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Abstract

For many applications, multigrid methods can be considered as the method of choice to solve or

precondition linear systems of equations in the context of high performance computing. However,

maintaining efficiency in the parallelization of the method for distributed memory platforms by means

of a domain decomposition is not straight forward due to the different problem sizes of the grids in the

multigrid hierarchy. We propose the use of an adaption strategy which adjusts the hardware activity

according to the solver needs dynamically during runtime. With a focus on multi-core CPU platforms

and clusters, we show that our technique can improve the parallel performance and reduce the energy

consumption of the multigrid solver due to a temporary deactivation of CPU cores.

1 Introduction

For many applications, multigrid solvers belong to the most efficient numerical methods for solving sym-
metric positive definite linear systems. The computational complexity is O(n) for sparse systems with
n unknowns. Such systems can result for example from the discretization of elliptic partial differential
equations. The geometric multigrid variant [13], as opposed to the algebraic multigrid [12], is based on
the discretization of the underlying equations on several grid refinement levels. The operations on fine
grid levels, involving smoothers and grid transfer operators, usually employ a limited number of basic
numerical building blocks like vector operations or sparse matrix-vector multiplications. Only on the
coarsest level, a direct or iterative method is used to solve the error correction equation approximately.
For common cluster-level parallelizations based on a domain decomposition which uses the same number
of processes throughout the whole grid hierarchy, the overall parallel performance is limited by the parallel
performance on the coarsest level with the smallest problem size [7].
The use of multi-core and many-core host systems and co-processors to improve the parallel performance
has been studied in many works, see e.g. [4,6,7] and references therein. Recently, also the issue of energy
consumption has been addressed by means of accelerated smoothers and grid transfer operators [14, 15].
In this work, we address the issues of both parallel performance and energy consumption by using different
numbers of processes on different grid levels, thus adapting the parallelization to the problem sizes in the
hierarchy. We introduce a dynamic adaption of the hardware activity during the solver execution which
adjusts the parallel configuration according to the solver needs.
After a brief presentation of the considered geometric multigrid solver and its parallelization for distributed
memory HPC clusters, we propose a concept for the dynamic hardware adjustment during runtime. We
assess the effect of the adapted hardware activity both on time and on energy to solution by means of time
and power measurements. Our numerical experiments comprise test series with varying total problem size
and different hardware adaption strategies on a multi-core compute node equipped with a high precision
power meter, and additional performance tests on an HPC cluster using several nodes.
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2 Experimental setup

In this section, we describe the mathematical background of the proposed methods assuming a 2D Poisson
equation discretized by Lagrange finite elements.

2.1 Linear problem

In our experiments, we use the linear system of equations arising from a finite element discretization of
the two-dimensional Poisson equation [8]. This equation can be used e.g. to model the equilibrium heat
distribution in a physical domain with given environmental temperature and heat sources or sinks. The
problem definition reads

−∆u = f in Ω ,

u = g on ∂ΩD ,

∇u · n = 0 on ∂ΩN ,

where Ω ∈ R is the physical domain, f represents any heat sources or sinks and g is the environmental
temperature given through the Dirichlet condition on the boundary part ∂ΩD. Thermal insulation is
modeled by the homogeneous Neumann boundary condition on the boundary part ∂ΩN. For our exper-
iments, we chose the domain Ω to be the unit square. Figure 1 shows a visualization of the solution to
this heat problem with non-trivial boundary and source term.

Figure 1: Visualization of the finite element solution for the Poisson equation.

2.2 Geometric multigrid linear solver

Our geometric multigrid linear solver belongs to a class of algorithms that can be described in the very
general framework of linear iterative schemes [16]. In an abstract setup, the goal is to solve a linear system

Ax = b ,

where A is a symmetric positive definite operator on a finite-dimensional vector space V . A linear
iterative scheme which uses an old approximation xn to compute a new approximation xn+1 can often be
characterized by the steps in Algorithm 1. This scheme is also called iterative refinement method. The
algorithm grants full flexibility with respect to the solution of the error equation in step 4. The idea of
multilevel methods is to compute the error correction in a space V̂ of smaller dimension dim(V̂ ) < dim(V )
[9]. In the context of finite element discretizations of partial differential equations, the spaces V and V̂
may result from discretizations on a fine and a coarse grid, respectively. In this case, the scheme is also
called geometric multigrid method to emphasize its construction from the discretization of the problem



Algorithm 1 Basic linear iteration scheme

1: Set initial solution x0, tolerance ε > 0, n = 0.

