach by [14] that will be extended in chapter
3, is regarded in detail.

2.1 Sparsing approaches

So called W methods (cf. [17, 19]) are implicit integration methods that have the property that a reduction
of the approximation order of the Jacobian matrix does not lead to a reduction of the convergence order
of the integration method as their convergence order holds even when the Jacobian matrix is chosen
arbitrarily except for trivial special cases. The underlying idea of sparsing is to reduce the computational
effort of a solution of a stiff differential equation by using a W method as integration method, in order
to reduce the computational effort for the solution of the arising linear equation system by sparsing its
structure in a manner that the system dynamics is influenced only slightly. The sparsing of the linear
equation system leads to a reduction of the computational effort, if a structure exploiting solution method
is used for the linear equation system. A sparsing can be done in each time step. This is denoted dynamic
sparsing. In the context of real-time simulations, a sparsing can be determined offline, in order to avoid
the computational effort to evaluate sparsing criteria during runtime.

Dynamic sparsing

Dynamic sparsing is introduced in [10]. A threshold for the value of the elements of the Jacobian matrix
of the right-hand side is used as sparsing criterion. Elements with a smaller value are replaced by zero.
This approach leads to a significant sparsing, if several elements with small values are present. It has to
be mentioned that the influence of the sparsing of an element of the Jacobian matrix of the right-hand
side cannot or only in a loose manner be characterized by its value (cf. [13]). Therefore, this approach is
in general not suitable to be used to sparse elements that do not have a very small value.
The sparsing described in [10] seems not to be beneficial for applications in real-time simulations in
electronic control units for several reasons: Due to the fact that the sparsing is not due to a physical
relation of the Jacobian matrix elements, but rather due to purely algebraic properties, the risk of an
improper influence on the system dynamics arises, if the thresholds for the values of the elements are
chosen too large. Otherwise, less elements are sparsed as it might be possible by other sparsing approaches
that consider the properties of the system dynamics more appropriately and that are therefore able to
suggest a more distinguished indicator for the sparsibility of an element.

Sparsing approaches for real-time simulations for automotive applications

With regard to real-time simulations for automotive applications, sparsing approaches are developed in
[14] and [13]. There, sparsing is used within the solution of differential-algebraic equations in hardware-
in-the-loop systems that have PC hardware. In this approach, the equation obtained by the integration
method is linearized and transformed to block diagonal form that has triangle matrices on its block
diagonal, by the QZ algorithm. For each element respectively subset of elements of the arising matrix,
a criterion is used to decide, whether this element respectively subset of elements can be replaced by
zero without influencing the system dynamics in a significant way. One benefit of this approach is that
the sparsing criterion for each element of the Jacobian matrix of the right-hand side can be obtained
essentially by the computation of a scalar product.
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The sparsing in [14] is done during runtime, whereas the sparsing in [13] is done offline. Because there is
plenty of computation time for an analysis, if it is done offline, in the latter work an effortful optimization
algorithm is used to determine a proper sparsing. Besides that difference, the approaches in both works
are substantially congruent.
The sparsing in [14] and [13] aims for differential-algebraic equations. In the following, the approach will
be described in the case of an ordinary differential equation, as for an application in electronic control
units, the latter one already leads to major challenges that have to be mastered. In the following, the
solution of the system

ẋ (t) = f (t, x) ,

with a linearly implicit Euler method with step size ∆t is regarded. The Jacobian matrix of the right-hand
side is denoted by Jf and A denotes a sparsing of the Jacobian matrix.
To decide, whether the replacement of an Jacobian matrix element leads to a significant impact on the
system dynamics, the changes of the eigenvalues of the matrix pair

(B,C) = (I −∆tA, I + ∆t (Jf −A)) ,

induced by the linearized difference equation

(I −∆tA)xn+1 = (I + ∆t (Jf −A))xn, (1)

due to the integration by the linearly implicit Euler method are regarded. The discrete evolution in
equation 1 is only partially determined by the eigenvalues, because neither the basis nor the corresponding
eigenspaces are considered. Despite of this, it is sensible to use changes of the eigenvalues as indicators
for the impact on the system dynamics: First, they are obtainable with a feasible computational effort.
Second, it is plausible that if a sparsing of an element of Jf (t, x) leads to a significant impact on the
discrete evolution in equation 1, it will also affect the eigenvalues in many cases.

