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Analysis of the Stationary Thermal-Electro

Hydrodynamic Boussinesq Equations

Philipp Gerstner, Martin Baumann, Vincent Heuveline

April 11, 2019

Abstract

A functional analytic framework is proposed for setting up the variational formulation of the sta-

tionary, thermal-electro hydrodynamical Boussinesq equations. In this setting, existence, stability and

uniqueness of solutions in a suitable Sobolev space is shown. The results are obtained by extending the

existing theory on stationary Boussinesq equations to take into account a more general force term and

by employing a fixed-point argument for augmenting the Boussinesq equations with Gauss’ law and

the dielectrophoretic force.

1 Introduction

Gravitation acting on non-isothermal fluids induces the well-known buoyancy force which gives rise to a
variety of different flow structures. An important application of this effect is a heat exchanging system,
where a fluid acts as transmitter of thermal energy between a hot object and a cooling device. The
convection of temperature due to vortex-like fluid structures plays the major role in heat transfer. To
further enhance heat transfer or to make it possible in non-gravitational environments, e.g. in space
devices in earth orbit, without employing mechanical devices such as pumps or rotors, one can make use
of the so called dielectrophoretic (DEP) force. The DEP force acts on dielectric fluids under the influence
of an outer electrical field with direction determined by the fluid’s temperature gradient. The resulting
system of partial differential equations is obtained by augmenting the standard Boussinesq equations for
natural convection for small temperature variations with the DEP force in the momentum equation and
with Gauss’s law for describing the electric potential inside the fluid. This system is called Thermal-Electro
Hydrodynamic (TEHD) Boussinesq Equations and is given by [20]

∂tu + (u · ∇)u− ν∆u +
1

ρr
∇p = αe(∇Φ)2∇θ − αgg(θ − θr)

∇ · u = 0

∂tθ + (u · ∇)θ − κ∆θ = 0 (1.1)

−∇ · (εr(1− γ(θ − θr))∇Φ) = 0.

The DEP force fe := αe(∇Φ)2∇θ is derived from the more general electrical body force

FE = ρeE−
1

2
E2∇ε(θ) +

1

2
∇
[
ρ

(
∂ε

∂ρ

)
θ

E2

]
. (1.2)

Here, the Coulomb force ρeE can be neglected if the electric field E is induced by an alternating voltage
of high frequency [20] and the third term can be hidden inside a generalized pressure since it is a gradient
field. Then, fe is obtained from the second term in (1.2) by linearizing the temperature dependent
permittivity ε(θ) around some reference temperature θr, i.e.

ε(θ) = εr(1− γ(θ − θr)) and αe =
εrγ

2ρr
.
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The set of unknown variables consists of fluid velocity u, pressure p, temperature θ and potential Φ.
The physical parameters are kinematic viscosity ν, density ρr, thermal diffusion κ, thermal expansion
coefficient αg, natural gravity g, reference permittivity εr and permittivity rate of change γ. The system
(1.1) is posed on a bounded domain Ω ⊂ Rd, d ∈ {2, 3} and subjected to the following boundary conditions

u = 0 on Γ

θ = θD on ΓD, ∇θ · n = 0 on ΓN

Φ = ΦD on ΓD, ∇Φ · n = 0 on ΓN

with Γ := ∂Ω = ΓD + ΓN .
In this work, we restrict ourselves to the stationary version of the TEHD equations, which might be of

interest on its own or which are obtained after discretizing (1.1) in time. The considered system is given
by

δu + (ū · ∇)u− ν∆u +
1

ρr
∇p = F(θ, Φ̄) + fv

∇ · u = 0

δθ + (ũ · ∇)θ − κ∆θ = fτ (1.3)

−∇ · (ε(θ̄)∇Φ) = fβ(θ),

with δ ≥ 0 and fv, fτ , fβ denoting possible contributions by some outer time-stepping scheme, which also
determines (ū, ũ, θ̄, Φ̄). Depending on the degree of implicitness, each of these variables could be either
fixed or unknown. In particular, we allow the case (ū, ũ, θ̄, Φ̄) = (u,u, θ,Φ), δ = 0 and fv = fτ = fβ = 0,
which corresponds to the stationary version of the transient TEHD equations (1.1). Compared to (1.1),
we introduced a general force term F(θ, Φ̄), a general permittivity ε : R→ R and shifted θ by the constant
reference temperature θr.

The effect of the DEP force has been first studied theoretically and experimentally in [4] and the-
oretically in [23]. In the recent years, there have been a number of works concerning linear stability
analysis (LSA) of the TEHD equations in various settings. In [28], [27] and [15] LSA was performed in
case of infinite length plate and cylinder annulus geometry in absence of natural gravity, i.e. with g = 0.
Corresponding experiments under microgravity conditions were conducted in [6] and [17]. In [17], the
experimental data was compared with LSA results. Experiments under the influence of earth gravity
were performed in [9] and [22]. In [22], experimental data was compared with direct numerical simulation
based on the Finite Element method. The numerical solution of the TEHD equations was also considered
by employing a Finite Volume method in [29], [13] and by using Finite Elements in [5] and [8]. In [29], a
spherical gap was considered and the effect of dielectric heating was taken into account. The other works
focused on vertical cylinder annuli. In [25] and [26], periodic top and bottom plates of the cylinder were
assumed, making it possible to employ spectral methods for numerical simulation. A more comprehensive
overview on DEP-driven flow is given by the review paper [20].

To our best knowledge, there are no contributions that address the functional analytic investigation of
both the stationary and instationary TEHD Boussinesq equations. In this work, we therefore investigate
stability, existence and uniqueness of solutions of the stationary TEHD equations. In doing so, we extend
the theoretical work on the stationary Boussinesq equations performed in [19] by including a more general
body force term.