2: Compute the residual r0 = b−Ax0.

3: while ‖rn‖ > ε‖r0‖ do
4: Solve Ae = rn approximately: ê = Brn with B ≈ A−1.

5: Update xn+1 = xn + ê.

6: Compute the residual rn+1 = b−Axn+1.

7: n← n+ 1

8: end while

on different grids. A simple way to construct the spaces is by uniform refinement of a coarse grid Ω2h

yielding the fine grid Ωh and corresponding spaces V̂ = V2h and V = Vh, where the refinement parameter
h refers to the diameter of the grid cells. The transfer operators between the two grid levels h and 2h are
defined by a prolongation and a restriction operator. The prolongation operator Ph

2h : V2h → Vh maps
a vector from the coarse grid to the fine grid. The restriction operator Rh

2h : Vh → V2h maps a vector
from the fine grid to the coarse grid. In this work, we choose a linear interpolation as the prolongation
operator, and the restriction to be its adjoint operator, i.e. Rh

2h = [Ph
2h]>.

Besides the grid transfer operators, another crucial ingredient of multigrid methods is the smoother. Its
purpose is to remove high frequency error components on the fine grid, so that the smoothed error can
be represented on the coarse grid. Relaxation schemes such as Jacobi or Gauss-Seidel iteration and their
damped variants are often used as smoothers. For efficient smoothing methods, often a small number
µ ≤ 3 of smoother iterations is sufficient to damp out the high frequencies.
Note that Algorithm 1 can be applied recursively. For our geometric multigrid method, this amounts to
choosing a number L of levels and a coarsest grid parameter H > 0, yielding a grid hierarchy

{
Ωh |h =

H/2l−1 , l = 1, 2, ..., L
}

and corresponding finite element spaces Vh. The operator A and the vectors x and
b from the abstract scheme have to be replaced by their analogons Ah, xh and bh on the corresponding
grid level. One solution update cycle of the geometric multigrid method is stated in Algorithm 2. It is
characterized by the number γ of recursive cycle calls. The usual choices γ = 1 or γ = 2 lead to the
V- or W-cycle, respectively, depicted in Fig. 2. The term Sh(Ah, xh, bh, µ) indicates the execution of µ
smoothing iterations on the corresponding grid level. On the coarsest grid, the error correction equation
is solved with high accuracy. In our setup, we use the Conjugate Gradient [11] method as coarse grid
solver. The number of smoother iterations executed on a certain level l within one cycle is given as

µ(γ, l) = 2µγl−1 (1 ≤ l < L) (1)

when counting from the finest level l = 1 to the coarsest level l = L. Note that the smoother is not active
on the coarsest grid itself.

2.3 Distributed memory parallelization

In this work the parallelization is based on a domain decomposition scheme using MPI [3] on distributed
memory machines. For a number p of processes, the computational domain Ωh of any grid is split
into a corresponding number of subdomains. The partitioning is computed with the help of the graph
partitioner tool METIS [10] to obtain a balanced decomposition. The domain decomposition implies a
block decomposition of matrices and vectors according to the distribution of the degrees of freedom of
the finite element space Vh among the processes. Assuming that a process q holds the set Iq of degrees
of freedom, matrices are split into diagonal and off-diagonal parts, and vectors are split into local and
non-local parts as follows:

Adiag
q =

(
aij
)
i,j∈Iq

, Aoffdiag
q =

(
aij
)
i∈Iq,j /∈Iq

, xlocal
q =

(
xi
)
i∈Iq

, xnon-local
q =

(
xj
)
j /∈Iq,∃i∈Iq : aij 6=0

.

Note that we omit the h-subscript of matrices and vectors here and in the rest of this subsection for the
sake of readability. Each process is responsible for computations on its local vector part, and the non-local



Algorithm 2 Cycle(Ah, xh, bh, γ, µ)

1: if h = H then

2: xh ←− A−1
h bh (coarse grid solution)

3: else

4: xh ←− Sh(Ah, xh, bh, µ) (pre-

smoothing)

5: rh ←− bh − Ahxh (residual computa-

tion)

6: b2h ←− Rh
2hrh (restriction)

7: x2h ←− 0

8: for k = 1, 2, ..., γ do

9: Cycle(A2h, x2h, b2h, γ, µ) (recursion)

10: end for

11: ch ←− Ph
2hx2h (prolongation)