Mixed-Mode Integration

One relevant special case of sparsing is mixed-mode integration that is described in [15, 3] for the context
of real-time simulations, and which is also referred to as IMEX integration in other contexts. The idea
is that those states of a stiff differential equation are solved with an explicit integration method, where
this leads to a stable result. Only the remaining states are solved with an implicit integration method.
The resulting benefit is that the dimension of the arising equation system within the implicit integration
method is decreased and therefore, the corresponding computational effort is reduced.
According to [15], mixed-mode integration can be beneficially applied to models, where dynamics of
different time scales are present. This is widespread for models in automotive applications in electronic
control units (cf. [8]). Therefore, mixed-mode integration is a suitable approach in this context.
To see that mixed-mode integration is a special case of sparsing, let I denote the set of indices of those
components of a stiff differential equation that are solved with an explicit integration method within
mixed-mode integration. Then, replacing all elements of each column of the Jacobian matrix of the right-
hand side with index i ∈ I and of each row with index i ∈ I leads to an equation system that is equivalent
to one that is obtained by mixed-mode integration.

Colored Jacobian matrix

In [7] colored Jacobian matrices are introduced. This approach is applicable in differentiation methods that
use evaluations of directional derivatives, e. g., numerical differentiation and automatic differentiation.
The intention of the coloring is to reduce the number of evaluations of directional derivatives that is
required to determine a Jacobian matrix. This is achieved by choosing an appropriate set of directions
for the directional derivatives. For example, a Jacobian matrix in diagonal form can be determined by
computing only one directional derivative, if that direction has no component with value zero.
In general, the determination of suitable sets of directions for the directional derivatives can be formulated
as a graph coloring problem, which leads to the name of the approach (cf. [7]). This problem is NP-
hard and therefore for now not solvable with feasible computational effort. There are, however, suitable
approximation methods available.
For sparse Jacobian matrices, this approach can lead to significant reductions of the computational effort
of the differentiation within the solution of a differential equation. In [2] this approach is investigated for
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two fluid models in the context of plants. There, runtime reductions between 50 % and 80 % are obtained.
Also in [8], this approach was used to contribute to a significant runtime reduction in case of a real-time
simulation of a pipe model that describes mass and enthalpy transport, in an application in an electronic
control unit.

2.2 Approximation of the impact of sparsings

An approximation that is developed in [14], relates the sum
∑
i

(
λ̃i − λi

)
of differences of the eigenvalues

λ̃i obtained after sparsing to the eigenvalues λi that are obtained without sparsing, without computing
the eigenvalues or eigenvectors explicitly. This is described in Theorem 4 in [14]:

Theorem 1. Let (B,C) be a diagonalisable matrix pair with eigenvalues λi and left eigenvectors yi
and right eigenvectors xi. Assume all eigenvalues to be algebraically simple and C to be regular. Let E
be a sufficiently small O (ε) perturbation matrix. Let λ̃i denote the eigenvalues of the perturbed matrix
pair (B + E,C + E). Then, a first order approximation for the sum of differences between perturbed and
unperturbed eigenvalues is given by∑

i

(
λ̃i − λi

)
= tr

(
C−1E

(
I − C−1B

))
+O

(
ε2
)
.

As a corollary, the following approximation is obtained for the matrix pair

(B,C) = ((I −∆tA) , I + ∆t (Jf −A)) ,

if the assumptions of the previous theorem are fulfilled:∣∣∣∣∣∑
i

(
λ̃i − λi

)∣∣∣∣∣ ≈ ∣∣∣tr((I −∆tJf )
−1

∆t∆J
(
I − (I −∆tJf )

−1
(I + ∆tJf )

))∣∣∣ (2)

with ∆J = A− Jf . This approximation is the foundation for determining a suitable sparsing.

Properties The equation 2 approximates the sum of differences of eigenvalues of the discrete evolution
of equation 1. If the perturbation of each eigenvalue is sufficiently small, the stability of the solution of
the differential equation without sparsing is maintained in case that a sparsing is used. Additionally, the
system dynamics is changed unessentially. The impact on the accuracy of the solution of the differential
equation is considered insignificant in [14] with the following argument: By using a W method as inte-
gration method, using an inexact Jacobian matrix will not lead to a reduction of the order of consistency
respectively order of convergence in case of a stable solution of the differential equation. For sufficiently
small step sizes, an adequate accuracy is expectable also in case of using a sparsing.
One requirement for the validity of the approximation of equation 2 is that the nonlinear perturbation
terms are small. For this, in [14] it is suggested to choose the diagonal blocks within the block diagonali-
zation in a manner that different diagonal blocks do not contain eigenvalues that are close to each other.
Concerning this, as described in [13], a triangularization of the matrix of the linearized discrete evolution
in equation 1 is done first. Second, Givens rotations are used to obtain an appropriate clustering of the
eigenvalues. Then, a block diagonalization corresponding to the clustering of the eigenvalues is performed.