We aim to put the stationary TEHD equations (1.3) into a functional analytic framework that allows to
investigate existence, uniqueness and stability of solutions. In doing so, certain difficulties are encountered
when directly working with the DEP force fe = fe(θ,Φ) from (1.1) because it is a product of three
gradients. For the typical regularity of solutions θ and Φ of heat equation and Gauss’s law, respectively,
on a Lipschitz domain with mixed boundary conditions and possible nonsmooth coefficients, it cannot be
shown that fe is an element of the underlying function space’s dual. Therefore, fe is replaced by a general
force term F(θ,Φ) in (1.3). We first state assumptions on F that are sufficient for proving well-posedness
of (1.3) and then propose certain ways for fitting the DEP force into the previously derived framework.

Concerning well-posedness, we note that for given θ and θ̄, the potential Φ is determined by Gauss’s
law. This fact motivates proving the existence of weak solutions of (1.3) by means of a fixed-point iteration.
In this iteration, we split (1.3) into a hydrodynamical part, given by the stationary Boussinesq equations
with buoyancy being replaced by F(θ, Φ̄) and Gauss’ law with temperature-dependent permittivity.
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The existence of solutions (u, θ) of the Boussinesq equations is shown by employing a Galerkin principle
combined with a fixed-point argument to a series of finite-dimensional problems. To be more precise, we
adapt the concept presented in [14] for the stationary incompressible Navier Stokes equations. This
result can be seen as generalization of [19], where existence and uniqueness of solutions of the stationary
Boussinesq equations is shown for the standard buoyancy force.

The corresponding proof requires F to satisfy some type of weak continuity property. The proposed
procedure demands stability of solutions (u, θ) w.r.t. the data, measured in energy norm. This is estab-
lished by combining ideas from the corresponding result for the stationary incompressible Navier Stokes
equations (see e.g. [14]) with the procedure proposed in [19] and [18] to cope with non-homogenous
Dirichlet boundary conditions for the temperature. We have to impose the assumption that there exists
a family of smooth boundary liftings for θb of arbitrarily small L3 norm. Moreover, we have to require
the force term F to fulfill some boundedness principle of the form ‖F(θ,Φ)‖ ≤ aF(‖Φ‖)‖∇θ‖ for some
non-decreasing function aF. Since the temperature determines the permittivity in Gauss’ law, which has
to be nonnegative, we need to ensure that θ is uniformly bounded. This result is obtained by means of a
weak maximum principle and posing certain requirements on fτ and θb.

Eventually, a uniqueness result for the stationary TEHD equations (1.3) under rather strict assump-
tions on the involved data is derived by modifying existing techniques and we obtain the requirement of
F being locally Lipschitz continuous in some sense.

For the choice of F, we suggest a model that is based on linearization around a smooth reference
potential or that makes use of a regularization operator such as mollification. We give a heuristic jus-
tification for the proposed procedure in case of fluids with small permittivity variation γ and for small
temperature variations.

The outline of this work is as follows: In Section 2 we formulate the Boussinesq problem with general
force term F and summarize the requirements posed on F. Afterward, we prove stability and existence
of solutions and recall a maximum principle that is applicable to the temperature. In Section 3, we set
up the variational formulation for the stationary TEHD equations and continue with proving existence,
stability and uniqueness of solutions. As final step, we consider the modeling of the DEP force.

2 The Boussinesq Problem with General Force Term

After setting up the required notation, we first state a variational formulation for the stationary Boussinesq
equations with general force term and collect results on existence and stability of its solutions. In Section
3, these results are needed to prove existence and uniqueness of solutions of (1.3).

Notation

Throughout this article, let Ω ⊂ Rd, d ∈ {2, 3} denote a bounded and connected domain with Lipschitz
boundary ∂Ω =: Γ =: ΓD + ΓN that is split into a Dirichlet and a Neumann part. Smooth functions are
denoted by

Ck,α(M) := {v ∈ Ck(M) with α-Hölder continuous derivatives up to order k} for M ⊂ Rd

C∞0 (Ω) := {v ∈ C∞(Ω) : supp(v) ⊂⊂ Ω}
C0,1
D (Ω) := {v ∈ C0,1(Ω) : supp(v) ∩ ΓD = ∅}

with supp(v) := {x : v(x) 6= 0}.
For p ∈ [1,∞] let Lp(Ω) denote the space of measurable and p-integrable functions on Ω with corre-

sponding norm

‖u‖p :=

{(∫
Ω
|u(x)|pdx

) 1
p , p ∈ [1,∞)

esssupx∈Ω|u(x)|, p =∞

Moreover, Lp0(Ω) := {v ∈ Lp(Ω) :
∫

Ω
v(x)dx = 0} and W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α|1 ≤ k}

denotes the standard Sobolev space of integer order k ≥ 1 with multiindex α ∈ Nd0 and |α|1 :=
∑d
i=1 αi.
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The associated norms are defined as

‖u‖k,p :=


(∑

|α|1≤k ‖∂
αu‖pp

) 1
p

, p ∈ [1,∞)

max|α|1≤k ‖∂αu‖∞, p =∞
.

In case of p = 2 we abbreviate Hk(Ω) := W k,2(Ω) with W 0,2(Ω) := L2(Ω) and ‖ · ‖ := ‖ · ‖2 and introduce
the semi norm

|u|k :=

 ∑
|α|1=k

‖∂αu‖22

 1
2

.

For these Hilbert spaces, we denote their corresponding inner products as

(u, v)k :=
∑
|α|1≤k

(∂αu, ∂αv), with (u, v) :=

∫
Ω

u(x)v(x)dx.