12: xh ←− xh + ch (correction)

13: xh ←− Sh(Ah, xh, bh, µ) (post-

smoothing)

14: end if

  

Figure 2: Visualization of V- and W-cycle on

four grids. Small dots indicate smoothing,

larger dots indicate coarse grid solving.

vector part may contribute to local computations as read-only information. The non-local vector part
holds duplicates of components which actually belong to other processes, but which might be needed in
local computations due to couplings. The couplings are expressed as non-zero entries in the off-diagonal
matrix part. Therefore, whenever non-local vector parts contribute to local computations, they need to
be updated with the recent values from the other processes through MPI communication. This parallel
setup implies that AXPY-like operations [2] can be performed independently on each process since only
the local vector parts are involved:

(x+ y)local
q = xlocal

q + ylocal
q .

However, the matrix vector multiplication

(Ax)local
q = Adiag

q xlocal
q +Aoffdiag

q xnon-local
q

requires an update of the non-local vector part and hence communication with other processes. Still, due
to the local support of the finite element basis functions, couplings appear only between processes with
adjacent subdomains. Therefore, non-local vector updates do mostly not imply a global synchronization,
but rather a limited number of peer-to-peer data transfers with the geometric neighbor processes in the do-
main decomposition. Also, the matrix vector multiplication offers an opportunity to overlap computation
and communication according to the following scheme:

1: call non-blocking MPI_Isend/MPI_Irecv routine for non-local vector update
2: compute ylocal

q ←− Adiag
q xlocal

q

3: wait for completion of the non-local vector update
4: compute ylocal

q ←− ylocal
q +Aoffdiag

q xnon-local
q

In contrast, the computation of the scalar product of two vectors indeed implies a global synchronization
since it represents a global reduction operation:

x · y =

p∑
q=1

xlocal
q · ylocal

q

Looking at the complete multigrid hierarchy, one could in principle use individual domain decompositions
with individual numbers of processes for each grid level. However, inefficient communication patterns



could result in the general case. In particular, the efficiency of the prolongation and restriction may suffer
if the subdomains on successive grids in the hierarchy are totally unaligned. Additionally, it might not
always be beneficial to use all available processes on all grid levels due to the decreasing problem size on
coarser grids. It might rather happen that the coarse grid problem size becomes so small that the parallel
efficiency drops significantly. We describe our approach to address these issues in the next subsection.

2.4 Dynamic adjustment of hardware activity

We pursue a twofold goal with our parallelization strategy for the full multigrid hierarchy. On the one
hand, we intend to use an appropriate number of processes on each grid level, so that particularly the
coarse grids do not get fragmented into too small parts in the domain decomposition. On the other hand,
we seek to maintain the local communication patterns which exist within each grid level also across the
hierarchy for the prolongation and restriction. The desired result is an improved parallel performance
and energy consumption of the overall multigrid algorithm.
To meet these goals, we impose restrictions on the general parallelization scheme which was described
above. Let L be the number of grid levels in the hierarchy as already denoted above, with l = 1 being
the finest level and l = L the coarsest. The processes taking part in the domain decomposition on grid l
form the MPI communicator cl. Let Ωq

l ⊂ Ωl denote the subdomain held by process q ∈ cl on grid level
l. The restrictions can be stated in the following abstract condition:

l = 1, ..., L− 1 : ∀ q ∈ cl+1 ∃ ĉ ⊆ cl such that q ∈ ĉ and Ωq
l+1 =

⋃
q̂∈ĉ

Ωq̂
l

The condition implies two aspects. First, the communicator of a coarse grid is a subset of or equal
to the communicator of the next finer grid. In particular, the number of processes cannot increase on
coarser levels, and each active process of a coarse grid is also active on the next finer grid. An important
consequence is that processes which are once deactivated on a certain grid level, will stay inactive on
all coarser grids. Second, the condition ensures that any subdomain on a coarse grid coincides exactly
with the union of possibly several subdomains on the next finer grid, and that the owner process of the
coarse subdomain is part of that union. This reduces the necessary communication for a prolongation
or restriction to a minimum. For applying the prolongation or restriction operator, any process of a fine
grid needs to exchange data with only one process of the next coarser grid. This yields independent local
communication patterns between fine and coarse grid processes.