Cancellation effects In [14], it is pointed out that cancellation effects within the approximation in
equation 2 can lead to the situation that on the one hand, a sparsing has a strong and improper influence
on the system dynamics despite this sparsing seems to have an insignificant impact on the system dynamics
according to the approximation in 2. This can be caused by cancellation of the perturbations of different
eigenvalues. This risk is generally present in this sparsing approach and according to [14] it is considered
substantial in case of oscillating modes.
An extension of the approximation, where such cancellation effects do not occur, because instead of∑

i

(
λ̃i − λi

)
the term ∑

i

∣∣∣λ̃i − λi∣∣∣2
is approximated, is shown in chapter 3.
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Results In [14], sparsing is applied to a real-time simulation of a model described by a differential
equation. There, a considerable simplification of the structure of the linear equation systems arising in
the solution of the differential equation is achieved. By this, a reduction of the runtime for the solution
of the arising linear equation system by over 65 % is obtained.

3 Extension of a sparsing approach

Sparsing according to [13] and [14] is developed for real-time simulations. Determining a sparsing offline,
as described [13], is suitable for real-time simulations of stiff models in software functions in electronic
control units. The approximation in equation 2 suggests suitable Jacobian matrix elements that can be
sparsed.
In the following, the theoretical foundation of sparsing according to [13] and [14] is described. This
description of sparsing adapts the explanations in[14], where differential-algebraic equations are regarded,
for the case of ordinary differential equations. The obtained theoretical framework will be used to develop
an extension of the approach that enables detecting an improper influence on system dynamics due to a
sparsing in conditions, where the original approach would not indicate that improper influence due to a
sparsing: As described in 2.2, cancellation effects in the term

∣∣∣∑i

(
λ̃i − λi

)∣∣∣ in equation 2 can cause a
misleading indication of the suitability of a given sparsing. The term∑

i

∣∣∣λ̃i − λi∣∣∣2 ,
does not suffer from this risk of such cancellation effects. An approximation for that term will be given.
Solving the ordinary differential equation

ẋ (t) = f (t, x) ,

with a linearly implicit Euler method leads to the integration equation:

xn+1 =
(
I + (I −∆tJf )

−1
∆tJf

)
xn = Fxn. (3)

Now, the Schur form of F is determined using a QR algorithm: Let T = UHFU with a unitary matrix U
and a triangle matrix T . The diagonal elements of T are the eigenvalues of F . A transformation of T is
performed, in order to obtain a triangle matrix, which has the eigenvalues of F on its diagonal in an order,
so that they are clustered corresponding to their values. The aim of this clustering of the eigenvalues will
be become clear in the further course of the explanation. Also, the requirement to this clustering of the
eigenvalues into clusters Si will be specified further.
This transformation of T corresponding to choice of the clusters Si of eigenvalues is obtained by Givens
rotations. Without loss of generality, this transformed matrix will also be denoted with T = UHFU .
The next step is a block diagonalization of T . This is done in a manner that those subsets of columns of
T that correspond to different clusters Si of eigenvalues, are orthogonal. For this, the following algorithm
from[13] is used:
Let Pi,j denote the canonical projection on the space generated by {ek| i ≤ k ≤ j}, i. e.,

Pi,jek =

{
ek , if i ≤ k ≤ j,
0 otherwise.

Let T1 = UH1 FU1 and T2 = UH2 FU2 be two Schur forms of F , where in T1 all eigenvalues of a cluster Si0
are contained in the leading k diagonal elements, whereas in T2 all eigenvalues of the cluster Si0 occur in
the same order in T2 as the last k diagonal elements. Let

Y2 = Pk+1,nU1,

Y1 = Pn−k+1,nU2,

X1 = P1,kU1,

X2 = P1,n−kU2.
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The set of columns is orthogonal for each of these matrices. Furthermore, it holds Y H1 FX2 = 0 and
Y H2 FX1 = 0. This yields: (

Y H1
Y H2

)
F
(
X1 X2

)
=

(
T (1) 0

0 T (2)

)
.

Analogously, T (2) can be obtained by a corresponding transformation for a further cluster Si 6= Si0 . By
iteration, T can be transformed to block diagonal form with diagonal blocks that are in triangle form
and that correspond to the clusters Si of eigenvalues. If the matrix F is diagonalisable, matrices X and
Y are obtained by this procedure, so that Y HFX is diagonal.
In the following, the impact of a perturbation εM of the matrix F on the eigenvalues will be characterized.
It is assumed that F has only algebraically simple eigenvalues. In particular, F is diagonalisable. Let(

Y H1
Y H2

)
M
(
X1 X2

)
=

(
M11 M12

M21 M22

)
.

