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Development and implementation of a temperature
monitoring system for HPC systems

Martin Baumann!, Fabian Gebhart!, Oliver Mattes!, Sotirios Nikas!, Vincent
Heuveline!

Abstract: In the context of high-performance computing (HPC), the removal of released
heat is one challenging topic due to the continuously increasing density of computing
power. A temperature monitoring system provides insight into the heat development of
an HPC cluster. The effectiveness of this is directly related to the number of sensors, their
placing and the accuracy of the temperature measurements. Monitoring is important not
only to investigate the efficiency of the cooling system for purposes of detecting defective
operation of the HPC system, but also to improve the cooling of the servers and by this
the achievable performance. The main purpose of a fine-grained and unified temperature
monitoring is the possibility to optimize the applications and their execution regarding
the temperature spreading on HPC systems. Based on this, we present a highly flexible
and scalable — in terms of cable length and number of sensors — and at the same time
budget-friendly monitoring infrastructure. It is based on low-cost components such as
Raspberry Pi as monitoring client and a setup using the DS18B20 digital thermometer
as temperature sensor. Focus is given on the selection of adequate temperature sensors
and we explain in detail how the sensors are assembled and the quality assurance is done
before these are used in the monitoring setup.

Keywords: temperature monitoring; HPC monitoring; energy efficiency

1 Introduction

It is well-known that computer systems need cooling to prevent hardware dam-
ages and to increase the lifetime of the hardware. For modern CPUs there is an
additional relation between achievable performance and temperature. These CPUs
adjust their frequency based on temperature (among other things). The technolo-
gies for controlling the processor operating frequency are e.g. Turbo Boost for Intel
CPUs and Turbo CORE for AMD CPUs. For example the Intel Xeon E5-2640v3
(Haswell) CPU has a base frequency of 2.60 GHz but can run up to the maxi-
mum turbo frequency of 3.40 GHz which has a clear influence on the achievable
performance. For reasons of reproducibility (e.g. for code optimization or scaling
tests), a homogeneous CPU frequency within all identical HPC servers over time
is necessary. Therefore, the temperature of the HPC system has to be monitored
and controlled.

Nowadays, new energy-efficient cooling technologies are used to reduce the en-
ergy consumption for cooling HPC clusters. For example the Kniirr® DCD cooling
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doors [Ve], as used in the University Computing Center (URZ), are fanless heat ex-
changer modules in the rear door of server racks. Chilled water is pumped through
that heat exchanger which cools down the hot air which is blown through these
heat exchanger rear doors. This technology promises room-neutral cooling of racks.
A fine-grained and flexible temperature monitoring system makes it possible to an-
alyze such technologies in real conditions which is a first step for improvements.

To gain insight into the spatial and temporal distribution of the heat, temperature
has to be monitored at a fine granularity with an adequate temporal resolution.
Many servers and network components are equipped with temperature sensors pro-
viding temperature information on a server-level. However, to gain a deeper under-
standing of the overall heat development cycle within and around the HPC racks,
additional temperature sensors outside the server hardware are needed. These sen-
sors can be positioned in the near neighborhood of the racks or inside the rack.
From sensors that are located in front and behind a rack, the heating/cooling ef-
fect of that specific rack on the room climate can easily be quantified. Sensors at
different positions within a rack can help to optimize the ways of how IT com-
ponents (servers, network, storage, etc.) should be positioned within a rack for
approximately homogeneous temperature distributions. The development of a new
monitoring system can be motivated by requirements in higher scalability in the
number of sensors, the cost-effectiveness of the monitoring system and its sensors,
more flexible extendibility in the variety of sensors or some specific functionalities
that need to be available.

For monitoring the climate situation of server racks and their environment, several
hardware and software products from different industrial vendors exist. Rittal Corp.
offers the CMC' III system which contains a central controller that can build serial
interconnections between monitoring sensors by a Controller Area Network (CAN)
bus, cf. [Ri]. The available sensors are integrated into small enclosures with two
RJ-45 connectors which are used to build up the CAN bus using specific CAN bus
cables. Different versions of the central controller CMC III exist which contain up
to 4 or 32 sensors. Raritan Inc. offers a solution containing the EMX smart rack
controller that serves as central unit of the IP-based monitoring system, cf. [Raa].
Two versions of the controller exist, both with RJ-12 ports, RJ-45 ports, USB ports
and RS-485 ports for connecting a maximum of 16 respectively 128 sensors (using
specific sensor hubs). The controller can be accessed via web interface e.g. to view
the sensor values and configure the thresholds. The associated temperature sensors
DPX-T1 come with the corresponding RJ-12 plug and a resolution of 2°C, cf. [Rab].
The manufacturer AKCP also offers a similar solution aimed to monitor HPC
systems. Several components such as temperature-, humidity-, motion-, gas-, sound-
and powersensors, cameras and Single Network Management Protocol (SNMP)
enabled web-based monitoring devices are offered in order to build a monitoring
system. The monitoring device, called sensorProbe, with either two, four or eight
RJ-45 ports exists in various models. For example the sensorProbe§ comes with
eight RJ-45 ports, runs on a Linux operating system (OS) and includes TCP /IP and
a built-in webserver with SNMP functionality, cf. [AKa]. The offered temperature