The actual adjustment of the hardware activity is done by pausing and reactivating MPI processes,
which causes the CPU cores to enter sleeping C-states during the pause phase. Whenever the multigrid
cycle in Algorithm 2 reaches the restriction in step 6, each MPI process checks whether it is involved in
the next coarser level. Any process that is not involved in the next coarser level calls the Linux system
command pause [1] after it contributed to the local communication required for the restriction. When
the multigrid cycle returns to this grid from the recursion in step 9, the active processes reactivate all
sleeping processes which are involved in this grid by sending them the system signal SIGUSR1 through
the Linux system call kill [1].

2.5 Test platforms

We used two different platforms for our numerical experiments. The first platform is a single compute
node equipped with four Intel Xeon E-4650 8-core CPUs, where the pmlib framework [5] with an external
power meter was installed for energy measurements. The power measurement setup is presented in more
detail in the next subsection. We used this single node machine for time and energy measurements,
running tests with up to all the available 32 CPU cores. The second platform is the HPC cluster system
bwUniCluster located at the Steinbuch Center for Computing at Karlsruhe Institute of Technology,
Germany. The maximum possible allocation was 256 CPU cores. We used this cluster platform to
investigate time to solution for a larger number of processes than on the single node.
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Figure 3: Hierarchy with 3 grids and 8 processes. All processes are active on the fine grid. Every

second process is set to sleep on the middle grid, and again every second of the remaining processes

is set to sleep on the coarse grid. Non-local vector updates affect only processes of neighboring

subdomains. Prolongation and restriction use independent local communication patterns.

2.6 Node-level power measurement

For power measurement on the single node platform, we used the ZES Zimmer Electronic Systems LMG450
external power meter. The node comprised two power supply units, each connected with one line to the
external power source. The LMG450 has four independent measurement channels. We used one channel
for each of the two input lines, and the other two channels were left unused. We attached the power
sensors of the LMG450 to the input lines between the external power source and the power supply units
of the compute node. Thus, we measured the total power consumption of the whole node. We used the
maximum possible sampling rate of 20 Hz of the LMG450 power meter. The measurement was controlled
using the pmlib tool [5]. We instrumented the solver code using the pmlib client API to measure exactly
that portion of the overall program which constitutes the solution process. This excluded all initialization
overhead from the measurements. The pmlib server ran on a separate machine to avoid a perturbation
of the system under investigation. The setup is shown in Figure 4.

3 Results

We performed test runs with varying parallel configurations as well as varying problem size. We investi-
gated five different parallel configurations, as defined in Tab. 1. In the default configuration, all of the
CPU cores used for a specific test run are active throughout the whole multigrid hierarchy. To assess the
effect of changing the hardware activity during runtime, we used four adapted configurations (A-D) with
an increasing number of deactivated cores on coarser grid levels. For the adapted configuration (A), half
of the cores are deactivated on the coarsest grid. In the adapted configuration (B), half of the cores are
already deactivated on the second coarsest grid, and again half of the remaining cores are deactivated
on the coarsest grid. In the adapted configurations (C) and (D) this cascade of deactivations even starts
on finer levels. In any case at least one process stayed active. These five parallel configurations were
tested with three different problem sizes, as defined in Tab. 2. On the single node platform, we ran
tests using p = 1, 2, 4, 8, 16 and 32 processes for each parallel configuration and each problem size. For
each individual test case we measured time and energy to solution using the platform-independent high
resolution MPI_Wtime function [3] and the pmlib framework as described above in Subsec. 2.6. To
guarantee consistency and to prevent from race conditions in the measurements of the parallel applica-
tion, we encapsulated all timing and pmlib calls in globally synchronized blocks using barriers on the
MPI_COMM_WORLD communicator. Every measurement was repeated five times.
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Figure 4: Measurement setup on the single node platform with an external power meter controlled

by the pmlib tool.

Additional tests for the medium and large problem sizes with a greater number of processes up to p = 256
were carried out on the bwUniCluster. Since no energy measurement devices were available on this
machine, only time measurements could be taken.

parallel

configuration default (A) (B) (C) (D)

lvl 1 p p p p p

lvl 2 p p p p p/2

lvl 3 p p p p/2 p/4

lvl 4 p p p/2 p/4 p/8

lvl 5 p p/2 p/4 p/8 p/16

Table 1: Number of active CPU cores per grid

level depending on the number p of cores used for

a specific test run. The default parallel configura-

tion uses all cores on all levels, while the adapted

configurations (A-D) deactivate cores on coarser

levels.

problem

size small medium large

nh 263,169 1,050,625 4,198,401

n2h 66,049 263,169 1,050,625

n4h 16,641 66,049 263,169

n8h 4,225 16,641 66,049

n16h 1,089 4,225 16,641

Table 2: Number of unknowns per grid level

in the multigrid hierarchy for three different

problem sizes denoted small, medium and

large.