According to theorem 2.8 in [18], there exist transformation matrices X̃, Ỹ with

Ỹ H (F + εM) X̃ =

(
T (1) + εM11 + εM12P 0

0 T (2) + εM22 + PεM12

)
,

where it is X̃1 = X1 + PX2 and Ỹ2 = Y2 − Y1PH with

‖P‖ ≤ 2
‖εM21‖

sep
(
T (1), T (2)

)
− ‖εM22‖ − ‖εM22‖

(4)

and
sep
(
T (1), T (2)

)
=

(
inf
‖Q‖=1

∥∥∥QT (1) − T (2)Q
∥∥∥) > 0. (5)

Furthermore, the column vectors of X̃1 respectively of Ỹ2 form a basis for the simple right respectively
left invariant subspaces of F + εM . Equation 4 and equation 5 yield ‖P‖ = O (ε) and therefore

X̃1 = X1 +O (ε)
P

‖P‖
X2 (6)

and

Ỹ2 = Y2 − Y1O (ε)
PH

‖PH‖
. (7)

Analogously, it is inferred

X̃2 = X2 +O (ε)
P̂∥∥∥P̂∥∥∥X1 (8)

and

Ỹ1 = Y1 − Y2O (ε)
P̂H∥∥∥P̂H∥∥∥ . (9)

Altogether, the following equation can be concluded:

Ỹ H (F + εM) X̃ =

(
T (1) + εM11 +O

(
ε2
)

O
(
ε2
)

O
(
ε2
)

T (2) + εM22 +O
(
ε2
) ) .

At this point, the choice of the clusters Si of eigenvalues comes into effect. Due to the fact that the
eigenvalues are clustered in different diagonal blocks corresponding to their value, different diagonal
blocks do particularly not contain eigenvalues that are close to each other. Therefore, the linear parts
of the perturbation terms are a good approximation of the perturbations and the nonlinear parts of the
perturbation terms can be neglected (cf. [14, 18]). If there would be eigenvalues in different diagonal
blocks that are close to each other, the nonlinear parts of the perturbation terms tended to be large.
As the nonlinear perturbation terms can be neglected in the given situation, it holds

Ỹ (F + εM) X̃ ≈
(
T (1) + εM11 0

0 T (2) + εM22

)
.
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In order to quantify the impact of the perturbation by the sparsing on the eigenvalues, it consequently
suffices to quantify the impact of the perturbation by the sparsing on the eigenvalues of the corresponding
diagonal block.
If F is diagonalisable and has only algebraically simple eigenvalues, a clustering, where each eigenvalue
forms a separate cluster, leads to diagonal blocks that are single elements. For this case, particularly
handy statements about the impact of a perturbation εM of the matrix F on the eigenvalues can be
given.

Lemma 2. Let the matrix F have only algebraically simple eigenvalues. Let Y respectively X be matrices
that contain the left respectively right eigenvectors as column vectors, so that Y HFX and Y HX are
diagonal. Then, the following statements hold for sufficiently small ε > 0 and a matrix Λ̃ of eigenvalues
λ̃i of the perturbed matrix F + εM :

1. Λ̃ = X−1 (F + εM)X +O
(
ε2
)
. In particular, X−1 (F + εM)X is diagonal up to auf O

(
ε2
)
terms.

2. Λ̃− Λ = X−1εMX +O
(
ε2
)
for sufficiently small ε > 0.

3.
∑
i

(
λ̃i − λi

)
= tr (εM) +O

(
ε2
)
.

Beweis. Claim 1 follows from corollary 2 in [14] applied to the matrix pair (A,B) = (F, I) with (E,F ) =
(εM, 0).
Claim 2 is inferred from claim 1 due to the fact that the elements of Λ̃ depend continuously on ε, as, e.
g., in corollary 2.3 in [18] yields, and that therefore the order of the eigenvalues in Λ̃ and Λ coincides.
Moreover, it holds

Λ = lim
ε→0

Λ̃ = lim
ε→0

(
X−1 (F + εM)X +O

(
ε2
))

= X−1FX.

Therefore, the following equation can be concluded:

Λ̃− Λ = X−1 (F + εM)X +O
(
ε2
)
−X−1FX,

= X−1εMX +O
(
ε2
)
.

Together with ∑
i

(
λ̃i − λi

)
= tr

(
Λ̃− Λ

)
= tr (εM) +O

(
ε2
)
,

this yields claim 3.

As already described, this approximation leads to the risk that substantial changes of the eigenvalues are
not detected due to cancellation effects. The following statement gives an approximation that avoids such
cancellation effects in the case of real perturbation matrices.

Lemma 3. Let F be a real matrix with only algebraically simple eigenvalues. Then the following equation
holds for sufficiently small ε > 0 and a matrix Λ̃of eigenvalues λ̃i of the perturbed matrix F + εM with
εM ∈ Rn:

n∑
i=1

∣∣∣λ̃i − λi∣∣∣2 ≤ tr
(
ε2M2

)
+O

(
ε3
)
.

Beweis. Choose matrices X and Y according to page 6 , so that Y HFX is diagonal. Due to F ∈ Rn,
the matrix U that arises during the determination of X and Y , is real. Therefore, X and Y are also
real. Furthermore, X is regular. Choose X̃ and Ỹ according to page 6, so that Ỹ H (F + εM) X̃ is also
diagonal. Then, X̃ and Ỹ fulfil the requirements of Lemma 2. Consequently, for sufficiently small ε > 0
it holds

Λ̃− Λ = X̃−1εMX̃ +O
(
ε2
)
.

