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Nested Schur-Complement Solver for a Low-Mach Number

Model: Application to a Cyclone-Cyclone Interaction

Gawlok, S., Heuveline, V.

September 27, 2018

Abstract

Forecasting the dynamical evolution of interacting tropical cyclones poses a computationally chal-

lenging problem. An attractive approach for modeling and simulating such type of dynamics is given

by Low-mach models. A formulation of a Low-mach model is presented along with the description of

a benchmark scenario of two interacting tropical cyclones. For the discrete nonlinear equations of this

model, an improved variant of the nested Schur-complement preconditioner is proposed. A detailed

discussion of the numerical results is conducted with a special emphasis on computational costs and

scalability. It will be demonstrated that the new preconditioner clearly outperforms a prior version

of this kind of preconditioner with respect to computing time by a factor of two, but at the cost of a

slightly reduced scalability.

1 Introduction

The task of forecasting the motion and evolution of the interaction of tropical cyclones is a challenging and
computationally expensive task [6, 16, 17, 19, 31]. The underlying physical processes interact in complex
ways on a wide range of spatial and temporal scales, which needs to be considered in the discretization of
the underlying physical models by means of the resolutions of both the temporal and spatial computational
grids. Consequently, a numerical simulation of such processes comprises the solution of very large and
possibly non-linear systems of equations.

A very well-known method for solving non-linear systems of equations is Newton’s algorithm [30].
In each iteration of this algorithm a linearization of the non-linear system of equations needs to be
solved, which constitutes the computationally most expensive step in each iteration. Therefore, effective
and efficient linear solvers and corresponding preconditioners are needed in order to solve the linearized
system robustly and in a feasible amount of time. Especially, the applied preconditioner plays a crucial role
and should be adapted to the physics of the underlying physical model, see, e.g., [19] and the references
therein.

A possible model to describe the governing physical processes is the so-called Low-mach number
approximation of the Compressible Navier-Stokes equations, see, e.g., [7, 19, 25–27]. This model is
expressed in the form of a system of non-linear partial differential equations (PDEs). A model-adapted
preconditioner for the solution of the linearized system in each iteration of Newton’s method is given by
the nested Schur-complement preconditioner, which has been introduced in [19].

The idea of the nested Schur-complement preconditioner is to split the linearized system of Newton’s
method into smaller sub-systems by means of Schur-complements, which can be assigned a physical
meaning [19] based on the underlying PDE model. The solution of the resulting Schur-complement
equations involves solving linear systems of equations of sub-systems of the linearzied system, which can
be solved by standard techniques, e.g., Krylov subspace methods [19, 33] and multigrid techniques [19, 33].
Consequently, the application of a nested Schur-complement preconditioner comprises the approximate
solution of several linear systems. In order to achieve a good overall performance and short computing
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Figure 1: Domain Ω and boundary conditions for CCI scenario.

times, the parameters controlling the corresponding solution algorithms need to be chosen carefully and
allow for many possible improvements depending on the number of selectable parameters.

In this article, we present improvements on the parameter choices that have been achieved in compar-
ison to [19]. These improvements lead to a cut of the computational time by a factor of 2.

The remainder of this article is organized as follows: In Section 2, we shortly introduce the Low-mach
(LM) model, the setup of the Cyclone-Cyclone interaction (CCI) scenario as well as the discretization of
the underlying PDEs. In the following Section 3, the improved nested Schur-complement preconditioner
is presented. The numerical results achieved by the improved preconditioner are discussed in Section 4.
Section 5 gives a summary as well as an outlook on possible topics for further developments and research.