For p > 1 let γΓ ∈ L(W 1,p(Ω),W
1
p∗ ,p(Γ)) denote the trace operator and γD ∈ L(W 1,p(Ω),W

1
p∗ ,p(ΓD)) its

restriction to the Dirichlet part of the boundary in case of nonzero d− 1 dimensional Haussdorff measure
of ΓD. According to Theorem 1.5.1.3 in [12], there holds γΓv = v|Γ and γDv = v|ΓD

for all Lipschitz

continuous functions v ∈ C0,1(Ω). Associated spaces are defined as

H1
0 (Ω) := C∞c (Ω)

W 1,2

⊂ {v ∈W 1,2(Ω) : γΓ(v) = 0}

H1
D(Ω) := C0,1

D (Ω) ∩W 1,6(Ω)
W 1,2

⊂ {v ∈W 1,2(Ω) : γD(v) = 0}.

Vector-valued function spaces are written in bold font, e.g. Lp(Ω) := Lp(Ω)d, and we use the same
notation for the respective norms with | · | denoting the Euclidean norm.

Employing Friedrich’s inequality A.7, Hölder’s inequality and the Sobolev embedding W 1,2(Ω) ↪→
L6(Ω), we define constants for p ∈ [1, p∗], q ≥ p and p∗ ∈ [1,∞] such that − d

p∗ ≤ 1− d
2

Mp := sup
v∈(H1

0 (Ω))
d

‖v‖p
‖∇v‖

, Kp := sup
τ∈H1

D(Ω)

‖τ‖p
‖∇τ‖

, Kp,q := sup
τ∈Lq(Ω)

‖τ‖p
‖τ‖q

.

The positive and negative part of a function u : Ω → R are defined as u+(x) := max{u(x), 0} and
u−(x) := min{u(x), 0}, respectively. For u, v ∈ H1(Ω) we define u ≤ v on ΓD iff (u− v)+ ∈ H1

D(Ω) and

sup
ΓD

u := inf{k ∈ R : u ≤ k on ΓD}

inf
ΓD

u := sup{k ∈ R : k ≤ u on ΓD}.

There holds

inf
ΓD

u = sup{k : (k − u)+ ∈ H1
D} = − inf{−k : (k − u)+ ∈ H1

D}

= − inf{k : (−k − u)+ ∈ H1
D} = − sup

ΓD

(−u).

For a general normed space (X, ‖ ·‖X) its associated dual space is denoted by X∗ with norm ‖φ‖X∗ :=
supx∈X,‖x‖X=1 |φ(x)|. Moreover, for x ∈ X,φ ∈ X∗ the dual pairing is denoted by φ(x) =: 〈φ, x〉X∗,X =:
〈φ, x〉X∗ . For s > 0 and x ∈ X, Bs(x,X) := {y ∈ X ‖x − y‖X < s} denotes the open ball of radius s
around x.

2.1 Variational Formulation

We define function spaces for velocity, U := H1
0(Ω) and V = {v ∈ U : ∇ · v = 0}, temperature, Θ :=

H1
D(Ω) and pressure, M := L2

0(Ω). To shorten the following presentation of the Boussinesq equations, we
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introduce as set of bi- and trilinear forms given by

av(u,v) := δ(u,v) + ν(∇u,∇v), cv(u,v, w) := (u · ∇v, w)

aτ (θ, τ) := δ(θ, τ) + κ(∇θ,∇τ), cτ (u, θ, τ) := (u · ∇θ, τ)

b(u, q) :=
1

ρr
(∇ · u, q).

Lemma 2.1. (Properties of trilinear forms)

Nv := sup
u,v,w∈U\{0}

cv(u,v,w)

‖∇u‖‖∇v‖‖∇w‖
<∞

Nτ := sup
u∈U\{0},θ,τ∈Θ\{0}

cτ (u, θ, τ)

‖∇u‖‖∇θ‖‖∇τ‖
<∞

Moreover, if u ∈ V, then for v,w ∈ U, τ, θ ∈ H1(Ω):

(i) cv(u,v,w) = −cv(u,w,v) and (ii) cτ (u, θ, τ) = −cτ (u, τ, θ).

Proof. See Lemma II.1.1 and Lemma II.1.3 in [24].

By introducing an additional coefficient λ ∈ [0, 1], we obtain a family of stationary problems that
will be used to prove existence by means of an appropriate fixed-point theorem. In the subsequent
presentation, we will consider the problem in solenoidal form.

Problem 2.2. (Stationary Boussinesq equations)

Let θb ∈ C1(Ω) be a lifting of given boundary conditions and F : Θ → U∗, fv ∈ U∗, fτ ∈ Θ∗ given body

forces. Let either ū and ũ denote fixed elements of V or the unknown velocity u. For λ ∈ [0, 1], δ ≥
0, ν, κ > 0 find u ∈ V, θ ∈ Θ such that

av(u,v) + λ (cv(ū,u,v)− 〈F(θ + θb) + fv,v〉U∗) = 0 ∀v ∈ V

aτ (θ, τ) + λ (aτ (θb, τ) + cτ (ũ, θ + θb, τ)− 〈fτ , τ〉Θ∗) = 0 ∀τ ∈ Θ

This problem can be written compactly in form of a fixed-point equation. To this end, we make use
of a solution operator for the linear, elliptic part of Problem (2.2).

Definition 2.3. (Stokes solution operator)

Let W ⊂ U and T ⊂ Θ be Hilbert spaces w.r.t. to the inner products (·, ·)W := (∇·,∇·) and (·, ·)T :=

(∇·,∇·). Let δ ≥ 0, ν > 0, κ > 0. The solution operator for the Stokes equations in solenoidal form

combined with an additional heat equation, is defined as

K[W, T ] : W∗ × T ∗ →W × T

(f, g) 7→ (u, θ) such that

av(u, v) = −〈f, v〉W∗ for all v ∈W

aτ (θ, τ) = −〈g, τ〉T∗ for all τ ∈ T

The remaining terms, including nonlinearities, source terms and boundary contributions, are collected
in the operator N .