By complex conjugation of the overall setting, it can be concluded analogously that the following equation
holds for sufficiently small ε > 0:

Λ̃− Λ = X̃−1εMX̃ +O (ε2).
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Equation 6 and equation 8 yield X̃ = X +O (ε). Because X is regular, X̃ is also regular for sufficiently
small ε > 0. Furthermore, it is X̃−1 = X−1 +O (ε) and due to X ∈ Rn, it therefore holds

X̃X̃−1 = (X +O (ε)) (X−1 +O (ε)) = I +O (ε) .

For sufficiently small ε > 0, the following equation can therefore be concluded

n∑
i

∣∣∣λ̃i − λi∣∣∣2 = tr
((

Λ̃− Λ
)(

Λ̃− Λ
))

,

= tr
((
X̃−1εMX̃ +O

(
ε2
))(

X̃−1εMX̃ +O
(
ε2
)))

,

= tr
(
X̃−1εMX̃X̃−1εMX̃ +O

(
ε3
))
,

= tr
(
ε2M2

)
+O

(
ε3
)
.

In the following, the previous results are used to determine the suitability of a sparsing of a subset
of elements of a Jacobian matrix of the right-hand side within the solution of an ordinary differential
equation with a linearly implicit Euler method.
Within a linearly implicit Euler method, where a sparsing is used, the equation

xn+1 =
(
I + ∆t (I −∆tA)

−1
Jf

)
xn, (10)

replaces the integration equation 3. Equation 10 can be regarded as integration equation within a linearly
implicit Euler method, where F is perturbed by the matrix εM with

ε =
∥∥∥∆t

(
(I −∆tA)

−1 − (I −∆tJf )
−1
)
Jf

∥∥∥ , (11)

M =
∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

ε
.

This is confirmed by

F + εM = I + (I −∆tJf )
−1

∆tJf + ∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf ,

= I + (I −∆tA)
−1

∆tJf .

It is mentioned that
lim
A→Jf

ε = 0,

so that ε is small in case of small perturbations of the Jacobian matrix. Altogether, the following theorem
can be concluded.

Theorem 4. Let λi be eigenvalues of the matrix F = I + (I −∆tJf )
−1

∆tJf and let λ̃i be eigenvalues
of the matrix I + (I −∆tA)

−1
∆tJf . Let F have only algebraically simple eigenvalues. Moreover, let A

and Jf be real and ε be defined according to equation 11. If ε > 0 is sufficiently small, it holds:

1.
∑
i

(
λ̃i − λi

)
= tr

(
∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

)
+O

(
ε2
)
.

2.
∑
i

∣∣∣λ̃i − λi∣∣∣2 = tr
((

∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

)2)
+O

(
ε3
)
.

Beweis. Choose matrices X̃ and Ỹ as described on page 6. Due to their existence, claim 1 can be inferred
from lemma 2 and claim 2 from lemma 3 by applying them to

F = I + (I −∆tJf )
−1

∆tJf

and
εM = ∆t

(
(I −∆tA)

−1 − (I −∆tJf )
−1
)
Jf .
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Some remarks have to be given on the previous theorem:
Claim 1 from theorem 4 is a slightly modified adaptation of the approximation according to theorem 4
in [14]. There, the impact of the perturbations of the Jacobian matrix by a sparsing are addressed via a
formulation as a generalized eigenvalue problem. If the integration equation 1 is interpreted in this sense,
then this theorem does not immediately yield a theorem that is analogous to theorem 4, because the
matrix pair (E,F ) would have to be chosen as

(
I + (I −∆tA)

−1
∆tJf , 0

)
. In theorem 1, only matrix

pairs of the form (E,E) are admitted. The approximation that can be inferred from this theorem, is
shown in equation 2.

By the approximation of
∑
i

∣∣∣λ̃i − λi∣∣∣2 , it is possible to detect the occurrence of large differences λ̃i −

λi, even if they do not lead to large values of
∑
i

(
λ̃i − λi

)
. This detection is valuable. For a reliable

application of sparsing, it has to be considered that the nonlinear perturbation terms are assumed to be
negligible. This holds for sufficiently small ε > 0. Furthermore, it can also hold for large valuesε, if the
eigenvalues can be clustered appropriately. Therefore, this approximation is not restricted to the sparsing
of Jacobian matrix elements with small values, if the eigenvalues of the integration equation of the linearly
implicit Euler method are suitable.

Algorithm

In order to summarize the investigated sparsing approach, a description of the method is given in algorithm
1. Compared to the sparsing approach introduced in [14], the difference is given in steps ChoiceBounds
and Check2. The choice of suitable bounds is discussed in section 3.