2 Cyclone-Cyclone Interaction and Low-mach Model

Typically, tropical cyclones have diameters on the scale of several 100 km. In the considered scenario,
two cyclones of this type, which interact with each other, are placed in the computational domain with an
initial distance of the storm centers of 400 km. Therefore, the horizontal extend of the dynamic evolution
of the two cyclones easily reaches the scale of 1000 km. Consequently, the domain Ω needs to be chosen
large enough such that the cyclones are still fully contained within the domain on the considered time-
interval. In the presented case, the domain extends over 4000 km in both horizontal directions, and 13 km
in the vertical. Horizontally, the domain is centered around the origin of the coordinate system, i.e., the
domain Ω is defined as

Ω := [−2, 000, 000; 2, 000, 000]× [−2, 000, 000; 2, 000, 000]× [0; 13, 000], (1)

where the boundaries of the intervals are given in meters [m]. The domain Ω as well as the applied
boundary conditions for Problem 2.1, respectively, are depicted in Figure 1.

The physical model for the evolution of the fluid dynamics, which is considered here, is the so-called
Low-mach number approximation of the compressible Navier-Stokes equations for a dry atmosphere, see,
e.g., [19] and the references therein. The governing equations of this model are given as follows:

Problem 2.1 (Low-mach model [19])

Let Ω ⊂ R3 be as in (1) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)> : [0, T )×Ω→
R3, a density perturbation ρ∗ : [0, T )×Ω→ R, a temperature perturbation θ∗v : [0, T )×Ω→ R, a pressure
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perturbation p∗ : [0, T )× Ω→ R and a thermodynamic pressure pth : [0, T )→ R, which fulfills∫
Ω

p∗dx = 0, (2)

satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v +

(
−fv, fu, ρ

∗

ρ
g

)>
= 0 (3)

∂tpth + w∂zp0 +
pth + p0

1− κ
div v = 0 (4)

∂tθ
∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (5)(

p0
pth+p0

)κ
pthθv,0 +

[(
p0

pth+p0

)κ
− 1
]
p0θv,0 − p0θ

∗
v(

− gκ
R′θz

ln
(

1 + θzz
θ0

)
+ 1
)
R′ (θv,0 + θ∗v) θv,0

= ρ∗ (6)

∂tpth −
∫

Ω
κw∂zp0dx

(1− κ) |Ω|
= 0 (7)

w = 0, ∂nu = 0, ∂nv = 0 on [0, T ]× Γ (8)

v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x), pth(0) = 0 (9)

as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v and p∗,

ρ∗0 :=
(1000 hPa)

κ
(pth(t) + p0(x))

1−κ

R′
(
θ∗v,0 + θ0

) − ρ0

and

ρ := ρ∗ + ρ0.

Equations (3)-(6) are required to hold on (0, T )× Ω and (9) is asked to hold on {t = 0} × Ω.

The unknown functions v, ρ∗, θ∗v and p∗ are discretized in space by means of finite elements and by
means of finite differences in time [19]. The domain Ω is triangulated admissibly in congruent hexahedra.
Based on this triangulation, finite elements of Lagrange type with trilinear basis polynomials are chosen
for all six unknown functions, i.e., a Q1/Q1/Q1/Q1/Q1/Q1 discretization is chosen in space [19]. Also,
all finite dimensional test function spaces are chosen to be defined by the Q1 discretization of the domain
Ω by hexahedra.

For the discretization in time, in the momentum equation all terms are treated in a Crank-Nicolson
manner except for the pressure part p∗, which is treated in an implicit Euler manner. The continuity
equation is discretized by the implicit Euler scheme in time, whereas the thermodynamic energy equation
is discretized by the Crank-Nicolson time-stepping scheme.

The initial conditions for the CCI scenario are depicted in Figure 2. Please refer to [19] for further
details and visualizations.

3 Nested Schur-Complement Approach

The resulting discrete nonlinear system of equations is solved with an inexact Newton method [30], where
the linearized system in each Newton step is solved with the Flexible Generalized Minimum Residual
Method (FGMRES) with projections on the space, where the hydrodynamic pressure p∗ incorporates
zero mean value. This FMGRES algorithm is preconditioned by a nested Schur-complement approach.
In the following, we concentrate on describing the improved nested Schur-complement solver. For the sake
of clarity of the presentation, details on the inexact Newton method as well as on the Flexible Generalized
Minimum Residual Method (FGMRES) with projections on the space, where the hydrodynamic pressure
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Figure 2: Initial velocity field
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p∗ incorporates zero mean value, are omitted here. We refer the interested reader to [19]. An overview of
the overall solution process is depicted in Figure 3

We will reproduce parts of the presentation of nested Schur-complements for the Low-Mach model
given in [19] here in order to precisely describe the changes compared to [19].

