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Abstract

Uncertainty Quantification (UQ) is highly requested in computational modeling and simulation, es-
pecially in an industrial context. With the continuous evolution of modern complex systems demands
on quality and reliability of simulation models increase. A main challenge is related to the fact that the
considered computational models are rarely able to represent the true physics perfectly and demonstrate
a discrepancy compared to measurement data. Further, an accurate knowledge of considered model pa-
rameters is usually not available. E.g. fluctuations in manufacturing processes of hardware components
or noise in sensors introduce uncertainties which must be quantified in an appropriate way. Mathemat-
ically, such UQ tasks are posed as inverse problems, requiring efficient methods to solve. A popular
approach for UQ in inverse problems is Bayesian inference. This work investigates the influence of model
discrepancies onto the calibration of physical model parameters and further considers a Bayesian infer-
ence framework including an attempt to correct for model discrepancy by an additional term. A Markov
Chain Monte Carlo (MCMC) method is utilized to approximate the posterior distribution. A polynomial
expansion with unknown coefficients is used to approximate and learn model discrepancy and system
parameters simultaneously. This work extends by discussion and specification of a guideline on how to
define the model discrepancy term complexity, i.e. here the maximum polynomial degree, based on the
available measurement data. Furthermore, the suggested method is applied to an electric motor model
with synthetic measurement data and evaluated by comparing the results to the reference. The example
illustrates the importance and promising perspective of the method by good approximation of discrepancy
and parameters.

1 Introduction

The increasing complexity of technical systems yields high demands on model quality and numerical
accuracy. The advancements in computational power allow detailed models to represent these systems,
but uncertainty is still present in most models. Quantification of these models under uncertainty is desired
to make statements about reliability and accuracy. Consequently, there is a need for efficient solvers and
new additional methods for analysis, which are able to cope with the soaring complexity of models and
that take into account all sources of uncertainty.

Uncertainty Quantification (UQ) methods focus on understanding, quantifying and propagating un-
certainty in computational simulation of models. Uncertainty arises from different sources and is often
grouped in two categories: aleatoric and epistemic uncertainties. Aleatoric uncertainties are inherent to
the model itself and are not due to insufficient knowledge. They are stochastic variations that cannot be
reduced, e.g. by performing more measurements. Epistemic uncertainties are due to model assumptions,
parameterizations and discretization. If a model for a system of interest is available, then epistemic un-
certainty is subdivided into model form uncertainty and parametric uncertainty. The first category arises
if reasonable doubts exist that the model itself is structurally correct and the latter, if the model reflects
reality well enough, but the parameters are uncertain [19,22].
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To be more specific we formulate the general forward problem. Let G : X → Y, for some spaces
X ⊆ Rd,Y ⊆ Rn, d, n ∈ N, be an operator representing a simulation model that maps some input x ∈ X
to an output y = G(x). In general G is nonlinear. If this x is uncertain, one might formulate it as a
random variable X in a probability space (Ω,Σ, P ). With the random variable X the output Y = G(X) is
a random variable as well, with an unknown probability distribution of Y . The task of forward uncertainty
quantification methods is now to characterize the distribution of Y with appropriate methods, e.g. with
the Monte Carlo method.

On the other hand the inverse problem describes the task of finding a x ∈ X for a given measurement
y ∈ Y such that y = G(x). Generally, this equality does not hold as the measurements y are usually
corrupted by observation noise. Hence, one considers

y = G(x) + η, (1)

where η ∈ Y represents the observation noise due to measurement noise or model error. Now, simply
inverting G is not possible as η is unknown and in general G−1 is non-existent. A classical approach to
solve this problem is by minimizing the data misfit, i.e. minx∈X

1
2‖y − G(x)‖2Y . However, this problem is

typically ill-posed in the sense of Hadamard, i.e. multiple solutions might exist and stability might be a
problem. In order to obtain a well-posed problem regularization is necessary. One approach is Tikhonov
regularization, also known as ridge regression in statistics, where a regularization term R(x) is added to
the data misfit, i.e. minx∈X

1
2‖y − G(x)‖2Y + λR(x), for a λ > 0 [10]. An example is R(x) = ‖x̂− x‖2 for

some norm ‖·‖ and a fixed x̂ ∈ X . However, the choice of regularization is somewhat arbitrary [21]. The
Bayesian approach to inverse problems yields a natural regularization of ill-posed problems [4,10,21] and
is furthermore a popular approach for UQ in inverse problems. With the Bayesian approach the problem
is formulated in terms of probability theory and one is interested in finding a probability measure µy(x)
on X with probability density π(x|y) that expresses how likely a certain x ∈ X , i.e. G(x), describes the
given data y under consideration of the noise. The inverse problem in this setting is well-posed under
slight assumptions and leads to a natural way of regularization due to the definition of prior distributions
for unknown parameters, see [21]. Usually, the problem is formulated as y = G(x)+η, where η is modeled
as a realization of a zero mean random variable with probability density ρ, e.g. η ∼ N(0,Σ) with unknown
covariance matrix Σ ∈ Rn×n. The probability of y given x has density πη(y|x) := ρ(y − G(x)) and is
denoted as likelihood. Let π0(x) be the prior density expressing prior knowledge of the unknown x ∈ X .
Bayes’ formula leads to

π(x|y) =
πη(y|x)π0(x)

π(y)
, (2)

where π(y) =
∫
X π(x, y)dx is called marginal or evidence. The evidence works as a normalizing constant

and is usually omitted, i.e. only the relation π(x|y) ∼ πη(y|x)π0(x) is considered. Generally, the posterior
distribution π(x|y) is intractable and one can not sample from it directly, hence approximative methods
are required. The approximation can be done by filtering, variational and sampling methods [5, 21]. An
example for the latter is Metropolis-Hastings Markov-Chain Monte-Carlo (MH-MCMC) sampling, which
is utilized in this work [5, 8, 17].

A difficulty in solving the inverse problem is to capture all sources of uncertainty and correctly identify
them, often called ”identification problem”. Uncertainty sources are

• parametric uncertainty, e.g. either unknown model parameters (epistemic uncertainty) that are
completely unknown or only known to a certain degree for instance by a probability distribution
expressing an a-prior degree of believe, or variable / stochastic parameters (aleatoric uncertainty) or
even both, unknown stochastic parameters,

• structural model uncertainty, e.g. lack of knowledge, missing physics, in modeling the system
of interest,

• solution method uncertainty, e.g. errors introduced by implementation and also by numerical
approximation schemes and

• observation uncertainty, e.g. noise and errors that are introduced by observing and recording
quantities of interest of the system under consideration.
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These categories are not necessarily selective and single uncertainty sources might not uniquely be asso-
ciated to one single category.