sensors are similar to the ones we use. The semiconductor microprocessor controlled
TMPXX Temperature Sensor for example consists of CAT 5 cables and RJ-45
plugs connected to a sensor probe with a resolution of 0.5°C, cf. [AKb]. All three
exemplary solutions, CMC III, EMX smart rack controller and AKCP sensorProbe
support different types of sensors (e.g. temperature, humidity, pressure, etc.) and
allow for reading the measurements via the widely-used SNMP. Hence, flexible
monitoring systems can be set-up with these commercial products and can be
integrated into the infrastructure of existing monitoring tools.

The aforementioned commercial solutions, however, have some limitations as well.
The maximum number of sensors for the presented solutions is 32 or 128, hence
the scalability is limited. For each commercial solution, there exists a list of com-
patible sensors which cannot easily be extended by the customers which may be
a restriction: In cases of changing requirements on the sensors during a project
(e.g. varying measuring ranges that should be addressed or changing demands in
the quality of the sensors or changing time resolution for the measurements), new
sensors with specific specifications need to be added into the monitoring system.
Additionally, there is a comparably heavy financial burden going along with the
commercial solutions: A monitoring system consisting of only 32 temperature sen-
sors build up using each of the aforementioned products would cost about between
3.000€ and 4.000€. It has to be taken into account that for many projects the
number of needed sensors is far larger. The limited scalability in the number of
sensors, the limited range of compatible sensors and comparatively high costs for
setups with a high number of sensors are motivations to develop an own modular
and flexible monitoring system based on cheap but powerful standard components.
In general, the use of self-developed and open platforms is advantageous over com-
mercial products whenever a product will no more be supported or provided by
the manufacturer, since spare parts or new extensions might not be available any
more. An open solution can be extended easily by individuals, institutions or a
community which is why we published our code. If needed at limited effort new
sensors, demand-oriented custom features and characteristics of the monitoring sys-
tem can be added and developed. All types of measurements and information of
the HPC cluster itself and its infrastructure (e.g. state of the workload of running
computing jobs, or power consumption as measured by the power distribution unit
(PDU), control of cooling fans) can be included into the monitoring while keeping
time stamps synchronized. The increased level in flexibility of a powerful monitor-
ing with different building blocks and extension possibilities is what is needed in
scientific projects and justifies the additional work building up a custom monitoring
system over buying a ready solution.

Now there are some non-commercial projects of people and institutions developing
or employing their own solutions. However, these activities are not published which
is why we started our project. Since the beginning of our project we were in contact
with two groups developing sensor systems for monitoring HPC systems. The Re-
gional Computing Center at Universitit Hamburg (RRZ) operates a temperature
monitoring system for eight HPC racks. The system consists of 30 pre-assembled



thermal probes based on the digital sensor DS18B20 (same sensor as the one used
in Heidelberg), fitted with 3-min Molex connectors to a bus of two segments con-
nected at the center to form a T-shaped topology. Four-wire telephone cable and
RJ-45 ISDN distributors (after removal of termination resistors) have been repur-
posed for the modular bus construction. The bus master is a DS2480B-based USB
adapter connected to a standard server. The temperature measurements are read
periodically (via a cron job?) from the bus using the 1-Wire File System (owfs?).
They are stored locally and also sent via Secure Shell (SSH) to the institution’s
central Nagios* monitoring server. The second group at the computing center of
Mainz University in the department HPC Systems/System Security developed a
sensor system based on a Raspberry Pi for monitoring the temperature and hu-
midity of the surrounding of an HPC cluster. Each Raspberry Pi is connected via a
serial interface to a self-developed electronics circuit board which connects the sen-
sors. The controller reads the values of the sensors via a bus protocol and forwards
the measurements to the Raspberry Pi. The electronic board and the Raspberry
Pi are assembled together into an enclosure and receive electric power via a Power-
over-Ethernet (PoE) module. Each such system monitors one computer rack. The
measurement data is sent to a central Ganglia® monitoring server where the data
can be stored and visualized using a web interface. The developed solutions differ
among other aspects in the specific sensors that are used, the way the cabeling is
realized, and the way the measurement data is read and processed.