The idea of the Schur-complement algorithm is as follows: Let a linear system Aξ = b in block matrix
form

Aξ =

(
A B
C D

)(
x
y

)
=

(
f
g

)
(10)

be given and assume, that A is regular. By performing a block LU decomposition on (10), this linear
system is equivalent to the following two equations:(

D − CA−1B
)
y = g − CA−1f , (11)

x = A−1f −A−1By. (12)

The matrix Σ := D −CA−1B ∈ RN1×N1 , 0 ≤ N1 ≤ N , is called the Schur-complement of A in the block
matrix A and (11) is called the Schur-complement equation for y. The strategy to solve equations (11)
and (12) is described in Algorithm 1.

Algorithm 1 Schur-complement solver

Let an initial solution ξ0 ∈ RN , a right hand side vector (f, g)> ∈ RN , a system matrix A ∈ RN×N ,

a relative tolerance εrel > 0, an absolute tolerance εabs > 0, a maximum iteration number Imax ∈ N
and preconditioning matrices M−1

j ∈ RN1×N1 , j ∈ N for the Schur-complement matrix Σ be given.

1. Solve Schur-complement equation (11) for y by FGMRES with Right Preconditioning [32, 33]

and the given parameters εrel, εabs, Imax and M−1
j .

2. Compute x via (12).
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Newton:

F (x) = 0

Linearized system:

JF ξ = b

FGMRES with Right

Preconditioning and
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j
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Figure 3: Structure of the proposed solver.

5



Remark 3.1

1. Observe, that in step 2 of Algorithm 1, in contrast to [19], the right preconditioned FMGRES

algorithm without projection is used. This is possible due to the change in the preconditioner of the

inner Schur-complement equation, see below. The change described there leads to the observation,

that for the Schur-complement equations an additional projection does not yield an improvement in

the convergence rate.

2. The matrix A−1 is approximated by a right preconditioned GMRES method, cf. [28, 33, 34] and

Figure 3.

The Jacobian matrix JF of the Low-Mach model can be written in variable-wise block matrix form as

JF =


Av,v Av,ρ Av,θ Av,p

Aρ,v Aρ,ρ Aρ,θ Aρ,p
Aθ,v Aθ,ρ Aθ,θ Aθ,p
Ap,v Ap,ρ Ap,θ Ap,p

 .

Ai,j corresponds to the matrix block, where the finite element test functions belong to variable i and the
finite element trial functions to variable j.

The outer Schur-complement solver (Algorithm 1) operates on the Schur-complement decomposition of
the Jacobian matrix JF of the Low-Mach model and is used as preconditioner for the FMGRES algorithm
in the computation of each Newton step, see Figure 3. Since this is the outer Schur-complement solver,
all block matrices etc. corresponding to this instance are denoted by the subscript o. Especially, it holds
Ao = JF .

The partition of the matrix Ao for the application of the outer Schur-complement can be written in
block matrix form as

Ao =


Aρ,ρ Aρ,θ Aρ,v Aρ,p
Aθ,ρ Aθ,θ Aθ,v Aθ,p
Av,ρ Av,θ Av,v Av,p

Ap,ρ Ap,θ Ap,v Ap,p

 .

As described in Algorithm 1, the Schur-complement equation (11) with the system matrix

Σo := Do − CoA−1
o Bo (13)

is solved by the right preconditioned FGMRES algorithm. Therefore, efficient preconditioners M−1
j,o for Σo

are needed, where j denotes the iteration counter, i.e., the preconditioner may change in every iteration.
As it is reasoned in [19], the matrix M−1

j,o with

M−1
j,o ≈ A

−1
i and Ai = Do (14)

constitutes an efficient preconditioner for Σo , where A−1
i is again approximated by a Schur-complement

solver (Algorithm 1), which is referred to as the inner Schur-complement and all corresponding block
matrices etc. are denoted by the subscript i.