For a full quantification of uncertainties in the inverse problem all sources should be considered.
A main challenge is related to the fact that the considered computational models G are rarely able to
represent the true physics perfectly and demonstrate a discrepancy compared to measurement data. To be
more specific the term model discrepancy in this work denotes the difference between simulation model
for the true physical parameters and the true system, hence the structural uncertainty that might be
due to missing physics in the formulation of the simulation model. It also comprises numerical errors.
However, this model discrepancy is usually unknown. Considering model discrepancy in inverse problems
is crucial in order to obtain realistic calibrations of unknown physical parameters [3] and to further obtain
a quantification of model quality and reliability, which is important for most engineering tasks. In the
following we give a brief overview of previous work considering model discrepancy in inverse problems.

The Kennedy and O’Hagan framework [11] is one of the first attempts to model and explicitly take
account of all the uncertainty sources that arise in the calibration of computer models. In particular,
model discrepancy is considered by an additional term in the Bayesian formulation of the inverse problem.
Gaussian Processes are then used to model the model discrepancy and the simulator. One conclusion is
that one only calibrates and receives the best fitting parameters according to the given data and defined
error structure. These obtained parameter estimates do not necessarily correspond to the true physical
values. Often the computer model does explain the data better for different values and restriction of
some calibration parameters to the true physical value might lead to worse results. Following [11], Arendt
et. al. [1, 2] suggest a modular Bayesian approach, where first the hyperparameters of the Gaussian
processes for the simulator and the model discrepancy term are approximated by maximum likelihood
estimates consecutively. Then the posterior distribution of the parameters conditioned on the data and
the hyperparameter estimates are approximated. Further, the identification problem, i.e. the problem
of distinguishing between effects of the calibration parameters and the model discrepancy, is discussed.
Examples illustrate that sometimes this separation is possible under mild assumptions, e.g. smoothness
of the model discrepancy, but also that it is not possible in other cases. In the companion work [2] they
show an approach how to improve identifiability by using multiple responses and representing correlation
between responses. Another work using multiple responses is [14]. Brynjarsdóttir and O’Hagan [3] state
that with the Kennedy and O’Hagan framework [11] in order to infer physical parameters and model
discrepancy simultaneously a sufficient prior distributions for at least one of those must be given. In an
example they show that a constrained Gaussian Process prior for the model discrepancy, including best
and most realistic prior information, yields good results for interpolation and learning about physical
parameters, but still seems to be bad for extrapolation. Hence, simply introducing model discrepancy
with weak prior information is not enough. However, Tuo and Wu [24, 25] showed that the choice of
the model discrepancy prior has a permanent influence onto the parameter posterior distribution even in
the large data limit. Plumlee [15] presented an approach to improve identifiability by defining a prior
distribution of the model discrepancy that is orthogonal to the gradient of the model. Nagel et. al. [13]
modeled the model discrepancy term by an polynomial expansion, assuming smoothness for the true
underlying model discrepancy.

Following all these works we consider a Bayesian model with a term for measurement noise and a
model discrepancy term in order to infer parameters of simulation model for given measurement data.
This work adapts the idea of representing model discrepancy as a polynomial expansion [13]. The major
contribution of this work is to provide answers on how to select a polynomial degree by keeping the
complexity of the model low while still providing high accuracy in discrepancy modeling. This is shown
in a practical guideline, which recommends how to select a sufficient maximum polynomial degree of the
truncated polynomial expansion, based on the available data and the estimation of measurement noise.
Furthermore, critical points conditioning the choice of the model discrepancy term are discussed in detail.

The framework is then applied to the calibration of a direct current (DC) electric motor model under
consideration of model inadequacy, measurement uncertainty and parametric uncertainty in a synthetic
setting. I.e. synthetic measurements are created and a modified electric motor model, containing an
artificial model error are used to infer model parameters. Due to the synthetic setup of the example,
reference parameter values and reference discrepancies are available and allow a quantitative evaluation
of the considered methods performance and accuracy.

Considering all sources of uncertainties increases the complexity of the problem one needs to solve and
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consequently increases computational cost. Hence, efficient methods need to be developed to leverage this
drawback. One possibility is to increase the efficiency of the posterior approximation method, e.g. by using
additional information (first or second order derivatives, e.g. gradient, Hessian) of the problem [9,18,20].
Another option is to replace the simulation model by an surrogate to leverage computational cost. In
this work surrogate modeling is omitted for the sake of simplicity, but we emphasize that in cases where
simulation time is a bottleneck surrogate modeling, such as Polynomial Chaos expansions (PCE) [6, 27]
or Gaussian processes (GPs) [11,16], could leverage overall simulation time and speed up the inference.

This paper is structured in the following way: Section 2 formulates the considered example setup, by
defining the electric motor model, an artificial model error and synthetic measurements. In Section 3 a
Bayesian inference model considering model discrepancy and measurement noise is specified, followed by
a discussion of the model discrepancy term complexity. The numerical results of the methods applied to
the example are presented in Section 4. This work concludes in Section 5.

2 Electric motor model

The following introduces briefly the mathematical model of an electric motor and the corresponding
numerical approximation. This is followed by the synthetic problem set up with synthetic measurement
data creation and artificial model error.

2.1 Model differential equations

A direct current (DC) electric motor is a rotating electrical machine converting electrical energy into
mechanical energy. It is used in cases where a DC voltage source is available and a variable motor speed
operation is required. With the magnitude of the applied voltage the motor speed can be varied. Elements
of a classical DC motors are a fixed stator and a movable rotor. One or more field windings on the stator
generate a permanent magnetic field, in which the rotor is located. The rotor itself is surrounded by the
armature winding consisting of several coils. When electrical current is applied to the armature coil a
magnetic field is generated. Due to the permanent magnetic field caused by the stator a physical force, the
Lorentz force, affects the rotor. This force causes the rotor to rotate. After a certain rotation, when the
magnetic fields are aligned a commutator located on the rotor changes the poles such that the current and
therefore the magnetic poles of the rotor reverse their direction. Thus, the rotor remains in its continuous
torque. For controlling this system variables of interest are current and voltage on the electrical side and
torque and speed on the mechanical side. The following two equations relate these variables [23]. Let
I [A] denote the electric current and ω [rad/s] the angular velocity, i.e. the speed. For t > 0 the ordinary
differential equations