Definition 2.4. (Non-Stokes terms)

Let the assumptions of Problem 2.2 hold and let W ⊂ U and T ⊂ Θ denote Hilbert spaces w.r.t. to the

inner products (·, ·)W := (∇·,∇·) and (·, ·)T := (∇·,∇·). Assume additionally that θb ∈ C1(Ω). We define

N [W, T ] : W × T →W∗ × T ∗

(u, θ) 7→

(
cv(ū,u, ·)− F(θ + θb)− fv

aτ (θb, ·) + cτ (ũ, θ + θb, ·)− fτ

)
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Problem 2.5. (Fixed-point version)

Let the assertions of Problem 2.2, Definition 2.3 and Definition 2.4 hold. For K := K[W, T ], N :=

N [W, T ] and λ ∈ [0, 1] find (uλ, θλ) ∈W × T such that

(uλ, θλ) = λK(N(uλ, θλ)) = λF(uλ, θλ). (2.1)

with fixed-point operator

F := F [W, T ] := K ◦N := : W × T →W × T.

In order to apply an appropriate existence theorem to the Problem 2.5, we need to show compactness
of F . For finite dimensional spaces, this can be accomplished by the next lemmas below.

Lemma 2.6. (Properties of K)

Let the assumptions of Definition 2.3 hold and define K := K[W, T ]. Then, he following assertions hold.

(i) K is well defined and linear

(ii) There exists CK ≥ 0 such that (u, θ) = K(f, g) satisfies ‖u‖W + ‖θ‖T ≤ CK(‖f‖W∗ + ‖g‖T∗)

Proof. Follows by application of Lax-Milgram A.3 and Friedrich’s inequalities A.5, A.7.

Lemma 2.7. (Properties of N)

Let the assumptions of Problem 2.2 and Definition 2.4 hold. Assume that F(·+θb) : T →W∗ is continuous.

Then, N := N [W, T ] is continuous w.r.t. the norms ‖ · ‖W×T := ‖∇ · ‖ + ‖∇ · ‖ and ‖ · ‖W∗×T∗ :=

‖ · ‖W∗ + ‖ · ‖T∗ .

Proof. We only show the proof for ū = ũ = u. Continuity of W 3 u 7→ cv(u,u, ·) ∈W∗ follows directly

from the following estimation

|cv(u,u, v)− cv(un,un,v)| = |cv(u− un, u,v) + cv(un,u− un,v)|

≤ Nv‖∇(u− un)‖‖∇u‖‖∇v‖+Nv‖∇un‖‖∇(u− un)‖‖∇v‖

= Nv

‖∇(u− un)‖︸ ︷︷ ︸
→0

‖∇u‖+ ‖∇un‖︸ ︷︷ ︸
→‖∇u‖

‖∇(u− un)︸ ︷︷ ︸
→0

‖

 ‖∇v‖

for (u, θ) ∈W × T and (un, θn)n ⊂W × T with ‖∇(u− un)‖ → 0 and ‖∇(θ − θn)‖ → 0.

Analogously, W×T 3 (u, θ) 7→ cτ (u, θ, ·) ∈ T ∗ is continuous. By continuity of F, N is composition of

continuous functions and therefore continuous as mapping from (W×T, ‖·‖W×T ) to (W∗×T ∗, ‖·‖W∗×T∗)

.

Lemma 2.8. (Properties of F)

Assume that θb ∈ C1(Ω) with ∇θb · n = 0 on ΓN . Moreover, let the assertions in Problem 2.5 and of

Lemma 2.6 and 2.7 hold. Then, Problem 2.2 and 2.5 are equivalent if W × T = V × Θ. Moreover, the

following properties of the fixed-point operator F [U, T ] hold:

(i) F [W, T ] is continuous

(ii) F [W, T ] is compact, i.e. it maps bounded sets to sets with compact closure, if W and T are finite

dimensional.
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Proof. (i) follows since F is a composition of continuous functions due to Lemma 2.6 and 2.7. If W and

T are finite dimensional, (ii) follows since F is a continuous map on a finite dimensional Hilbert space,

see Lemma A.2. To see the equivalence of Problem 2.2 and 2.5, let (uλ, θλ) denote a solution of Problem

2.5. By definition of K, this solution satisfies(
av(u,v)

aτ (θ, τ)

)
= −λN(uλ, θλ)(v, τ) for all (v, τ) ∈ V ×Θ

Inserting the definition of N yields the assertion.

We conclude this section with stating the assumptions on F which turn out to be sufficient for proving
certain well-posedness results for the generalized Boussinesq equations.

Assumption 2.9. (General body force)

Let F : H1(Ω)×H1(Ω)→ U∗ satisfy

(i) F is locally Lipschitz continuous in the following sense: for all R > 0 there is a non-decreasing

function L
(θ)
F : [0,∞)→ [0,∞) such that

|〈F(θ1,Φ)− F(θ2,Φ),v〉U∗ | ≤ L(θ)
F (‖Φ‖1,2)‖θ1 − θ2‖1,2‖∇v‖

for all θ1, θ2 ∈ BR(0, H1(Ω)), Φ ∈ H1(Ω) and v ∈ U.

Moreover, for all R > 0 there is L
(Φ)
F ≥ 0 such that for all θ ∈ H1(Ω), Φ1,Φ2 ∈ BR(0, H1(Ω)) and

v ∈ U,

|〈F(θ,Φ1)− F(θ,Φ2),v〉U∗ | ≤ L(Φ)
F ‖θ‖1,2‖Φ1 − Φ2‖1,2‖∇v‖.