The partition of the matrix Ai for the application of the inner Schur-complement can be written in
block matrix form as

Ai =

(
Av,v Av,p

Ap,v Ap,p

)
.

As described in Algorithm 1, the Schur-complement equation (11) with the system matrix

Σi := Di − CiA−1
i Bi (15)

is solved by the right preconditioned FGMRES algorithm. Therefore, efficient preconditioners M−1
j,i for

Σi are needed.
As it is reasoned in [19], the matrices

M−1
j,i ≈ P

−1
j with Pj = δpMp +Di (16)
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Parameter εrel εabs Imax η0 ηmax fd λmin α

Value 10−6 5 · 10−14 · |Ω| 1000 10−4 10−3 3−
√

5
2 10−16 10−6

Table 1: Parameters for Newton’s method with Eisenstat-Walker forcing and Armijo damping

[19]. |Ω| denotes the volume of the computational domain Ω.

constitute efficient preconditioners for the Schur-complement Σi, where Mp, defined as

Mp := (Mi,j)
Nh

i,j=1 , Mi,j := (ψj , ψi) , (17)

denotes the mass matrix of the hydrodynamic pressure variable p∗ and

δp := 10−16 ·∆t (18)

denotes the regularization parameter. With this regularization, the matrices Pj are symmetric and positive
definite and, therefore, the inversion is computed by the BoomerAMG preconditioner [8, 11, 13–15, 29,
37, 38], which is an implementation of Algebraic Multigrid (AMG) methods [1–5, 9, 10, 12–14, 18, 29,
35].

In [19], the Conjugate Gradient (CG) algorithm [21, 28, 33] preconditioned by BoomerAMG was pro-
posed. With that combination, the convergence of the nested Schur-complements preconditioner benefits
of the application of FMGRES with Right Preconditioning and Projection in Algorithm 1. The solely
usage of BoomerAMG, as it is proposed here, drops the need to project onto the subspace, where p∗

incorporates zero mean value, because it is observed that the convergence does no longer benefit of the
additional projections due to the fact that AMG is, in contrast to CG, a defect correction algorithm.
Therefore, as the parts in the right-hand sides of the linear systems in the Schur-complement equations,
which correspond to the hydrodynamic pressure p∗, already fulfill the zero mean-value property, this prop-
erty is maintained by AMG, whereas the CG algorithm may take projection steps outside this subspace.
This observation is one of the key points for the achieved improvements in terms of compute time in
comparison to [19].

The nested Schur-complement solver can be configured with a variety of parameters for the occurring
(F)GMRES solvers and the corresponding preconditioners. A second key point for the achieved improve-
ments in terms of compute time in comparison to [19] is found in further tuning the parameters, which
control the iterations of FMGRES in the two Schur-complement solvers. The new choice of parameters,
which is proposed here, is based on the following observation:

The FMGRES algorithms for both the outer and inner Schur-complement equations (11) exhibit a
rapid convergence rate within the first iterations. The relative tolerance, down to which the convergence is
rapid, is quite constant for most applications of the Schur-complement preconditioner, while the number
of iterations to reach this tolerance varies slightly. In order to, on the one hand, achieve this observed
tolerance and, on the other hand, keep the computational costs low in those cases, where this observed
tolerance is not achieved within few iterations, the maximum number of iterations is chosen a little larger
than the empirically observed average value at which the convergence rate deteriorates. At the same
time, the relative tolerance is set to the observed relative tolerance, down to which the convergence rate
is rapid in most applications of the Schur-complement preconditioner.

The full list of parameters, which are used for the computation of numerical results in Section 4,
are given in Tables 1-9. Parameters, which differ from those in [19], are marked with red color. For a
description of the meaning of the given values cf. [19] as well as the hypre Reference Manual [22].