3.1 Node-level time and energy measurements

Figure 5 shows the results for time (left) and energy (right) to solution for the small problem size test
runs. In the default configuration we observed increasing speedups with increasing number of processes
up to the case p = 16. This case achieved the best time to solution of t = 0.179 seconds within the default
configuration tests. Using p = 32 processes did not yield further improvement, but rather slowed down
the execution.
The test runs in the adapted configurations showed a similar behavior with increasing speedups up to
p = 16 processes. However, in spite of showing speedups, the adapted configurations yielded higher
absolute time to solution for the p = 2, 4, 8 cases compared to the default configuration. The p = 16 case



Figure 5: Time to solution (left) and energy to solution (right) for the small problem size test runs

on a single compute node.

represents the break-even point for the adapted configurations (A), (B) and (C), which showed smaller
time to solution than the default configuration. In the p = 32 case all four adapted configurations (A-D)
outperformed the default configuration. But increasing the number of processes from 16 to 32 was not
beneficial for the (A) and (B) adapted configurations. Only the adapted configurations (C) and (D)
showed further speedup for the p = 32 case. The overall optimum with respect to time to solution was
achieved in the adapted (C) configuration with t = 0.148 seconds using p = 32 processes. This is an
improvement of 17.3% over the best case in the default configuration.
The power measurements yielded the best energy to solution within the default configuration tests for the
p = 16 case with E = 97.799 Joule. Thus, the best time to solution and the best energy to solution cases
coincide for the default configuration. In contrast, the overall optimal energy to solution was achieved for
the adapted (C) configuration with E = 77.194 Joule in the p = 16 case, which does not coincide with
the optimal time to solution case. The overall optimal energy to solution case saved 21.1% of energy over
the best default configuration.

Figure 6 shows the results of the medium problem size test runs. Speedups were observed for the

Figure 6: Time to solution (left) and energy to solution (right) for the large medium size test runs

on a single compute node.

full range from p = 1 to 32 in all parallel configurations. Therefore, the best time to solution within
each parallel configuration was always found for p = 32 processes. While the best default configuration
time to solution was t = 0.490 seconds, the overall optimal time to solution resulted from the adapted
configuration (B) with t = 0.443 seconds, which is a saving of 9.6%. The best default configuration energy
to solution was E = 281.799 Joule using p = 16 processes, whereas the overall optimal energy to solution
resulted from the adapted configuration (B) with E = 251.276 using p = 32 processes. Thus 10.8% of
energy could be saved over the best default configuration. Note that for the medium problem size the
cases of best time and energy to solution within the default configuration tests do not coincide, while the
overall optimal time and energy to solution were achieved in the same adapted configuration (B) using
the same number of processes.

The large problem size test runs, depicted in Figure 7, showed even more distinct speedups in all



Figure 7: Time to solution (left) and energy to solution (right) for the large problem size test runs

on a single compute node.

parallel configurations when varying the number of processes from p = 1 to 32. The best time and energy
to solution within the default configuration was achieved for the p = 32 case with t = 1.479 seconds and
E = 948.215 Joule. Moreover, the default configuration test runs were superior both in terms of time
and energy to solution for all cases p = 1 to 32 compared to all corresponding adapted configurations,
except for one case. Only the adapted configuration (A) case p = 32 resulted in an improvement over the
default configuration and yielded the overall optimal time and energy to solution with t = 1.478 seconds
and E = 868.620 Joule. Although the difference in the time to solution between the best default case and
the overall optimal case is negligible, the energy saving of 8.4% is significant.
Evidence for the effect of pausing certain MPI processes and causing CPU cores to enter deeper C-states,

Figure 8: Trace of the C-states for three selected cores during the execution of the multigrid solver

in the adapted configuration (B) with 32 processes on the large problem size. The plotted values

indicate the percentage of the runtime between consecutive sampling points which the cores spent

in C0 state.

thus saving energy, can be seen in Figure 8. It shows the trace of the C-states for three selected cores
during the execution of the multigrid solver in the adapted configuration (B) with 32 processes. Core 0
is active throughout the complete solver run, while cores 1 and 2 are deactivated temporarily and thus
spent significantly less time in the C0 state. More specifically, every second core is deactivated on the
second coarsest grid, which is represented by core 1 in the plot. From the remaining active cores on the
second coarsest level, again every second core is deactivated on the coarsest level, which is represented by
core 2 in the plot.