Lİ(t) = −RI(t)− cmω(t) + U, (3)

Jω̇(t) = cgI(t)− dω(t) + TL, (4)

with initial conditions I(0) = I0 ∈ R, ω(0) = ω0 ∈ R, describe the electro-mechanical behavior of a DC
electric motor. The parameters R, cm, cg, U, d, L, J ∈ R denote the cable harness resistance R [Ω], motor
constants cm [V s/rad], cg [Nm/A], voltage U [V ], friction d [kg m/s], inductivity L [H], inertia J [kg m2]
and constant torque TL [Nm] required by the load. For the following only the resistance R is considered
uncertain and all other parameters are fixed. With the initial conditions I0 = 0 and ω0 = 0 and TL = 0
the model describes the start of an electric motor from resting position without load. For the following the
parameter values are set to the following arbitrarily chosen values: R0 = 0.1, cm = 0.01, cg = 0.01, U =
24, d = 10−6, L = 10−4, J = 5 ∗ 10−5.

2.2 Numerical approximation

In order to approximate a solution of the electric current I and the angular velocity ω for t ∈ [0, T ], T =
0.5[s], we define equidistant discrete time points ti := i4t for i = 1, . . . ,M,M ∈ N with step size
4t := T/M . Now, let Î(ti) and ω̂(ti) denote numerical approximations of I and ω at time points ti for
a given time integration scheme. For this work an explicit Runge-Kutta method of order 4(5) is used, in
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particular dopri5 (Dormand and Prince), see [26]. Consequently, the order of the numerical approximation
error is O(4t4) = O(10−12), for T = 0.5 and M = 501. As the measurements are created synthetically
numerical approximation error can be neglected for this work. For notational convenience we define the
forward model operator G : X → Y, with X ⊆ R and Y ⊆ R2M , by

G(R) := [Î(t1), . . . , Î(tM ), ω̂(t1), . . . , ω̂(tM )], (5)

as the operator delivering numerical approximations Î(ti), ω̂(ti) at the discrete time points ti, i = 1, . . . ,M
depending on the parameter R ∈ X and for fixed parameters cg, cm, U, d, L, J ∈ R.

2.3 Synthetic measurement

In order to generate synthetic measurements a realization of zero mean Gaussian distributed noise ε
is added to the numerical approximation G(R0) for a fixed R0 = 0.1, i.e.

y := G(R0) + ε, (6)

where ε = [εI , εω] ∼ N(0,Σ), with covariance matrix Σ ∈ R2M×2M . For independent and identically
distributed measurement noise for current and angular velocity at each time step the covariance is defined
as Σ := diag(ΣI ,Σω), where ΣI ,Σω ∈ RM×M and ΣI,ω := diag(σI,ω), with σI,ω > 0. Figure 1 displays
one measurement of I and ω in the time interval [0, 0.5] seconds with σI,0 = 2, σω,0 = 10 and number of
time steps M = 501.

0.0 0.1 0.2 0.3 0.4 0.5

0

100

200

t

I
(t

)

0.0 0.1 0.2 0.3 0.4 0.5

0

1,000

2,000

t

ω
(t

)

Figure 1: Noisy synthetic measurements of electric current I(t) and angular velocity ω(t) at M =

501 equidistant time points ti, i = 1, . . . ,M in the time interval [0, 0.5] seconds.

2.4 Artificial model error

As the goal of this work is to learn about model discrepancy an artificial model error φ ∈ R is
introduced into the equations of the electric motor

Lİ(t) = −RI(t)− cmω(t) + U, (7)

Jω̇(t) = φcgI(t)− dω(t) + TL. (8)

Let Gφ(R) denote the numerical approximation of the model for an artificial model error factor φ. Obvi-
ously, for φ = 1 the identity G = Gφ=1 holds, if the same numerical approximation method and the same
time step is used. In the following, Gφ is referred to as simulation model.

If φ 6= 1, this can be interpreted as missing physics, i.e. by damping or amplifying a part of the
equation. Or it can be interpreted as a misspecified model, if the parameter cg is fixed. However, for this
showcase it is not important how to interpret this artificial model error. For the following it is sufficient
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that the approximation of the model with φ 6= 1 has some discrepancy to the model with φ = 1. And
this is the case, if cg is fixed to the same value for both models.

Define by

d(R) = [dI ,dω]T (R) := G(R0)− Gφ(R), (9)

dε(R) = [dεI ,d
ε
ω]T (R) := y − Gφ(R), (10)

the discrepancy d(R) ∈ R2M and the noisy discrepancy dε(R) ∈ R2M , depending on R ∈ X . The
discrepancy d(R) is the difference between model G(R0) with reference value R0, used for generation of
the synthetic measurements, and the simulation model Gφ(R) for R ∈ X . The noisy discrepancy dε(R)
is the difference between measurements y and the simulation model Gφ(R) for R ∈ X . The reference
discrepancies d0 := d(R0) and dε0 := dε(R0) for φ = 0.9 and R0 are displayed in Figure 2 for I and ω,
respectively.
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0

50

100

t

d
ω

dε0
d0

Figure 2: Reference discrepancy d0 and dε0 of electric current I(t) and angular velocity ω(t).

3 Bayesian inference solution process

This section considers methods addressing the inverse problem of finding an R ∈ X such that y =
Gφ(R), where y ∈ R2M are noisy measurements and Gφ is the simulation model containing an artificial
model error φ. The goal here is not just to infer an optimal R ∈ X , but also one that is as close as
possible to the reference R0, i.e. the true physical value, which was used to create the measurements y.
Additionally we consider and learn about the model discrepancy during inference.

As already reasoned in the introduction the Bayesian approach to inverse problems has certain ad-
vantages to address the inverse problem. Regularization comes along naturally by defining eventually
existing initial knowledge about unknown parameters as prior probability measure with density π0. Also
measurement noise is considered separately. Furthermore, methods considering model discrepancy can
be easily formulated within the Bayesian framework as it allows to define a prior distribution for the
model discrepancy term. As we are interested in separating several sources of uncertainty it is natural to
formulate the problem in terms of probability theory and use Bayesian inference.

Following [13] we introduce two Bayesian models that differ in their complexity. The simpler model
only considers identically and independent distributed (i.i.d.) measurement noise, whereas the more
complex model considers model discrepancy additionally.