(ii) F is bounded in the following sense: There are non-decreasing functions

aF : [0,∞)→ [0,∞) and bF : [0,∞)→ [0,∞),

such that

|〈F(θ,Φ),v〉U∗ | ≤ aF(‖Φ‖1,2)‖θ‖1,2‖∇v‖+ bF(‖Φ‖1,2)‖∇v‖

for all θ ∈ H1(Ω),Φ ∈ H1(Ω),v ∈ U.

(iii) Let sequences (θn)n ⊂ H1(Ω) and (Φn)n ⊂ H1(Ω) be given that converge to θ∗ ∈ H1(Ω) and

Φ∗ ∈ H1(Ω), respectively, in the following sense

θn ⇀ θ∗ in H1, θn → θ∗ in L4 and ‖θn‖1,2 ≤ K for all n ∈ N

Φn ⇀ Φ∗ in H1,Φn → Φ∗ in L4 and ‖Φn‖1,2 ≤ K for all n ∈ N.

Then, for all v ∈ U there holds true

|〈F(θ∗,Φ∗)− F(θn,Φn),v〉U∗ | → 0.

The local Lipschitz condition (i) is used to show uniqueness of solutions under an appropriate small
data condition. It will turn out that Assumption (ii) allows for showing stability of solutions to Problem
2.2. Note that we don’t restrict the growth rate of F w.r.t. ‖Φ‖1,2, while it may grow at most linearly
w.r.t. ‖θ‖1,2 . This is due to the fact that we will be able to bound ‖Φ‖1,2 in terms of ‖θ‖∞ which, in
turn, can be bounded in terms of the input data only by virtue of a maximum principle. (iii) will be
needed to show that a sequence of solutions to finite dimensional versions of the fixed-point Problem 2.5
converges to a solution of the original Problem 2.2.

Throughout the subsequent sections, we assert the following main assumption concerning F and the
boundary liftings.

Assumption 2.10. (Boundary Lifting)

There exists a family of boundary liftings θb = θb[ξ] ∈ C1(Ω) with ‖θb[ξ]‖3 ≤ ξ for all ξ > 0.
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2.2 Stability of Solutions

The following proposition states that the norm of solutions of Problem (2.2) can be bounded in terms
of the input parameters and the norm of the boundary lifting. For that reason, it is required that the
boundary lifting θb can be chosen in such a way that ‖θb‖3 is sufficiently small.

The subsequent result will play an important role in showing both existence (by virtue of a fixed-point
argument) and uniqueness of solutions. For the former case, it is crucial that the stability bound is
uniform w.r.t. λ ∈ [0, 1].

Proposition 2.11. (Stability of stationary solutions)

Let λ ∈ [0, 1] and assume that Assumptions 2.9 and 2.10 holds with body force F(θ) := F(θ,Φ) defined

for given and fixed Φ ∈ H1(Ω) with respective constants aF := aF(‖Φ‖1,2), bF := bF(‖Φ‖1,2).

Then, there is a continuous, non-increasing function d : [0,∞)→ (0, 1
2 ] with d(0) > 0 and continuous

functions

gi : R6 ∩ {x1 < d(x2)} → [0,∞), i ∈ {u, θ}

such that

‖∇u‖ ≤ gu(‖θb‖3, aF, bF, ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗) =: Gu

‖∇θ‖ ≤ gθ(‖θb‖3, aF, bF, ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗) =: Gθ

for all solutions (u, θ) of Problem 2.2 with boundary lifting θb satisfying ‖θb‖3 < d(aF). In particular, gu

and gθ do not depend on the parameter λ ∈ [0, 1] and are non-decreasing in their arguments x2 and x3.

Moreover, if ũ = u, then

gi → 0 for (x4, x5, x6)→ 0, i.e. Gi → 0 for (‖θb‖1,2, ‖fτ‖, ‖fv‖)→ 0.

Proof. Let θb ∈ C1(Ω) such that ‖θb‖3 ≤ 1. Moreover, let (u, θ) ∈ V × Θ denote a solution of the

stationary problem. Inserting v = u, τ = θ in 2.2 and noting that

cv(ū,u,u) = 0 and cτ (ũ, θ + θb, θ) = cτ (ũ, θb, θ) = −cτ (ũ, θ, θb)

since ū, ũ ∈ V, we obtain

δ‖u‖2 + ν‖∇u‖2 = λ〈F(θ + θb) + fv, u〉

δ‖θ‖2 + κ‖∇θ‖2 = −λ (δ(θb, θ) + κ(∇θb,∇θ) + (ũ · ∇θ, θb)− 〈fτ , θ〉) .

Using the assumptions on F, we obtain from the first equality

ν‖∇u‖2 ≤ aF
√
K2

2 + 1︸ ︷︷ ︸
ãF

‖∇θ‖‖∇u‖+ (bF + aF‖θb‖1,2 + ‖fv‖U∗)︸ ︷︷ ︸
=:b̃F

‖∇u‖

≤ ãF
(

1

2δ1
‖∇θ‖2 +

δ1
2
‖∇u‖2

)
+

1

2δ2
b̃2F +

δ2
2
‖∇u‖2

for δ1, δ2 > 0 and from the second one

κ‖∇θ‖2 ≤ κ‖∇θb‖‖∇θ‖+ δK2‖θb‖‖∇θ‖+ |(ũ · ∇θ, θb)|+ ‖fτ‖Θ∗‖∇θ‖

≤ κ‖∇θb‖‖∇θ‖+ δK2K23‖θb‖3‖∇θ‖+M6‖∇ũ‖‖∇θ‖‖θb‖3 + ‖fτ‖Θ∗‖∇θ‖

≤ κ
(

1

2δ3
‖∇θb‖2 +

δ3
2
‖∇θ‖2

)
+M6

(
1

2δ4
‖θb‖3‖∇ũ‖2 +

δ4
2
‖θb‖3‖∇θ‖2

)
+

(
1

2δ5
‖fτ‖2Θ∗ +

δ5
2
‖∇θ‖2

)
+ δK2K23

(
1

2δ6
‖θb‖23 +

δ6
2
‖∇θ‖2

)
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for δ3, δ4, δ5, δ6 > 0. Rearranging terms yields