3.2 Cluster-level time measurements

For the medium and large problem size, we ran further tests up to p = 256 processes on the bwUniCluster.
The medium problem size test runs, plotted on the left side of Figure 9, showed speedups in the



Figure 9: Time to solution on bwUniCluster for the medium problem size (left) and for the large

problem size (right).

default configuration up to p = 32 processes, as it was also observed in the node-level experiments. How-
ever, it turned out that no further speedups were possible for p = 64, 128 and 256, but instead the time
to solution increased. Consequently, the best default configuration was p = 32 as in the node-level tests,
with t = 0.260 seconds on this machine. The adapted configuration tests were for p ≤ 16 in most cases
inferior to the default configuration. Only the particular cases of the adapted configurations (A) and (B)
with p = 8 showed slightly better time to solution than the corresponding default configuration run. The
break-even point was reached with the transition from p = 32 to p = 64 processes, where the speedup
of the default configuration ceased but the adapted configurations kept improving. The overall optimal
time to solution was achieved in the adapted configuration (C) for p = 128 with t = 0.195 seconds, which
was a time saving of 25%.
The right side plot of Figure 9 shows the results of the large problem size test runs with speedups in the
default configuration up to p = 64 processes. Using p = 128 and 256 processes slowed down the execution.
The best default configuration yielded t = 0.737 seconds with p = 64. All adapted configurations (A-D)
showed speedups up to p = 128 processes, and the adapted configuration (D) even showed further speedup
with p = 256. The break-even point was reached with the transition from p = 64 to p = 128 processes,
where all adapted configuration tests outperformed the default configuration. The overall optimal time
to solution was achieved in the adapted configuration (B) for p = 128 with t = 0.526 seconds, which was
a time saving of 28.6%.

4 Conclusion

We investigated the dynamic adjustment of the hardware activity when running a parallel geometric
multigrid solver and the effect on runtime performance and energy consumption. Hardware activity was
adjusted by means of pausing and reactivating MPI processes, which caused CPU cores to temporarily
enter sleeping C-states during the execution of the multigrid algorithm. We presented the multigrid
algorithm and our parallelization approach which enables the use of different numbers of MPI processes on
different grid levels in the multigrid cycle. We depicted our methodology for time and power measurements
of the parallel application on a single compute node with a high precision power meter available, and on
an HPC cluster without power measurements. We described our numerical experiments with varying
problem sizes to assess the effect of adapting the hardware activity during the solver execution on time
and energy to solution. For each problem size which we tested in our experiments, we found adapted
hardware activity configurations with temporarily paused MPI processes which outperformed the default
configuration both in terms of time and energy to solution. However, the best adaption strategy and the
break even point in terms of total number of processes used where the adapted configuration becomes
superior over the default configuration, depended on the problem size.
For small problems with a moderate potential for a domain decomposition parallelization, we found that
an adaption strategy where processes are not only deactivated on the coarsest level, but already on finer
levels, was most beneficial. It resulted in more than 20% of energy savings over the best default case.



Interestingly, the optimal energy to solution case used less processes and longer runtime than the optimal
time to solution case, but still consumed less energy due to the temporary deactivation of the hardware.
For larger problem sizes, a moderate number of processes deactivated only on the coarsest level and
possibly on the second coarsest level turned out to be the best option if only a limited total number
of CPU cores is available, as it is often the case for a single compute node. The reason is that the
strong scaling of the default configuration is better for larger problem sizes, so that the default parallel
configuration’s efficiency on the coarsest level does not impair the overall performance as severe as for
small problems. Yet the adaption of the hardware activity resulted in slight energy savings around 10%.
On the cluster level, the activity adaption strategies showed a much stronger effect. With more CPU
cores available, it was beneficial to deactivate cores already on finer levels. This increased the upper limit
on the number of processes which are useful for the parallel execution of the multigrid solver in the sense
that it yielded further speedup. Remarkable time savings of more than 25% were possible over the best
default case.

Acknowledgements

This work was supported by the European Union’s Seventh Framework Programme for research, techno-
logical development and demonstration under grant agreement no 318793.
Parts of this work were performed on the computational resource bwUniCluster funded by the Ministry
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