In this work sampling methods are utilized to approximate the posterior distribution probability
density function, in particular a Metropolis-Hastings Markov-Chain Monte-Carlo (MH-MCMC) method
[5]. We use the MH-MCMC implementation of the Python package PyMC3 [17].
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3.1 Bayesian model 1 (BM1): measurement noise

As the measurements y are noisy, additive noise ε is added to the simulation model

y = G(R) + ε, (11)

where ε = [εI , εω]T ∈ R2M . Here, εI , εω are considered as zero-mean Gaussian random variables
N (0, σ2

IIM ) and N (0, σ2
ωIM ) with unknown standard deviations σI , σω > 0, respectively. Consequently,

the Bayesian model 1 (BM1) is

y = G(R) + ε(σI , σω), (12)

considering only identically and independent distributed (i.i.d.) Gaussian measurement noise. Hence, the
likelihood, i.e. the distribution of the measurements y conditioned on the parameters R, σI , σω is

y|R, σI , σω ∼ N (G(R),Σ(σI , σω)), (13)

with Σ(σI , σω) = diag(σ2
IIM , σ

2
ωIM ). By expressing a-priori knowledge of the parameters R, σI , σω in

terms of a prior probability density function π(R, σI , σω), Bayes’ formula yields for the posterior proba-
bility density

π(R, σI , σω|y) ∼ π(y|R, σI , σω)π(R, σI , σω). (14)

I.e. the posterior probability density is proportional to the product of likelihood and prior up to a nor-
malization constant. Let the prior be given by π(R, σI , σω) = π(R)π(σI)π(σω). The priors for the
unknown standard deviations of the noise π(σI), π(σω) are defined as uninformative Inverse Gamma dis-
tributions InvGamma(1, 1). This is a common choice for conjugate priors of scale parameters in Bayesian
statistics [5], in particular for a Gaussian likelihood with given mean. The inverse Gamma distribution
InvGamma(1, 1) ensures the positiveness of σI , σω > 0, see Figure 6 for a plot of the density function of
InvGamma(1, 1).

3.2 Bayesian model 2 (BM2): measurement noise and model discrepancy

The second model approach extends the first one by considering model discrepancy with an additive
term δ, additionally to additive i.i.d. measurement noise. Hence, the considered model is

y = G(R) + δ + ε, (15)

where δ = [δI , δω]T ∈ R2M . Note that this is already the discretized version and δI = [δI(t0), . . . , δI(tM )],
δω = [δω(t1), . . . , δω(tM )] are vectors of the, yet to define, model discrepancy terms δI , δω : D → R
evaluated at the discrete time points ti, i = 1, . . . ,M . Omitting the superscripts for a moment, we now
assume that δ ∈ L2(D). The space of square integrable functions L2(D) is equipped with the inner
product 〈f, g〉 =

∫
D
fgdµ, where µ is a measure on D and f, g ∈ L2(D), D = [0, T ]. Let {pj}j∈N ⊆ L2(D)

be a basis of functions pj : D → R dense in L2(D), i.e. span({pj}j∈N) = L2(D). Then for all δ ∈ L2(D)
there exists {aj}j∈N ⊆ R with

∑
j∈N|aj |2 <∞ such that δ can be represented by the expansion

δ(t) =

∞∑
j=0

ajpj(t). (16)

For practicability reasons the expansion is truncated after a K ∈ N

δ(t) ≈ δK(t) =

K∑
j=0

ajpj(t). (17)

Such an truncated expansion was also used in [13]. With this let, for the truncation parameterKI ,Kω ∈ N,
the truncated functional expansions

δKI

I (t) =

KI∑
j=0

a
(I)
j pj(t), δKω

ω (t) =

Kω∑
j=0

a
(ω)
j qj(t), (18)
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be approximative models for the model discrepancy terms δI , δω. The bases {pj}j=0,...,KI
and {qj}j=0,...,Kω

are not necessarily identical. Note that each expansion could be truncated with own truncation parameters
KI ,Kω, but for notational convenience and due to later usage we stick to K = KI = Kω for the following.

Let a = [a(I),a(ω)] = [a
(I)
0 , . . . , a

(I)
K , a

(ω)
0 , . . . , a

(ω)
K ] ∈ R2K+2 be the vector containing all coefficients and

δKI (a) = [δKI (t0), . . . , δKI (tM )], δKω (a) = [δKω (t1), . . . , δKω (tM )] be the vectors of the model discrepancy
terms evaluated at the discrete time points ti, i = 1, . . . ,M . Hence δK(a) = [δKI , δ

K
ω ]T (a) ∈ R2M denotes

the approximation of the true underlying model discrepancy δ, depending on the coefficients a and the
truncation parameter K. The Bayesian model 2 (BM2) with all parameter dependencies is

y = G(R) + δK(a) + ε(σI , σω). (19)

The number of unknown parameters depends on K and is now 3 + 2K+ 2. With the additional unknown
coefficients a, the prior probability density function is defined as

π(R, σI , σω,a) = π(R)π(σI)π(σω)π(a), (20)

where π(a) =
∏K
j=0 π(a

(I)
j )π(a

(ω)
j ). The prior distributions for π(σI) and π(σω) are specified as above.

Now, with the likelihood

y|R, σI , σω,a ∼ N (G(R) + δK(a),Σ(σI , σω)), (21)

the posterior is given by

πK(R, σI , σω,a|y) ∼ π(y|R, σI , σω,a)π(R, σI , σω,a), (22)

where πK denotes the dependence on K.

3.2.1 Choosing basis functions

If knowledge about the discrepancy is available, this should be modeled accordingly by defining an
appropriate prior distribution for δ, i.e. in the case of δK(a) for a,K and of course by an appropriate choice
of basis functions. However, in general this knowledge is not available and some modeling assumptions
need to be made. Following the assumption above, the basis needs to be dense in L2(D). With the
additional assumption that δ is rather smooth, polynomials are a reasonable choice. For this let pj : D →
R be a polynomial with polynomial degree deg(pj) = j and {pj}j∈N be an orthonormal polynomial basis,
with the orthogonality conditions 〈pj , pk〉 =

∫
D
pjpkdµ, for a measure µ on D. Let w : D → R+ be the

weighting function of µ. Then, for instance, the

• (a) Legendre polynomials for w(t) =
1

|D|
, with |D| = T and

• (b) Tschebyschew polynomials for w(t) =
1√

1− t2

are dense in L2(D) and thus possible choices for the expansion. Of course there are further bases that
are dense in L2(D). However, for our assumptions Legendre polynomials with the constant weighting
function are a reasonable choice for {pj}j=0,...,K . This choice was also made in [13]. The first five
Legendre polynomials are displayed in Figure 3.