4 Numerical Results

The Low-mach model and its respective numerical solver, which have been described in Sections 2 and 3,
respectively, are implemented with the aid of the HiFlow3 software package [20]. Furthermore, HiFlow3

is compiled with support for the following third-party libraries: hypre 2.12.0 [15], METIS 5.1.0 [23],
ParMETIS 4.0.3 [24] and HDF5 1.10.1 [36]. All these libraries as well as HiFlow3 itself are compiled with

7



Parameter εrel εabs Imax

Value ηi−1 5 · 10−14 · |Ω| 1000

Table 2: Parameters of FGMRES for the Low-Mach model. ηi−1 denotes the current forcing term

in Newton’s method and |Ω| the volume of the computational domain Ω.

Parameter εrel εabs Imax

Value 5 · 10−2 0.0 10

Table 3: Parameters of FGMRES for the solution of the outer Schur-complement equation.

Parameter εrel εabs Imax

Value 5 · 10−3 0.0 500

Table 4: Parameters of GMRES for the inversion of the matrix Ao in the outer Schur-complement

solver (Algorithm 1).

Parameter Value

CoarsenType 10

NumFunctions 2

RelaxType 3

RelaxWt 0.25

InterpType 4

AggNumLevels 25

MaxIter 1

Tol 0.0

StrongThreshold 0.6

Table 5: Parameters of BoomerAMG for preconditioning GMRES in the inversion of the matrix

Ao in the outer Schur-complement solver (Algorithm 1).

Parameter εrel εabs Imax

Value 10−1 0.0 10

Table 6: Parameters of FGMRES for the solution of the inner Schur-complement.

Parameter εrel εabs Imax

Value 5 · 10−4 0.0 500

Table 7: Parameters of GMRES for the inversion of the matrix Ai in the inner Schur-complement

solver (Algorithm 1).
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Parameter Value

CoarsenType 10

NumFunctions 3

RelaxType 3

RelaxWt 0.5

InterpType 6

AggNumLevels 25

MaxIter 1

Tol 0.0

StrongThreshold 0.6

Table 8: Parameters of BoomerAMG for preconditioning GMRES in the inversion of the matrix

Ai in the inner Schur-complement solver (Algorithm 1).

Parameter Value

CycleType 2

CoarsenType 10

NumFunctions 1

RelaxType 6

NumSweeps 3

RelaxWt 0.5

InterpType 6

AggNumLevels 25

MaxIter 1

Tol 0.0

StrongThreshold 0.6

Table 9: Parameters of BoomerAMG for the inversion of the matrix Pj (16) in the inner Schur-

complement solver (Algorithm 1).
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Figure 4: Speedup in strong scaling test for whole time-step on bwForCluster MLS & WISO

(Production) relative to 256 processes.

Intel(R) compiler suite version 16.0.4 and Intel Message Passing Interface (mpicc, mpicxx, mpif77 and
mpif90) version ’5.1.3.258’.

The numerical solution of the cyclone-cylcone interaction problem of Section 2 with the described
discretization yields a discrete problem with 31,680,000 unknowns or degrees of freedom (DoFs) in each
time-step.

In the following, the performance in terms scalability and compute time of the solver proposed in
Section 3 is investigated and compared to the results obtained in [19]. Therefore, results obtained with
the new solver are labeled as Gawlok2018, whereas the results of [19] are labeled as Gawlok2017.

Figures 4 and 5 show the parallel scalability and efficiency of solving a whole time-step, respectively,
of the compared solvers with respect to a baseline of 256 MPI processes. In order to filter out variations in
runtime, the compute times of the first ten time-steps are accumulated for the presented results. Clearly,
the new solver scales worse than the one proposed in [19], but can still maintain an efficiency of more
than 65% with 1,024 active MPI processes. The differences are purely due to the changes in the numerical
solver, because the assembly of matrices and vectors shows identical and almost perfect scaling behavior,
cf. Figures 6 and 7, respectively.