Algorithm 1 Proceeding of the investigated sparsing approach.
1: Determine Schur form F of Jacobian matrix of the right-hand side using QR algorithm.
2: Cluster eigenvalues into sets S1, . . . , Sm.
3: Obtain transformed Schur form F (1) with clustered eigenvalues on main diagonal according to
S1, . . . , Sm using Givens rotations.

4: for i = 1 to m do
5: Calculate two Schur forms T (i)

1 and T (i)
2 of F (i), where all eigenvalues of Sj are contained in the

leading k diagonal elements in T (i)
1 and in the last k diagonal elements in the same order in T (i)

2 .
6: Denoting Pj1,j2 the corresponding canonical projection, calculate X and Y with X =

(
X1 X2

)
and Y =

(
Y H1
Y H2

)
and

Y2 = Pk+1,nU1,

Y1 = Pn−k+1,nU2,

X1 = P1,kU1,

X2 = P1,n−kU2.

7: Obtain block diagonalization
(
T (1) 0

0 T (2)

)
=

(
Y H1
Y H2

)
F
(
X1 X2

)
of the Schur form F (i).

8: Set F (i+1) = T (2).
9: end for

10: Choose bounds C1 and C2 suitably, e. g. C1 = mini (ri) and C2 = mini
(
r2i
)
with ri = d (λi, ∂B1 (0)).

11: Check tr
(

∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

)
+O

(
ε2
)
< C1.

12: Check tr
((

∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

)2)
+O

(
ε3
)
< C1.

For an application in real-time simulations, a promising candidate for the sparsing has to be determined
at first. For this, different approaches are discussed in [8]. As described there, one central benefit of the
considered sparsing approach is that it is a valuable support during the determination of such candidates
as it offers enlightening insights to the system properties.
When a sparsing candidate is determined, the influence of the considered sparsing on the eigenvalues
of the system can be examined by algorithm 1. The value of this influence serves as an indicator for
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the suitability of the sparsing. In case of a strong influence on the eigenvalues, the sparsing tends to
be insufficient. A small influence on the eigenvalues is desired. In this case, an elaborate validation of
the chosen sparsing can be performed depending on the requirements regarding reliability. Therefore, a
collateral benefit of the sparsing approach is that it enables a reduction of the validation effort for a
sparsing as it enables a meaningful judgment with a comparatively small effort.

Choice of bounds

In the previous considerations, it is regarded, how the impact of a sparsing of a Jacobian matrix of the
right-hand side within the solution of an ordinary differential equation on the eigenvalues of the linearized
integration equation 3 can be approximated. This impact serves as indicator for the impact of a sparsing
on the system dynamics. One question that arises, is, which changes of the eigenvalues in equation 3 can
be considered admissible. With regard to a sparsing criterion, this corresponds to the choice of bounds
C1 and C2, so that, if a sparsing of a Jacobian matrix fulfils the inequalities∑

i

(
λ̃i − λi

)
≤ C1, (12)

∑
i

∣∣∣λ̃i − λi∣∣∣2 ≤ C2, (13)

the sparsing can be considered admissible.
Inherently, the bounds C1 and C2 depend on the ordinary differential equation that is solved, and on the
requirements to the integration result. As described in [8], a stable solution is typically a requirement
in the context of real-time simulation in software functions in electronic control units. Therefore, two
heuristic inequalities for C1 and C2 can be justified:
The stability, i. e., the boundedness of the solution of an ordinary differential equation suggests that the
eigenvalues in the matrix in equation 3 have to fulfil

λ̃i ≤ 1. (14)

For this reason, it is natural to choose the bounds C1 and C2, so that inequality 14 is likely to hold. Let
ri = d (λi, ∂B1 (0)). Then

C2 = min
i

(
r2i
)

is a bound that yields stability in case of validity of theorem 4, so that the states of the solution remain
bounded over the course of the simulation. For C1, an analogous consideration yields

C1 = min
i

(ri) , (15)

where the corresponding criterion cannot be regarded assured due to potential cancellation effects. It is
pointed out that it is necessary to be able to estimate the eigenvalues arising during real-time simulations
of a model roughly offline in order to make use of this suggestion for a choice of the bound C1.
The requirement of a stable solution as described in [8] also demands that oscillations in the course of
the simulation that are due to numerical integration, have to be small. Oscillations correspond to the
arguments ϕj of the eigenvalues λ̃j =

∣∣∣λ̃j∣∣∣ eiϕj of the matrix in equation 3, where it is 0 ≤ ϕj ≤ 2π:

If |π − ϕj |is small, then an oscillating dynamics of eigenvalue λ̃j is indicated. Therefore, in the case of
oscillations due to numerical integration, it is advisable that a sparsing is not only chosen in a manner
that inequality 14 holds, but also so that |ϕj | ≈ 0 mod 2π.