3.2.2 Choosing prior distributions for the coefficients

In [13] they argue that the choice of the prior distribution for the coefficients is a bit delicate and
somewhat arbitrary, as they have no physical meaning. Since no knowledge about the model discrepancy δ
is available we assume δK(a) to be as small as possible by specifying priors that are centered around zero.
Every around zero centered probability distribution with decaying tails should be sufficient. However,
following [13], we opt for zero mean Laplace distributions, as it assign the highest probability around
zero and decays exponentially towards the tails. The probability density function of Laplace(a, b) is

f(x) = 1
2bexp(−

|x−a|
b ) for x ∈ R [12]. Compared to a Gaussian distribution, Laplace distribution enforces

the zero a bit more and has slightly fatter tails. For a visual comparison of Laplace versus Gaussian
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distribution for the same specification, see Figure 4. Consequently, the π(a
(I)
j ), π(a

(ω)
j ) are modeled as

Laplace distributions with zero mean and variance 10, according to [13]. As the coefficients a
(I)
j , a

(ω)
j have

independent zero mean priors the resulting distributions for δKI , δ
K
ω are centered around zero as well. For

the variance we obtain

V [δKI (t)] =

K∑
j=0

V [a
(I)
j ]p2j (t), V [δKω (t)] =

K∑
j=0

V [a
(ω)
j ]q2j (t). (23)

Note that for the particular choice of the Legendre polynomials the variance of δK(t), δK(t) is non-constant
and varies with t, as displayed in Figure 3.

3.2.3 Choosing the truncation parameter K

The remainder of this section addresses the open question on how to specify an appropriate value
for the truncation parameter K. With the choice of Legendre polynomials K now corresponds to the
maximum polynomial degree K. This K determines the complexity of the model discrepancy term δK(a).
Important factors in order to specify the model discrepancy term, or more specifically its complexity, are

• accuracy,

• computational costs,

• bias-variance tradeoff (underfitting, overfitting) and

• non-identifiability.

These points are important for a general definition of the model discrepancy term. Here, with the already
made choice of Legendre polynomials and Laplace distribution for the polynomial coefficients, only the
maximum polynomial degree K can be modified to adjust the complexity of δK(a). Hence, the factors
listed above are explained in terms of the maximum polynomial degree K, which will serve as a synonym
for the term model complexity. An optimal K should be large enough such that δK(a) is accurate enough
to approximate the underlying discrepancy correct, but at the same time it should be as small as possible
since a large K increases the number of unknown parameters and consequently computational costs.
Furthermore, a large K might yield overfitting and non-identifiability of parameters. Overfitting occurs
when for a large K the high degree polynomials start to reproduce oscillations of the measurement noise.
With increasing K the discrepancy term δK(a) yields an increased flexibility and is able to approximate
a growing class of functions. However, a remedy of this increased flexibility is a loss of information in
the prior of δK(a). I.e. the prior gets non-informative, this might yield non-identifiability of all unknown
parameters, depending on the information of the remaining model parameter prior distributions. In [3]
they state that in order to infer model discrepancy and model parameters at the same time, at least for
one of those an informative prior must be given. The term bias-variance tradeoff, illustrated in Figure 5,
describes the fact that with increasing model complexity K the bias, i.e. the difference between the mean
of the estimator and the reference value (E[R|y]−R0), decreases, but at the same time the variance of the
estimator V [R|y] increases with the model complexity [7]. Consequently, the mean square error (MSE)
of R, which is the sum of squared bias and variance MSE(R) = (E[R|y]−R0)2 + V [R|y], is minimal for
an optimal model complexity Kopt. With this optimal model complexity the contributions of bias and
variance are somehow balanced. Models with an model complexity over this optimum are called overfitting
(explaining the measurement data to good) and below underfitting (explaining the measurement data to
bad).

Finally, taking all these factors into account the approach in this work on how to find an opti-
mal K is following: Start with an initial K = K0 ∈ N and increase K iteratively until the marginal
posterior distribution π(σI , σω|y) of the noise standard deviation stabilizes. I.e. that some distance
D(πK(σI , σω|y), πK+L(σI , σω|y)) < tol for a given tolerance tol > 0 and L = 1, 2, 3, . . . . Then select
the K such that this condition holds. Why is this sufficient? If a model discrepancy is present in BM1,
then the noise term is the only instance to capture it. As the noise term is modeled with zero mean, the
standard deviation might be overestimated consequently. By adding the model discrepancy term in BM2,
this term, which is allowed to have an non-zero mean, captures, depending on its flexibility and degrees of
freedom, a fraction of the model discrepancy. As a consequence, the noise term ε needs to represent only
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Figure 5: Bias-variance tradeoff: This figure shows the contribution of bias and variance to the

total error. From http://scott.fortmann-roe.com/docs/BiasVariance.html

the remaining discrepancy and is estimated by a smaller value. Due to the smoothness assumption of
δK(a), ε collects also everything that is not smooth enough. Now, if the estimated standard deviation of
the noise does not change anymore (within the tolerance) from K to K+L for L = 1, 2, 3, . . . the smallest
sufficient K is found. For this K the model discrepancy term δK(a) should represent the underlying
model discrepancy appropriately and a separation of model uncertainty and measurement uncertainty is
achieved.

4 Numerical results

In this section the numerical results for the two Bayesian models, BM1 and BM2, applied to the
electric motor model are presented and compared to the reference, which is available due to the fully
synthetic problem set up. Reference parameter values are R0 = 0.1, σI,0 = 2 and σω,0 = 10. The
reference discrepancy d0 and the noisy reference discrepancy dε0 as defined in Section 2.4 are displayed
in Figure 2. The prior distribution for the unknown parameter is chosen as Gaussian distribution R ∼
N (R0, 0.2R0), with prior mean R0 and variance 0.2R0. Variations of the prior mean by +/ − 15% did
not influence the upcoming results, thus simply the reference value was chosen as mean of the prior.
The results are obtained by approximating the posterior distributions with MH-MCMC samples. The
approximated marginal posterior distributions displayed in the following plots are kernel density estimates
of the corresponding marginal MH-MCMC samples. Consequently, the marginal posterior moments are
empirically approximated using Monte Carlo integration with a certain number of the obtained MH-
MCMC samples.