This work proposes a modular and flexible monitoring infrastructure consisting of
temperature sensors, the cabling and a simple way of monitoring the temperature
data using a Raspberry Pi. How to use standard cable connectors and bus boards
to build large bus systems that allow for flexible changes and extension will be
addressed. With focus on the details of the technical construction and a fast way
of reading out the measured data of a high number of sensors, we extend our
preliminary work [BNGar], presented at the bwHPC symposium in Heidelberg,
2016. Additionally, a validation procedure which ensures the expected quality of
the implemented sensors is presented.

Section 2 and 3 describe what kind of sensors are used, how these are assemble
on standard patch cables, how to connect these to a big bus system and how to
read the temperature values. To quantify the quality of the sensor measurements,
the sensors were exposed to a course of changing temperature. The result and the
validation of the sensors with respect to their accuracy are presented in section
4. Hereafter in section 5, our sensor placement strategy for the racks of an HPC
cluster and the related water-based cooling infrastructure used in Heidelberg is
described. The paper is completed with concluding remarks and an outlook of
further developments.

2 https:/ /cron-job.org/en/
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2 A scalable and cheap temperature monitoring sensor network

In this section we will present our setup and describe it in detail. We use digital
sensors, since those allow (in contrast to analogue ones) bus wiring, i.e. multiple
sensors can be connected via one single cable and varying topologies are possible.
After evaluating different sensors we choose the the digital temperature sensor
Dallas DS18B20, cf. [Da]. Each single sensor is identified by its unique ID assigned
by the manufacturer. The sensor DS18B20 is a digital thermometer with three pins
(ground, voltage, data), see Fig. 1(a). Its mode of operation ranges from —55°C to
+125°C with an accuracy of £0.5°C from —10°C to +85°C. The digital resolution
can be chosen between 9 and 12 bit leading to a precision from 0.5°C to 0.0625 °C, for
all later purposes the 12 bit resolution was chosen to exclude avoidable rounding
errors. Due to its low price of about 1€ per sensor, the simplicity of the I-wire
protocol, as well as the relatively high precision and temperature range the DS18B20
is well suited for building up a temperature monitoring system for HPC clusters.
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Fig.1: (a) Ilustration of the sensor DS18B20, (b) the assembled sensor cable with RJ-45
connector without heat-shrinking tubes, (c) assembled cable with heat-shrinking tubes,
(d) label containing information about the sensor and the cable length.

Several vendors offer DS18B20 sensors pre-assembled on cables. However, we as-
semble the sensors by ourselves for two reasons. The first reason is that we want
to make use of standard network patch cables, because they have good shielding
and many adapters exist for the commonly used RJ-45 connectors. The use of RJ-
45 standard plugs facilitates the creation of big bus systems of varying topologies
comprising a large number of sensors since standard patch cables and RJ-45 bus
boards can be utilized (the latter are offered by various vendors). The second rea-
son is that we want to be able to use the cabling in future, e.g. for a second sensor
bus or other purposes. Currently, only three of the eight wires of a patch cable
are used for the sensor, five wires remain available for possible future usage. The
assembling process consists of bisecting a patch cable and soldering the three pins
of a sensor to three specified wires of a patch cable, see Fig. 1(b). Heat-shrinking



tubes of three different diameters are used to avoid any short circuit between the
three sensor pins and hold together the wires for higher resilience, see Fig. 1(c).

Each digital sensor has a unique ID, which is needed to distinguish the sensor
values of the different sensors once these are connected in a large bus system.
To determine the ID, the assembled sensor is connected to a Raspberry Pi and
the sensor’s unique ID can be read by checking the name of the mounted I-wire
devices (see next section for details). For practical reasons, we equip each cable
of an assembled sensor with a label containing the sensor’s model name, ID, and
cable length. To support automated reading, the label also includes the information
encoded in a QR code, see Fig.1(d). The QR code includes a JSON object with
the aforementioned information.