(ν − δ1ãF
2
− δ2

2
)‖∇u‖2 ≤ ãF

1

2δ1
‖∇θ‖2 +

1

2δ2
b̃2F

(κ− κ̃ δ3
2
−M6‖θb‖3

δ4
2
− δ5

2
− δK2K23

δ6
2

)‖∇θ‖2 ≤ κ 1

2δ3
‖∇θb‖2 +M6

1

2δ4
‖θb‖3‖∇ũ‖2

+
1

2δ5
‖fτ‖2Θ∗ + δK2K23

1

2δ6
‖θb‖23.

Setting δi appropriately gives

‖∇u‖2 ≤ C1‖∇θ‖2 + C2

(1− 2‖θb‖3) ‖∇θ‖2 ≤ C3‖∇θb‖2 + C4‖θb‖3‖∇ũ‖2 + C5 + C6‖θb‖23

with constants

C1 =
2

ν2
a2
F(K2

2 + 1), C2 =
2

ν2
(bF + aF‖θb‖1,2 + ‖fv‖U∗)

2
, C3 = 3

C4 =
M2

6

2κ2
, C5 =

3

κ2
‖fτ‖2Θ∗ , C6 = 3

(
δK2K23

κ

)2

.

If ũ = u, we set

d := d(aF) := min

(
1

2 + C1C4
,

1

2

)
,

and obtain for ‖θb‖3 < d by combination of both inequalities

‖∇u‖2 ≤ 1

1− C1C4
‖θb‖3

1−2‖θb‖3

(
C2 +

C1

1− 2‖θb‖3
(
C3‖∇θb‖2 + C5 + C6‖θb‖23

))
=: G2

u.

Now, θ can be bounded by

‖∇θ‖ ≤ 1

1− 2‖θb‖3
(
C3‖∇θb‖2 + C4G

2
u + C5 + C6‖θb‖23

)
=: G2

θ.

If ũ is fixed, we get for ‖θb‖3 < 1
2 :

‖∇θ‖2 ≤ 1

1− 2‖θb‖3
(
C3‖∇θb‖2 + C4‖∇ũ‖2 + C5 + C6‖θb‖23

)
=: G2

θ

‖∇u‖2 ≤ C1G
2
θ + C2 =: G2

u.

Remark 2.12. The previous proof shows that Proposition 2.11 is valid for arbitrary subspaces W×T ⊂
V ×Θ with functions d, gu, gθ that are independent of the specific choice of W × T .

The next lemma bounds the variation of solutions of the Boussinesq equations w.r.t. to variations of
the respective input data, i.e. the force term F and the terms ū, ũ, θ̄, Φ̄. These bounds will be used later
on for showing uniqueness of solutions.

Lemma 2.13. (Stability of stationary solution w.r.t varying data)

Let Assumptions 2.9 and 2.10 hold and denote (u1, θ1) and (u2, θ2) solutions of Problem 2.2 for λ = 1,

respective convection fields (ū(1), ũ(1)), (ū(2), ũ(2)) and external forces F1 = F1(·,Φ1), F2 = F2(·,Φ2)

which do both satisfy Assumption 2.9. Assume

DF := sup
w∈V

sup
θ∈Θ

|〈F1(θ + θb)− F2(θ + θb), w〉U∗ |
‖∇w‖‖θ + θb‖1,2

<∞.
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Then, the solutions satisfy

‖∇(u1 − u2)‖ ≤ D1‖∇(ū(1) − ū(2))‖+D2‖∇(ũ(1) − ũ(2))‖+D3DF

‖∇(θ1 − θ2)‖ ≤ D4‖∇(ũ(1) − ũ(2))‖.

with constants given by (2.2).

Proof. Let (u1, θ1) and (u2, θ2) denote two solutions for external forces F1 and F2, respectively. Inserting

both into 2.2 and subtracting yields

av(u1 − u2,v) + (ū(1) · ∇u1,v)− (ū(2) · ∇u2,v) = 〈F1(θ1 + θb)− F2(θ2 + θb),v〉 ∀v ∈ V

aτ (θ1 − θ2, τ) + (ũ(1) · ∇θ1, τ)− (ũ(2) · ∇θ2, τ) = −((ũ(1) − ũ(2)) · ∇θb, τ) ∀τ ∈ Θ

Defining w := u1 − u2, ū := ū(1) − ū(2), ũ := ũ(1) − ũ(2), φ := θ1 − θ2 and setting v = w, τ = φ yields

δ‖w‖2 + ν‖∇w‖2 + (ū · ∇u1, w) + (ū(2) · ∇w,w)︸ ︷︷ ︸
=0

= 〈F1(θ1 + θb)− F2(θ2 + θb), w〉

δ‖φ‖2 + κ‖∇φ‖2 + (ũ · ∇θ1, φ) + (ũ(2) · ∇φ, φ)︸ ︷︷ ︸
=0

= −(ũ · ∇θb, φ) = (ũ · ∇φ, θb)

Let R := ‖θb‖1,2+
√
K2

2 + 1G
(1)
θ and by using local Lipschitz continuity of F1 with constant L

(θ)
F1

= L
(θ)
F1

(R)

〈F1(θ1 + θb)− F2(θ2 + θb), w〉 = 〈F1(θ1 + θb)− F1(θ2 + θb), w〉+ 〈F1(θ2 + θb)− F2(θ2 + θb), w〉