4.1 Results Bayesian model 1

This section presents the numerical results obtained with Bayesian model 1 (BM1) for an artificial
model error φ = 0.9. Figure 6 displays the marginal MH-MCMC samples and corresponding posterior
distributions for parameters R, σI and σω in comparison to the reference values. With respect to a burn in
phase, only the last 700 samples of three independently sampled Markov chains, each of total length 1500,
are used to obtain the results. The chains stabilize, as can be seen in Figure 6, this confirms convergence.
However, the sampling behavior is poor as the effective sample size is low. This is due to the highly
informative data and the so-called concentration effect, where the posterior distribution concentrates on
a small region, which makes sampling inefficient, see [18,20] for further reading.

Figure 6 shows that the marginal posterior distribution for σω is close to the reference, but for R and

11
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Figure 6: Posterior distributions and samples from BM1: The figures on the right hand side

show marginal MH-MCMC samples of the parameters R, σI and σω (from top to bottom). The

figures on the left hand side show the kernel density estimates of the corresponding samples as

an approximation of the marginal posterior distributions. The prior distributions are plotted as

dotted black lines and the reference values as dashed red lines.
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σI the marginal posteriors concentrate at values different to the reference values and do not even assign
a significant probability to the reference values.

Definition 4.1. Define the relative error for a parameter estimate x̂ as

εrel(x) =
|x̂− x0|
|x0|

, (24)

where x0 is the reference value. x̂ might be the empirical approximation of the marginal posterior mean

E[x|y] , i.e. x̂ = 1
L

∑L
l=1 xl, where xl, l = 1, . . . , L are a selection of MH-MCMC samples of the posterior

density π(x|y).

The marginal posterior mean values of R, σI and σω and their respective relative error with respect to
the reference values R0 = 0.1, σI,0 = 2 and σω,0 = 10 are displayed in Table 1. The relative error εrel(R̂)

is around 10%. Inserting the marginal posterior mean R̂ ≈ E[R|y] of R in the simulation model Gφ yields

marginal posterior mean relative error

R̂ σ̂I σ̂ω εrel(R̂) εrel(σ̂I) εrel(σ̂ω)

BM1 9.03e-02 6.29e+00 1.03e+01 9.66e-02 2.14e+00 2.79e-02

BM2 (K = 9) 9.92e-02 2.02e+00 9.95e+00 8.48e-03 1.03e-02 4.89e-03

Table 1: Marginal posterior mean and relative error of parameters R, σI and σω for BM1 and

BM2 with K = 9, respectively. The relative errors are with respect to the reference values R0 =

0.1, σI,0 = 2, and σω,0 = 10.

the noisy discrepancy dε(R̂) = [dεI ,d
ε
ω]T (R̂) = y − Gφ(R̂), displayed in Figure 7.

Remark 4.1. For simplicity the mean E[dε(R)|y] = E[y−Gφ(R)|y] = y−E[Gφ(R)|y] ≈ y−Gφ(E[R|y])

is approximated by assuming linearity for Gφ. Thus only the mean of R needs to be computed. This

does not cause large approximation errors as the posterior distribution of R has very small support and

consequently linearity for Gφ needs to be assumed in a small neighborhood of R̂ only.
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Figure 7: These plots show the remaining discrepancy dε(R̂) = [dεI ,d
ε
ω]T (R̂) = y − Gφ(R̂), where

R̂ is the marginal posterior mean obtained with BM1.

The noisy discrepancy dεω(R̂) for ω is basically the measurement noise, since E[dεω] ≈ 0 and V [dεω]1/2 =
10.18 ≈ σω,0 ≈ σ̂ω. But for dεI there is some discrepancy, at least in the first half of the time interval,
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different to measurement noise. Calculating the empirical standard deviation for a fixed zero mean σ†I :=
1

M−1
∑M
i=1(dεI(R̂)i)

2, where dεI(R̂)i denotes the i-th component of dεI(R̂), i.e. at time point ti, one obtains

σ†I = 6.23 ≈ σ̂I . The obtained value corresponds to the overestimated marginal posterior distribution of
σI that centers around a similar value, see Figure 6 and Table 1. Obviously, by only considering i.i.d.
zero mean measurement noise, BM1 leads to biased and overconfident parameter estimates. Furthermore,
the calibrated simulation model does not represent the data accurately enough. However, for BM1 and
the model Gφ with the artificial model error φ = 0.9, this is the best result one can get.

4.2 Results Bayesian model 2

This section presents the numerical results obtained with Bayesian model 2 (BM2) for an artificial
model error φ = 0.9. Now, the additional model discrepancy term δ is expected to cover, depending
on its definition, at least a fraction of the underlying model discrepancy and consequently yields an
improved parameter estimation. As introduced in Section 3 the model discrepancy term δ is represented
by a polynomial expansion δK(a) with maximum polynomial degree K and unknown coefficients a =

[a(I),a(ω)] = [a
(I)
0 , . . . , a

(I)
K , a

(ω)
0 , . . . , a

(ω)
K ] ∈ R2K+2. Figure 8 displays moments of the marginal posterior

distributions, i.e. mean, standard deviation and a 95% confidence interval of R, σI and σω, obtained via
BM2 for varying maximum polynomial degree K = 0, . . . , 20. For each K the last 40000 samples of three
independently sampled Markov chains of length 100000 are used to approximate the moments. In contrast
to BM1 and due to the increasing number of unknowns in BM2, a larger number of MH-MCMC samples
is required in order to obtain convergence. For better comparison and interpretation of the results, the
index BM1 in the figure denotes the previous results without δ, obtained via Bayesian model 1. Following
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Figure 8: This figures show results obtained with BM2 for varying polynomial degreeK = 0, . . . , 20.

Moments (mean, mean +/− standard deviation and 95% confidence interval) of the marginal

posterior distributions of R are displayed on the left hand side and moments (mean and mean

+/− standard deviation) of σI , σω on the right hand side. Reference values are plotted as dashed

red lines. The index BM1 denotes the previous results without δ, obtained via Bayesian model 1.

the guideline specified in Section 3 the marginal posterior distributions of the noise standard deviations
of σI and σω in Figure 8 are considered to pick an appropriate K. Both marginal posterior distributions
πK(σI |y) and πK(σω|y) stabilize for K ≥ 7 and are almost identical for K ≥ 9. I.e. mean and standard
deviation of the marginal posterior distribution are almost identical for K ≥ 9. This indicates that K = 9
is a sufficient polynomial degree and increasing K further does not improve the results with the current
specification of the model discrepancy term. Detailed results for K = 9 are presented later on.