3 Reading values from the sensor network

The Raspberry Pi is a popular low cost ARM-based mini-computer, which aims
to introduce coding and computer science to all kinds of learners. It is widely-
used for scientific applications including all types of monitoring purposes [SA16,
IEB15]. With its huge community, the Linux based single-board computer is well-
documented. It is not only a flexible and low-cost component, but it is also easy to
be used and therefore perfectly fits our needs.

The DS18B20 sensors can be connected to the general purpose input output
(GPIO) pins of a Raspberry Pi as shown in Fig.2. More sensors can be added
by connecting these in parallel, i.e. ground to ground, data to data and voltage to
voltage.

Fig. 2: Two temperature sensors are connected in parallel to the GPIO pins of a Raspberry
Pi; a pull-up resistor is needed additionally.

Based on each individual sensor ID, the value of each sensor can be determined.
Using the 1-wire protocol, the Raspberry Pi is capable of reading the temperature
data of all connected sensors. For example, the value of the sensor with ID "28-
000005da34fa" can be read from the following device file:

/sys/bus/wl/devices/28-000005da34fa/wl_slave



Operating in the highest resolution (i.e. 12 bit) the temperature conversion time
(i.e. the time the sensor needs to convert the analog into a digital signal) of the
DS18B20 sensor is 750 ms. Reading the sensors sequentially leads to a linear scaling
of the overall reading time with the number of sensors connected, which is no longer
reasonable for the purpose of live monitoring in case of a large number of sensors. To
overcome this issue, we make use of the Python threading library®, which provides
a high-level threading interface. With this, interlaced accesses to multiple sensor
device files are possible, so the conversation time of each sensor can be hidden.
The resulting time consumption for one loop over all temperature sensors is much
shorter compared to the time needed for sequential reading. Having a setup of
176 sensors takes 16s instead of 132s without multithreading. The Python code
for reading out the temperature data using multithreading can be found on our
project repository energy-efficiency-monitoring”. For people that are using owfs for
reading the sensors values, the sequential reading time can be reduced by activating
the so-called “simultaneous access”.

The extension of the network, i.e. connecting more sensors, requires decreasing the
resistance of the used pull-up resistor. Hence, bigger pull-up resistors (i.e. above
1kQ) are recommended for smaller networks. Our investigations have shown that
the implementation of a rather large network with an increasing number of con-
nected sensors as well as increasing total cable length has to be counterbalanced by
decreasing the pull-up resistance. Besides this effect we also found two additional
factors to influence the maximum number of sensors to be read. The Raspberry Pi
model generation as well as the Linux Kernel version appeared to play a critical
role. Our optimized final setup for temperature monitoring in the HPC cluster con-
sists of a Raspberry Pi 3 Model B running the Debian based OS Raspbian (Version
8 jessie) on Linux Kernel version 4.4.38-v7+ connected to 176 Dallas DS18B20
temperature sensors with a total cable length of 616 m and a pull-up resistor hav-
ing 270€). In various experiments, it turned out that the topology of the sensor
network (star, linear and mixed topology) does not influence the performance of
the system (i.e. response time of all sensors and reliability).

4 Quality of the sensors

Before the sensors are installed in the IT room for production operation, their
functional capabilities and precisions are tested for determining outliers that will
be replaced. To this end, all sensors are fastened side by side to a mobile frame so
that the cables do not shield the sensors from the ambient air temperature. Based
on the measurements, the mean temperature and the difference of each sensor to
the mean are evaluated and analyzed to determine outliers.

The mobile frame with the attached sensors is first located in a room of constant
temperature, after some time it is moved to another room with slightly warmer

6 https://docs.python.org/2/library/threading.html
7 https://github.com/uhd-urz/energy-efficiency-monitoring
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Fig. 3: Mean temperature (upper plot) and the standard deviation (lower plot) of 176
sensors exposed to a course with changing temperatures.

temperature, and finally moved back to the first room. The mean value of the
measured temperature and the standard deviation are shown in Fig.3. The tem-
perature values converge from above the room temperature in the first room. In the
first phase of converged temperature measurements (between time step #125 and
#140), the mean temperature is approximately constant and the standard devia-
tion has converged to approx. 0.2°C. After time step #145 the sensors are moved
(almost instantaneously) into the warmer room. At the beginning the mean tem-
perature increases very fast but decelerates finally. The rate of change of the mean
temperature seems to depend on the difference to the constant temperature in the
room, i.e. the higher the temperature difference the stronger the rate of change of
the measured temperature. After time step #284, the sensors are moved back to
the cold room and the opposite development of the measured values can be seen.
Between time step #410 and #425 is a second phase of converged temperature
measurements, in which the mean temperature is again approximately constant
and the standard deviation is around 0.2°C.