≤ L(θ)
F1

√
K2

2 + 1‖∇(θ1 − θ2)‖‖∇w‖+DF‖θ2 + θb‖1,2‖∇w‖,

we obtain

ν‖∇w‖2 ≤ Nv‖∇ū‖‖∇w‖‖∇u1‖+ L
(θ)
F1

√
K2

2 + 1‖∇(θ1 − θ2)‖‖∇w‖+DF‖θ2 + θb‖1,2‖∇w‖

≤ NvG
(1)
u ‖∇ū‖‖∇w‖+ L

(θ)
F1

√
K2

2 + 1‖∇φ‖‖∇w‖+DF

(
G

(2)
θ

√
K2

2 + 1 + ‖θb‖1,2
)
‖∇w‖

and from the second equation,

κ‖∇φ‖2 ≤ Nτ‖∇ũ‖‖∇θ1‖‖∇φ‖+M6‖∇ũ‖‖∇φ‖‖θb‖3

≤ NτG(1)
θ ‖∇ũ‖‖∇φ‖+M6‖∇ũ‖‖∇φ‖‖θb‖3

Dividing by ‖∇w‖ and ‖∇φ‖, respectively, yields the desired result with constants

D1 =
1

ν
NvG

(1)
u

D2 =
1

νκ
L

(θ)
F1

√
K2

2 + 1(NτG
(1)
θ +M6‖θb‖3)

D3 =
1

ν

(
G

(2)
θ

√
KS2

2 + 1 + ‖θb‖1,2
)

D4 =
1

κ
(NτG

(1)
θ +M6‖θb‖3).

(2.2)
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2.3 Weak Maximum Principle for Temperature

If the dielectirc permittivity ε is chosen as linear function of the temperature, e.g. ε(θ) = εr(1 − γθ) as
done in [20], we need to provide a L∞ bound on θ. This bound is obtained by means of the well-known
weak maximum principle, stating that θ exhibits its extremal values on the boundary. The following
fundamental functional analytic result will be frequently used.

Theorem 2.14. (Continuity of Superposition Operator, Theorem 1 in [16])

Let f ∈ C0,1(R) and G denote a bounded domain. Then the following operator is continuous

Tf : W 1,p(G)→W 1,p(G)

v 7→ f ◦ v

By setting f(s) := max{s, 0} or f(s) := min{s, 0}, Theorem 2.14 shows that u± ∈ W 1,2(Ω) for
u ∈W 1,2(Ω).

Proposition 2.15. (Maximum principle for θ)

Let (u, θ) ∈ U × Θ denote a solution of Problem 2.2 for λ = 1 and assume that one of the following

conditions is satisfied for all τ ∈ Θ.

(i) δ > 0 and |〈fτ , τ〉Θ∗ | ≤ κ‖∇τ‖2

(ii) |〈fτ , τ〉Θ∗ | ≤ δ‖τ‖2

Then, θ + θb exhibits its maximum and minimum on the boundary, i.e.

esssupΩ(θ + θb) ≤ sup
ΓD

θ+
b and essinfΩ(θ + θb) ≥ inf

ΓD

θ−b .

Proof. Let θ := θ + θb. Then,

δ(θ, τ) + κ(∇θ,∇τ) + cτ (ũ, θ, τ) = 〈fτ , τ〉 for all τ ∈ Θ. (2.3)

For v ∈ H1(Ω), let S(v) := {k ∈ R : v+ ≤ k on ΓD}, i.e. supΓD
v+ = inf S(v). We assume that

S(θb) 6= ∅. Otherwise, supΓD
θ+
b = inf ∅ :=∞ and the assertion trivially holds.

Step (i) : supΓD
(θ

+
) ≤ supΓD

(θ+
b ).

We prove that S(θb) ⊂ S(θ). To do so, let k ∈ S(θb) and define f(s) := (s+ − k)+ which is Lipschitz

continuous on R. Since k ∈ S(θb), there holds f(θb) ∈ H1
D(Ω) and

f(θ)− f(θb) = ((θ + θb)
+ − k)+ − (θ+

b − k)+ =: z ∈ H1(Ω) according to Theorem 2.14.

Since θ ∈ H1
D(Ω), there is (θn)n ⊂ C0,1

D (Ω) ∩W 1,6(Ω) with θn → θ in H1(Ω). Let

zn := f(θn + θb)− f(θb).

Since f ∈ C0,1(R), θn ∈ C0,1
D (Ω) and θb ∈ C1(Ω), there holds zn ∈ C0,1(Ω). Moreover, using θn, θb ∈

W 1,6(Ω) and Theorem 2.14, we obtain zn ∈ W 1,6(Ω). Finally, for x /∈ supp(θn), i.e. θn(x) = 0, we also

have zn(x) = 0. Therefore, supp(zn) ⊂ supp(θn) which implies zn ∈ C0,1
D (Ω). By definition of zn, θn and

Theorem 2.14,

z − zn = f(θ + θb)− f(θn + θb)→ 0 in H1(Ω), since θn → θ in H1(Ω).

Thus, z ∈ H1
D(Ω) and f(θ) = f(θb) + z ∈ H1

D(Ω), implying k ∈ S(θ).
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Step (ii) : esssupΩ(θ) ≤ supΓD
(θ

+
).

Suppose that esssupΩ(θ) > supΓD
(θ

+
) = inf S(θ). According to step (i), ∅ 6= S(θb) ⊂ S(θ). Thus, there

exists k ≥ 0 with k ∈ S(θ) and esssupΩ(θ) > k.

By definition of k, τ := (θ
+ − k)+ ∈ H1

D(Ω) with support E := {τ 6= 0} = {θ+
> k} = {θ > k}.

Moreover, there holds

τ = θ − k on E and ∇τ =

∇θ on E

0 else
.