4 Numerical Experiment

The investigated sparsing approach is applied to a 1D pipe model that describes mass and enthalpy
transport through a pipe. The model is originally developed in [6]. In [8], it is also described and several
numerical approaches are examined with the aim of enabling a real-time capable simulation of the model
on an electronic control unit. A simulation of the model can be used to enable the determination the
temperature of a catalyst.
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Term Unit Description
A m2 cross section area
c J K−1 kg−1 specific heat capacity of a solid phase
cp J K−1 kg−1 specific heat capacity of a gas phase
dh m hydraulic diameter
f 1 Darcy friction factor of pipe
h J kg−1 specific enthalpy
l m length
m kg mass

mmol kgmol−1 molar weight
ṁ kg s−1 mass flow
Nu 1 Nusselt number
p Pa pressure
r m radius
T K temperature
R J mol−1K−1 universal gas constant
Re 1 Reynolds number
Pr 1 Prandtl number
wi 1 mass fraction of species i
α W m−2K−1 convection coefficient
ε 1 emissivity
η 1 efficiency
λ W m−1K−1 thermal conductivity
ρ kgm−3 density
σ 1 Boltzmann constant

Superscript Description
A ambience
B bulk
C canning

Tabelle 1: Notation for description of pipe model

The model equations are

pmmol

RTB

∂wj
∂t

= − Ṁ

AB

∂wj
∂z

, j = 1, 2, 3, (16)

p

TB

(
Mmolcp,B

R
− 1

)
∂TB
∂t

= − 1

AB

(
Ṁcp,B

∂TB
∂z

+ αB,C lB (TB − TC)

)
, (17)

ρCcC
∂TC
∂t

= λC
∂2TC
∂z2

+
1

AC

(
αB,C lB (TB − TC)− (18)

αA,C lC (TC − TA)− εC lCσ
(

(TC)
4 − (TA)

4
))

.

with notation according to table 1.

In this article, a semi-discretization of the pipe model with 5 spatial discretization cells is regarded. The
structure matrix of the arising ordinary differential equation

ẋ (t) = f (t, x)

is shown in equation 19.
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S =



� · · · · · · · · · · · · · · � · · · · · · · · ·
�� · · · · · · · · · · · · · �� · · � · · · · ·
· �� · · · · · · · · · · · · � · � · � · · · · ·
· · �� · · · · · · · · · · · � · · �� · · · · ·
· · · �� · · · · · · · · · · � · · · � · · · · ·
· · · · · � · · · · · · · · · � · · · · · · · · ·
· · · · · �� · · · · · · · · �� · · � · · · · ·
· · · · · · �� · · · · · · · � · � · � · · · · ·
· · · · · · · �� · · · · · · � · · �� · · · · ·
· · · · · · · · �� · · · · · � · · · � · · · · ·
· · · · · · · · · · � · · · · � · · · · · · · · ·
· · · · · · · · · · �� · · · �� · · � · · · · ·
· · · · · · · · · · · �� · · � · � · � · · · · ·
· · · · · · · · · · · · �� · � · · �� · · · · ·
· · · · · · · · · · · · · ��� · · · � · · · · ·
� · · · · � · · · · � · · · · � · · · �� · · · ·
· � · · · · � · · · · � · · · �� · · � · � · · ·
· · � · · · · � · · · · � · · ��� · � · · � · ·
· · · � · · · · � · · · · � · � · ��� · · · � ·
· · · · � · · · · � · · · · �� · · �� · · · · �
� · · · · � · · · · � · · · · � · · · · �� · · ·
· � · · · · � · · · · � · · · �� · · ���� · ·
· · � · · · · � · · · · � · · � · � · � · ��� ·
· · · � · · · · � · · · · � · � · · �� · · ���
· · · · � · · · · � · · · · �� · · · � · · · ��



. (19)

For the purpose of this investigation, one exemplary time step from a simulation with measured data is
considered. The spectrum ΛJ of the Jacobian matrix Jf (t0, x0) of the right-hand side at this time step is

ΛJ ≈
{
−1014.0,−1012.0,−1012.0,−1005.0,−1005.0

−0.03519,−0.03904,−0.04664,−0.05416,−0.05727,

−748.5,−748.5,−748.5,−756.0,−756.0, (20)
−756.0,−750.4,−750.4,−750.4,−754.1,

−754.1,−754.1,−752.2,−752.2,−752.2
}
.