Now, assessing the marginal posterior distribution of R for varying K in Figure 8 one observes that
for K = 6, . . . , 19 the marginal posterior mean of R roughly stabilizes in some kind of a plateau close
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to the reference R0, but the posterior standard deviation increases with K. For K = 0, . . . , 5 the model
discrepancy term δK(a) is not flexible enough to approximate the underlying discrepancy appropriate
enough. As a consequence, the standard deviations of the measurement noise are overestimated and the
estimation of the parameter R is still biased for those values of K. But, compared to the results from
BM1, already K = 1 improves the inference.

In order to compare and evaluate the solutions we define error measures for the parameters and the
model discrepancy term.

Definition 4.2. Let x with posterior probability density π(x|y) be an estimation for an unknown x0 ∈ R,

for given data y. Denote x0 as reference parameter. The mean square error (MSE) of x is given as

MSE(x) := E[(x− x0)2|y] = Bias(x)2 + V [x|y], (25)

with bias Bias(x) = (E[x|y]− x0). The mean is with respect to π(x|y). In case of the posterior density

πK(x|y) depending on K write MSEK(x) = EK [(x− x0)2|y] = BiasK(x)2 + VK [x|y].

Definition 4.3. In order to have something similar for the model discrepancy estimations δK(a) =

[δKI (a), δKω (a)] ∈ R2M with the posterior density function πK(a|y) and with respect ot the reference

discrepancy d0 we construct for δ∗ ∈ {δKI (a), δKω (a)} the normed MSE

nMSEK(δ∗) := ‖MSEK(δ∗)‖ = ‖BiasK(δ∗)
2 + VK(δ∗)‖, (26)

where ‖·‖ is the L2(R2M ) norm. With triangle and Cauchy Schwarz’ inequality this can be bounded by

nMSEK(δ∗) ≤ nBiasK(δ∗)
2 + nVK(δ∗) =: nMSEK(δ∗). (27)

Here the normed bias nBiasK(δ∗) := ‖EK [δ∗|y] − d0‖ and variance nVK(δ∗) := ‖VK [δ∗|y]‖. The mean

is with respect to πK(a|y).

Figure 9 displays BiasK(R), variance VK [R|y] and mean square error MSEK(R) of R with respect
to R0, depending on the model complexity, i.e. maximum polynomial degree K of the discrepancy term
δK(a). The MSE of R is minimal around K = 7, 8, 9 and K = 15, indicating those values as an optimal
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Figure 9: Bias-variance tradeoff: Bias BiasK(R), variance VK [R|y] and mean square error

MSEK(R) of R with respect to R0, depending on K, for K = 0, . . . , 20 from BM2. The in-

dex BM1 denotes the previous results without δ, obtained via Bayesian model 1.
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model complexity and backing up the decision of K = 9 as sufficient polynomial degree. Figure 9 largely
corresponds to the bias-variance tradeoff, since the variance increases with K and the bias decreases with
K, at least until K = 15. The variance increases due to the increased number of parameters, i.e. more
degrees of freedom. This results in more uncertainty, i.e. variance, for each parameter by using the same
amount of data. Furthermore, for large K overfitting starts, i.e. δK(a) starts to oscillate and reproduce
parts of the measurement noise. The bias decreases with increasing K, but only until K = 15, then it
increases as another phenomena, namely non-identifiability, occurs additionally.

Figure 10 displays bias, variance and MSE of σI and σω with respect to the reference values σI,0, σω,0,
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Figure 10: Bias, variance and MSE of σI and σω with respect to the reference values σI,0, σω,0,

depending on K, for K = 0, . . . , 20 from BM2. The index BM1 denotes the previous results

without δ, obtained via Bayesian model 1.

for K = 0, . . . , 20 from BM2. For K ≥ 7 the MSE for both stays on the same level mainly as the variance
stays on the same level. As for each K the same data y is used there is a point where the estimation of
πK(σI |y) and πK(σω|y) can not be improved further, without considering new additional data.

Figure 11 displays the normed nBiasK(δ∗), nVK(δ∗), nMSEK(δ∗) and nMSEK(δ∗) for the model dis-
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model discrepancy approximations δ∗ ∈ {δKI (a), δKω (a)} depending on K, for K = 0, . . . , 20 from

BM2.
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crepancy approximations δ∗ ∈ {δKI (a), δKω (a)} depending onK, forK = 0, . . . , 20 from BM2. nBiasK(δ∗)
is minimal forK = 8. Here again, as in Figure 9, the effects of Bias-variance tradeoff and non-identifiability
can be observed.

Especially for K = 20 overfitting and non-identifiability can be observed. For K = 20 the marginal
posterior samples of R in Figure 12 do not converge any more, even not for an increased sample size of
three independent chains with 500.000 samples each. Consequently, the posterior distribution is spread
out and biased. Also the posterior distribution of δK(a) for polynomial degree K = 20, displayed in
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Figure 12: Posterior distributions and samples from BM1 and BM2 with K = 20: The figures on

the right hand side show marginal MH-MCMC samples of the parameters R, σI and σω (from top to

bottom). The figures on the left hand side show the kernel density estimates of the corresponding

samples as an approximation of the marginal posterior distributions. The results without model

discrepancy term from BM1 are plotted in grey and the results with model discrepancy term from

BM2 and polynomial degree K = 20 are black. The prior distributions are plotted as dotted black

lines and the reference values as dashed red lines.

Figure 13, is spread out and the reference discrepancy is not captured anymore. Only the bounds of the
posterior distribution of δK(a) tend towards the reference. This posterior distribution corresponds more
to the discrepancy d(R̂)I that was still present after inference with BM1, see Figure 7. Furthermore,
overfitting can be observed as the model discrepancy term tries to capture the high oscillations of the
measurement noise. Looking at the posterior distributions of the polynomial coefficients in Figure 14
one observes that for I the coefficients aI0 and aI1 of the constant and linear polynomials are somehow
specific and have small support, but for aω2 , a

ω
3 and aω4 it is spread out and they are non-identifiable. All

other concentrate around zero. For ω one observes flat posterior distributions for aω0 and aω1 , i.e. the
coefficients of the constant and linear polynomials are non-identifiable. All other posterior distributions
of the coefficients aωj for j = 2, . . . , 20 concentrate around zero with decreasing support.
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Figure 13: Posterior distribution of model discrepancy δK(a) = [δKI , δ
K
ω ](a) for K = 20.
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However, the posterior distributions of σI and σω (see Figure 12) concentrate at the reference values.
This indicates that albeit the posterior distribution of R and δK(a) are spread out, the sum Gφ(R) +
δ(a) + ε(σI,ω) still represents the data y well.