For the detection of outliers among the sensors, we investigated the two phases of
converged temperature measurements in the colder room in more detail. Figure 4
illustrates the maximal deviation over time during the two time spans, from step
#125 to #140 and from #410 and #425, as histogram plot. For each sensor j, the
maximal absolute value of the difference between the sensors measurement ¢;(¢) at
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Fig. 4: Histogram of the maximal deviation of the 176 temperature sensors from their
mean for two periods of time where the temperature measurements have converged.

time step 7 and the mean value of all sensors at that time is taken, i.e.

1
Bja = max|t;() — = > t() (1)
k=1,...,176

where j € {1,...,176}, a € {1,2}, I = {125,...,140} and I, = {410,...,425}. In
Fig. 4 it can be seen, that the qualitative behavior of the sensor’s deviation from
the mean is similar in the two time periods. In the two time periods I; and Ia,
there is one sensor that has a deviation of more than 0.5°C which is the accuracy
given in the manufacturer specification. It turns out that it is the exact same sensor
having the highest deviation in both periods of time and therefore, this sensor is
considered as outlier and removed from the sensor system. The remaining sensors
meet the expected accuracy and will be used in production.

According to the vendor of the DS18B20 sensor, a systematic error is going along
with all bandgap-based sensors. This sensor type has been calibrated by the vendor
by comparing the measured values Tj; to a high-quality approximations T of the
temperature. The error between these two can be described statistically, where
second order polynomials can be taken to approximate the mean error. Figure 1
in [Da] shows the typical error curve of that sensor, where the error is defined as
TError :=Tha —Tr. The general procedure of the validation is described in [Ma]. We
fitted the typical error curve given in [Da] by a second order polynomial function
f as shown in Fig. 5. Thus, the measured temperature T; can be compensated by
this polynomial function by:

Tc =Ty — f(Tar), (2)



where T is then supposed to be a better approximation of the temperature than
the measurement T} itself. We added this compensation as an optional feature to
our implementation available on our aforementioned project repository.
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Fig. 5: The fitting function f approximates the mean error of the typical error curve given
by the vendor of the sensor.

Coming back to Fig.3 it can be clearly seen that the sensors obtain an effect
of inertia due to the time-depending temperature course. This effect is limiting
the informative value of the measurements. Since the temperature values of the
environment of an HPC cluster can change (depending on the workload and other
parameters) fast, the effect of inertia should not be neglected. It is planned to
address the effect in future work, as outlined in the last section of this work.

5 On-site installation

The cooling technology employed in the IT rooms of the Heidelberg University
Computing Center is based on a passive cooling concept, cf.[e315]. The heat re-
leased by the servers and other IT components within a rack will be evacuated by
the fans of the servers through the read door of the rack. The read door serves as
heat exchanger, i.e. heat in the air is cooled down while the cold water running
through the door is heated up, see Fig.6 (left). The heat development of an HPC
system environment primarily depends on the heat balance of the air flowing into
and leaving the server racks. The out-flowing air temperature again is determined
by the temperature within the server rack and the effect of cooling by passing
through the rear door.

For an overall picture of the spatial temperature distribution, several temperature
values must be known: the air temperature in front, inside and behind each server
rack as well as the water temperature before and after flowing through each server
rear door. In contrast to the warm water - which depends on the energy consump-
tion of the specific rack - the cold water temperature is approximately constant
for every rack. Therefore, it is sufficient to use only one sensor for measuring the
cold water temperature. For the determination of the HPC cluster’s surrounding
temperature climate, three additional sensors are positioned above each rack row.
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Fig. 6: Sketch of the operating principle of the cooling system on a rack basis at the Hei-
delberg University Computing Center (left) and the sensor positioning in the environment
of a server rack row (right) sensors are indicated by black spheres.

Overall, there are four sensors installed at each rack, plus one additional sensor per
rack row for the cool water temperature, plus three sensors for the air temperature
above the rack row, compare Fig. 6 (right).

Fig. 7: Tllustration of the star topology: The Raspberry Pi is connected via its GPIO
connector to the sensor bus which consists of four branches of eleven bus boards serving
as hubs. Each bus board is connected to four sensors indicated by black spheres.