It is pointed out that ΛJ does not contain multiple eigenvalues. Further specifications can be found in
[8]. As shown in [8], a sparsing of the Jacobian matrix Jf to a sparsing matrix A with bidiagonal form,
where the lower right 5× 5 submatrix of A contains only zeros, is suitable.
Let

dS =
∣∣∣tr((I −∆tJf )

−1
∆t∆J

(
I − (I −∆tJf )

−1
(I + ∆tJf )

))∣∣∣
resp.

d1 =
∣∣∣tr(∆t

(
(I −∆tA)

−1 − (I −∆tJf )
−1
)
Jf

)∣∣∣
denote the approximation of

∣∣∣∑i

(
λ̃i − λi

)∣∣∣ obtained according to equation 2 resp. statement 1 of theorem
4 and

d2 =

√
tr
((

∆t
(

(I −∆tA)
−1 − (I −∆tJf )

−1
)
Jf

)2)
,

the approximation of
√∑

i

∣∣∣λ̃i − λi∣∣∣2 obtained according to equation 2 of theorem 4. Furthermore, let

dr denote the actual value of
∑
i

∣∣∣λ̃i − λi∣∣∣. It can be seen from figure 1 that the approximation d2 based
on statement 2 of theorem 4 is able to describe the perturbation of the spectrum of the right-hand side
matrix of the evolution equation 10 of the linearly implicit Euler method significantly more accurately
than the approximation based on equation 2 for the regarded application. By comparing the values d2 to
the values d1, it becomes clear that this has to be due to cancellation effects within the approximation
in
∣∣∣∑i

(
λ̃i − λi

)∣∣∣ due to general validity of the inequality√√√√ m∑
i=1

∣∣∣λ̃i − λi∣∣∣2 ≤ m∑
i=1

∣∣∣λ̃i − λi∣∣∣ .
This shows that the approximation d2 based on statement 2 of theorem 4 enables a detection of can-
cellation effects in the approximation

∣∣∣∑i

(
λ̃i − λi

)∣∣∣ of based on equation 2 or statement 1 of theorem
4.
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Abbildung 1: Plot of the course of different approximations for the perturbation of spectrum ΛI for
different time steps of a simulation based on measured data.

As pointed out in [14] resp. in section 3, the regarded approximations are only valid in case of the Jacobian
matrix Jf of the right-hand side not having multiple eigenvalues. This is necessary to justify the neglection
of the nonlinear perturbation terms. As shown in approximation 20, different simple eigenvalues of Jf lie
close to each other. With regard to nonlinear perturbation terms, the investigated approximations have
therefore to be used cautiously in the given application.

In [14], it is mentioned that critical cancellation effects with the investigated approximation of
∣∣∣∑i

(
λ̃i − λi

)∣∣∣
are mainly expected in the context of oscillating modes and therefore in the context of eigenvalues with
relevant imaginary parts. As it can be concluded rom figure 1, cancellation effects also occur in case of
real spectra. By applying the approximation to variants of the investigated application, it seems indicated
that this is not related to fact that for the measured data different eigenvalues of Jf lie close to each
other.
Let m denote the dimension of x. Due to

1

m

m∑
i=1

∣∣∣λ̃i − λi∣∣∣ ≤ 1√
m

√√√√ m∑
i=1

∣∣∣λ̃i − λi∣∣∣2 ≤ max
i

∣∣∣λ̃i − λi∣∣∣ ,
both d1 and d2 offer a possibility of estimating a lower bound for the maximal perturbation maxi

∣∣∣λ̃i − λi∣∣∣
of an eigenvalue of ΛI also in case of a large number of dimensions m.
As emphasized in [8], the investigated approximations can not only be used to approximate the pertur-
bation of eigenvalues of ΛI in the context of sparsing, but they can also be applied in the context of
the determination of suitable inexact Jacobian matrices. This opens a wide field of applications in the
context of real-time simulations of stiff models on electronic control units.
With regard to the choice of a bound C1 of an acceptable value for the perturbation of an eigenvalue of ΛI
as described in inequality 12, the following observation is mentioned: From approximation 20, it can be
seen that five eigenvalues of this spectrum have comparatively small absolute values. They might not have
a central impact on the stiffness of the differential equation in this time step. However, they are decisive
in a choice of C1 according to equation 15. This is a general property of the given suggestion for choice
of bounds. In order to avoid this, it is suggested to neglect those eigenvalues for the choice of C1. In the
context of the so-called mixed-mode integration, it is investigated how those eigenvalues can be identified
(cf. [15, 8]). For the investigated application of sparsing to a pipe model, an appropriate subsystem of
the original system not containing slow modes is identified in [8], so that ΛJ of this subsystem does not
contain eigenvalues with small absolute values and the choice of the bound C1 according to equation 15
yields meaningful values.

5 Conclusion

In this work, sparsing approaches for real-simulations of stiff models on electronic control units are
considered. A dedicated numerical approach is proposed and allows to detect possible influences of the
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sparsing of the Jacobian matrix on the computed dynamical system. This is enabled by an approximation
of the sum of squares of the values of the differences between eigenvalues of the Jacobian matrix and the
perturbed Jacobian matrix. The theoretical results are confirmed by numerical experiments.
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