Finally, considering all these observations in Figure 8, and omitting the reference for a while, it makes
sense to consider a polynomial degree K = 9. K = 7 would be already sufficient, but in order to
allow a bit more flexibility for δK(a) K = 9 is considered as a sufficient polynomial degree. Also by
considering the reference K = 9 is confirmed to be a good choice. However, K = 15 might yield a better
marginal posterior mean and has a comparable MSE, but the variance is also increased and the posterior
distribution of δ15(a) already shows an oscillating behavior. Furthermore, in order to keep computational
cost low a small K is preferred.

Now, for BM2 and K = 9 the number of parameters to sample from is 3 + 2(K + 1) = 23. Figure 15
displays the last 40.000 samples of three independently sampled Markov chains of total length 100.000.
The marginal posterior distribution of R concentrates around the reference value and the relative error of
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Figure 15: Posterior distributions and samples from BM1 and BM2 with K = 9: The figures on the

right hand side show marginal MH-MCMC samples of the parameters R, σI and σω (from top to

bottom). The figures on the left hand side show the kernel density estimates of the corresponding

samples as an approximation of the marginal posterior distributions. The results without model

discrepancy term from BM1 are plotted in grey and the results with model discrepancy term from

BM2 and polynomial degree K = 9 are black. The prior distributions are plotted as dotted black

lines and the reference values as dashed red lines.

the posterior mean reduces around one order of magnitude compared to the result of BM1, see Table 1.
Also, both noise standard deviations concentrate around the reference and significantly improve in relative
errors compared to BM1. Figure 16 displays the concentration of the posterior distribution of δK(a) =
[δKI , δ

K
ω ]T (a) around the reference discrepancy d0. The relative error nBiasK(δK∗ − d0,∗)/‖d0,∗‖ with
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Figure 16: Posterior distribution of model discrepancy δK(a) = [δKI , δ
K
ω ](a) for K = 9.

respect to the L2-norm, is 1.0e-01 for I and 9.2e-02 for ω. Also the marginal posterior distributions of
the polynomial coefficients a in Figure 17 correspond to the reference coefficients. Overall, the posterior
distribution of Gφ(R)+δK yields a good approximation of the measurements y with only a small variance
band.

5 Conclusion

In this work a method to infer model parameters and model discrepancy is considered and applied
to synthetic measurement data of an electric motor. The suggested Bayesian model 2 (BM2) considers
measurement noise and model discrepancy, in order to separate these two sources of uncertainty and
improve physical parameter estimation. The model discrepancy term is modeled as a truncated polynomial
expansion δK(a) with unknown coefficients a and an maximum polynomial degree K. The smoothness
assumption, implied by the polynomials, restricts the flexibility of δK(a) depending on K and introduces
specific prior knowledge about the true underlying model discrepancy. This work discusses and then
defines a guideline on how to define appropriate model discrepancy term complexity, i.e. here the maximum
polynomial degree K of δK(a) based on the marginal posterior distribution of measurement noise standard
deviation.

The framework applied to the electric motor showed promising perspectives by an improved estimation
of the model parameters. Furthermore a good approximation of the a-priori unknown model discrepancy
is learned during BM2 for a sufficient maximum polynomial degree K = 9. For too small K the flexibility
of δK(a) is not sufficient and estimation is just slightly improved. Additionally, the results showed that
if K is too large the prior contains to less information about the smoothness of the reference discrepancy
and consequently the posterior distribution does not converge anymore. Consequently, in order to identify
both, the underlying parameter value and the reference discrepancy of the test scenario, it is important
to formulate at least for one of those unknowns a prior containing some information about the reference.
Otherwise the problem is not identifiable.

For this example the model discrepancy δ was rather smooth. This might be not the case in other
examples. If one knows that δ is non-smooth one might consider other representations for δ, such as
radial basis functions, wavelets, Gaussian Processes or even neuronal networks. Here the question arises,
if more flexibility implies non-identifiability. However, in our example, even for small K estimation could
be improved, and in the case of no model discrepancy results do not degrade, if one uses an model
discrepancy term. This might lead to the conclusion that using a model discrepancy term, even if it is
not sufficiently modeled, does not degrade the results.
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Figure 17: Marginal posterior distributions of polynomial coefficients a of δK(a) for K = 9. The

upper plot displays the marginal posterior distributions of a
(I)
j and the lower of a

(ω)
j , j = 0, . . . ,K.

The vertical lines are the coefficients a obtained from least squares fitting of δK(a) to the reference

discrepancy d0.

This work showed that with an additional term for model discrepancy inference results can be improved
and realistic information about the discrepancy can be collected, if some information about the parameters
or the discrepancy is specified in the priors. However, computational costs increase drastically with the
number of parameters for the model discrepancy term. As previously suggested, one might consider
surrogate models to leverage this or improve sampling.

According to the definition of δ the resulting prior has a time dependent variance with high values at
the boundaries. The posterior distribution of δK(a) shows a similar behavior at the boundary T . This
might be due to the prior definition. In order to get rid of the wide posterior distribution at T it might
be necessary to define a prior for δK(a) with (at least almost) constant variance over time. The solution
proposed for the next problem, might also help in this case.

With the polynomial approach it is difficult to define the right polynomial degree K a-priori. If the
maximal polynomial degree is to low, then it is not possible for δK(a) to approximate the reference
discrepancy d0 appropriately. If the polynomial degree is to high, δK(a) tends to overfit and tries to cap-
ture, in addition to d0, the highly oscillatory behavior of the measurement noise as well. The coefficients
belonging to higher degree basis polynomials do not tend to zero as they actually should. A solution to
this problem could be to model this in the definition of the polynomial coefficients prior distributions, i.e.
by reducing the variance with increasing polynomial degree, e.g. V [ai] ∼ 1/i, i = 1, . . . , N .

Next steps are to apply this approach to higher dimensional problems and further to real field data
to test its capabilities. Then, as real data implies a more complex simulator, surrogate modeling will
be mandatory to leverage computational expenses. Additionally, evidence approximation could be an
another criteria to select a Bayesian model, which will be considered in future work.
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