Typically HPC systems are built into several racks standing next to each other
which in turn are arranged in rack rows. In our case, we a considering a machine
room consisting of four rack rows, each consisting of ten racks. This structure of
racks can be reflected by the use of a star topology with four branches (for the four
rack rows), compare Fig. 7. In each branch we install eleven RJ-45 bus boards. Ten
of which correspond to the ten racks in that row and the eleventh bus board for
the sensors of the rack row (i.e for measuring the cold water plus the air above the
rack row). This setup leads to a network of 176 sensors in total.

6 Conclusion and Outlook

With the continuously increasing density of compute elements in HPC systems,
the removal of the released heat is one of the major topics. Utilizing a temperature



monitoring system, an effective cooling but also an optimized application execution
and higher performance can be achieved regarding the head spreading inside the
HPC system. The effectiveness of this is directly related to the available information
and in more detail to the number of sensors, their placing and the accuracy of the
temperature measurements. In this paper we propose an open fine-grained and
unified monitoring system to break through the limited scalability in the number
of sensors, the limited diversity of available sensors and comparatively high costs
per sensor of commercial monitoring systems. Based on this, we present a highly
flexible and scalable — in terms of cable length, number and diversity of sensors —
and at the same time budget-friendly monitoring infrastructure.

We presented how the digital sensor DS18B20 can be assembled to standard cables,
the development of a labeling system including QR codes and how we operate a
large sensor network. The usage of standard CAT 5 cables and RJ-45 plugs offers the
ability to build large bus networks of varying topology. The totality of the sensors
of such a network can easily be read out in high frequency using a Raspberry Pi.
The Python code for reading the sensor values is published. Hence, all components
needed for building the measurement infrastructure is standard and cheap, leading
to a comparably affordable and flexible sensor system for monitoring HPC systems.

Although the quality of the temperature sensors DS18B20 is high, the measured
values, in case of fast changing temperatures, are limited due to inertia effects.
This might be caused by the sensor’s plastic cover which is given by the design of
the manufacturer. There are several approaches to improve the dynamic response
behavior of the sensors, e.g. on the hardware level (reduce the plastic cover thick-
ness) or on the level of extrapolation based on physical or mathematical models. We
will address different approaches to increase the dynamic response behavior of the
measurements in future works, which we presumably address within a collaboration
with the RRZ of University Hamburg.

In the next phase of the project, we also will include the energy consumption to
the monitoring system on the server level (build-in features of the servers), on the
PDU-level (build-in features of power distribution units) and on the rack-level. For
the rack-level, specific sensors based on inductive current will be investigated and
presumably be built and installed to the supply lines of each rack. With this setup,
we will be able to analyze the connection between energy consumption, released
heat and temperature development on different levels.

For different use cases (many small jobs, few large jobs, jobs that are CPU-bound,
jobs that are IO-bound, etc.) the energy and heat footprint will be determined using
the monitoring system. Based on this information, we will look for hot spots of the
HPC system at which temperature is particularly high (sometimes or frequently).
Such situations can give a hint that hardware damages exist (e.g. limited function-
ality of fans) or suboptimal air flows (e.g. because of occlusion effects caused by
disadvantageous cable routing). It could also be the case that too many IT com-
ponents are built into small volume (too high energy density) or an suboptimal
spreading of the I'T components within the rack.



For different representative use cases, we will set the measurements in relation to
the specific application or even the program phases. In general, it seems to be
beneficial to account for the energy and temperature footprint of a compute job
when the starting time of the job and the occupied servers are determined by the
HPC system’s management. However, a challenge is that the footprint of new jobs
that should be run on a cluster is in general not known.

Nevertheless, we see some potential for a productive utilization of such technologies.
Software packages or sub-routines like function calls or kernels that run often with
similar parameters on the same HPC system will most often show similar energy
and temperature properties. This information can be used for the scheduling of
new application runs. Another approach would be to use the monitoring informa-
tion to determine the temperature environment state of free nodes. New compute
jobs then could be scheduled to run on nodes which are in a preferably relative
cold environment. Additionally, the information of a continual online monitoring
of the heat situation of the HPC cluster might be used to detect local heat spots
and might even actively be used to reduce the load of some servers. This could
be done e.g. by moving running jobs to other nodes (if possible) or by stopping
some jobs and restarting these on other nodes. Such actions would be simplified in
virtualized environments. A pragmatical strategy to get the full performance out
of the hardware (for the jobs that need this) and the possibility of temperature
optimization would be to reserve a certain number of servers per rack for dynamic
load scheduling which will idle if the temperature in the rack is reduced. This could
be facilitated, e.g. by a virtualized operational model of these nodes.
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