All following results are computed using 1,024 MPI processes.
But when it comes to compute time, the new solver significantly outperforms the one proposed in

[19], see Figure 8. Figure 8 shows the accumulated compute times and the development of their ratio
plotted over simulated physical time (left plot) as well as the ratio at the final time of T = 96h (right
plot). The solver proposed in this article achieves to finish the simulation 2.1 times faster than the one of
[19]. Considering the plot of the ratio over time, the ratio increases significantly up to 30h of simulated
physical time and in the following stays virtually constant. The reason for this behavior can be found
if one inspects the numbers in Table 10. Considering the number of FGMRES iterations per time-step,
which are needed to invert the matrices JF , the new solver needs exactly four iterations per time-step, cf.
Figure 10, whereas as the solver of [19] needs in the beginning two and later three iterations, cf. Figure 9.
Furthermore, it can be clearly seen that the differences in compute time are due to the improved solver
because the times for assembling matrices and vectors, respectively, do not differ virtually. Therefore, the
newly proposed nested Schur-complement preconditioner exhibits a significantly more robust convergence
behavior in the course of the dynamical evolution of the interacting cyclones. Especially, one application
of the improved preconditioner is much cheaper in terms of computational time.
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Figure 5: Efficiency in strong scaling test for whole time-step on bwForCluster MLS & WISO

(Production) relative to 256 processes.
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Figure 6: Speedup in strong scaling test for assembly on bwForCluster MLS & WISO (Production)

relative to 256 processes.
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Figure 7: Efficiency in strong scaling test for assembly on bwForCluster MLS & WISO (Produc-

tion) relative to 256 processes.
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Model Newton

iterations

Compute

time [s]

Assembly

time

residual

[s]

Assembly

time Ja-

cobian

[s]

FGMRES

iterations

Gawlok2018 2.00014 28.493 1.738 4.587 4.0

Gawlok2017 2.00003 60.428 1.703 4.416 2.914

Gawlok2017
Gawlok2018 0.99994 2.121 0.98 0.963 0.729

Table 10: Comparison of averages of quantities, which measure the runtime performance, for one

time-step on bwForCluster MLS & WISO (Production).
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Figure 9: Benchmarking quantities of [19] on bwForCluster MLS & WISO (Production).
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Figure 10: Benchmarking quantities of the new solver on bwForCluster MLS & WISO (Produc-

tion).

Figure 11: Final velocity field and vertical vorticity component at T = 96 h.
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5 Summary and Outlook

A formulation of a Low-mach model has been presented along with the description of a benchmark scenario
of two interacting tropical cyclones. For the discrete nonlinear equations of this model, an improved
variant of the nested Schur-complement preconditioner has been proposed. A detailed discussion of the
numerical results has been conducted with a special emphasis on computational costs and scalability. It
has been demonstrated that the new preconditioner clearly outperforms a prior version of this kind of
preconditioner with respect to computing time by a factor of two, but for the sake of a slightly reduced
scalability.

With the obtained results, the presented work constitutes a major step forward in improving the
computational costs of Low-mach flows with the presented numerical model in cyclone-cyclone interaction
scenarios. In [19] this has been proposed as one of the major goals for improvement in order to facilitate
further studies, especially with respect to computations on finer computational grids, within feasible
computational time spans.

Based on the presented research, further efforts need to be taken to improve the scalability. Especially,
in the context of larger-scale simulations with finer computational grids and, as a results, higher numbers
of MPI processes, the scaling properties of the applied solver are crucial. Furthermore, the current
implementation of the presented preconditioner in HiFlow3, which has been used in this study, is not
optimal in the sense that explicit copies of the needed submatrices are extracted from the large Jacobian
matrix JF . On the one hand this significantly increases the memory usage and the demand on the available
computer resources and, on the other hand, the copy processes needs computational time. Therefore,
refactoring the existing implementation by means of block-matrices and block-vectors promises to be a
remedy to both problems.
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