Inserting this τ as test function into (2.3) yields

〈fτ , τ〉 =

∫
Ω

δθτ + κ∇θ · ∇τ + u · ∇θτ =

∫
E

δ(τ + k)τ + κ∇τ · ∇τ + ũ · ∇ττ

=

∫
E

δ|τ |2 + κ|∇τ |2 + δkτ + ũ · ∇ττ

=

∫
Ω

δ|τ |2 + κ|∇τ |2 + δkτ︸︷︷︸
≥0

+

∫
Ω

ũ · ∇ττ︸ ︷︷ ︸
=0

≥ δ‖τ‖2 + κ‖∇τ‖2.

From the assumption follows that either

(i) : 0 ≤ δ‖τ‖2 ≤ 〈fτ , τ〉 − κ‖∇τ‖2 ≤ 0 or (ii) : 0 ≤ κ‖∇τ‖2 ≤ 〈fτ , τ〉 − δ‖τ‖2 ≤ 0.

In both cases, we obtain τ = 0 a.e. on Ω, which is equivalent to θ
+ ≤ k a.e. on Ω. However, this is a

contradiction to the assertion k < esssupΩ(θ) ≤ esssupΩ(θ
+

). Together with step (i) we obtain

esssupΩ(θ) ≤ sup
ΓD

(θ
+

) ≤ sup
ΓD

(θ+
b ).

Step (iii) : essinfΩθ ≥ infΓD
(θ−b ).

Setting f̃τ := −fτ , θ̃ := −θ, θ̃b := −θb, multiplying (2.3) by −1 and applying the previous steps yields

esssupΩ(θ̃) ≤ sup
ΓD

(θ̃+
b ).

Using esssupΩ(θ̃) = −essinfΩ(θ), θ̃+
b = −θ−b and infΓD

(u) = − supΓD
(−u), we obtain

−essinfΩθ ≤ − inf
ΓD

(θ−b ).

2.4 Existence of Solutions

Proving existence of solutions to (2.2) can be achieved by application of the well-known Galerkin principle,
following the work in [19]. Here, the application of the general fixed-point theorem 2.16 to a finite
dimensional version of Problem 2.5 is combined with an approximation of the infinite dimensional problem
by a series of finite dimensional systems.

Theorem 2.16. (Leray-Schauder fixed-point theorem, Theorem 6.16 in [14])

Let Y be a Hilbert space and let F : Y → Y be a compact map. Consider the fixed-point problem: find

y∗ ∈ Y such that

y∗ = F(y∗) (2.4)
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Associate with (2.4) the family of fixed-point problems: find yλ ∈ Y such that

yλ = λF(yλ), 0 ≤ λ ≤ 1. (2.5)

If there is a constant K such that all solutions of (2.5) are uniformly bounded, i.e. ‖yλ‖ ≤ K for all 0 ≤
λ ≤ 1, then there exists a solution to (2.4).

Proposition 2.17. (Existence of solutions in finite dimensional spaces)

Let W ⊂ V, T ⊂ Θ denote finite dimensional Hilbert spaces. Let Assumptions 2.9 and 2.10 hold and

assume that the boundary lifting θb is chosen such that ‖θb‖3 < d(aF) for d defined in Proposition 2.11.

Then, there exists a solution (u, θ) for Problem 2.5 with λ = 1, i.e.

(u, θ) = F [W, T ](u, θ) (2.6)

Proof. Follows by application of Proposition 2.11 with Remark 2.12 (uniform stability), Lemma 2.8 (com-

pactness of F [W, T ] : Y → Y with Y := W × T ) and Theorem 2.16.

The following Theorem is based on the existence result in [19], with a slight modification to take into
account the more general body force term F.

Theorem 2.18. (Existence of solutions for stationary Boussinesq equations)

Let Assumptions 2.9 and 2.10 hold and assume that the boundary lifting θb is chosen such that ‖θb‖3 <
d(aF) for d defined in Proposition 2.11. Then, there exists a solution (u, θ) ∈ V×Θ for Problem 2.2 with

λ = 1.

Proof. We only show the proof for ū = ũ = u. The other cases follow analogously.

Since V and Θ are closed subspaces of the separable normed spaces W 1,2(Ω)d and W 1,2(Ω), respec-

tively, they are separable as well according to Lemma A.1. Therefore, there a sequences (Wm)m, (Tm)m

of finite dimensional subspaces satisfying

Wm ⊂ V, Wm ⊂Wm+1 and Tm ⊂ Θ, Tm ⊂ Tm+1

with

V =
⋃
n∈N

Wn and Θ =
⋃
n∈N

Tn.

For each n ∈ N let (un, θn) ∈ Wn × Tn denote the solution of Problem 2.2 with V × Θ replaced by

Wn×Tn. These solutions exist due to Proposition 2.17. Moreover, they are uniformly bounded according

to Proposition 2.11 and Remark 2.12,

‖∇un‖+ ‖∇θn‖ ≤ Gu +Gθ for all n ∈ N.

Since V and Θ are Hilbert spaces, they are reflexive. Thus, there are (u∗, θ∗) ∈ V × Θ and a subse-

quence (uk, θk)k ⊂ (un, θn)n with uk ⇀ u∗ in V and θk ⇀ θ∗ in Θ. Due to the compact embedding

W 1,2(Ω) ↪→↪→ L4(Ω) for d ∈ {2, 3}, we additionally have uk → u∗ in L4(Ω)d and θk → θ∗ in L4(Ω).

Since (uk, θk) are solutions for the finite dimensional problems, there holds

av(uk,v) + cv(uk,uk,v)− 〈F(θk + θb) + fv,v〉 = 0 ∀v ∈Wn, n ≤ k

aτ (θk + θb, τ) + cτ (uk, θk + θb, τ)− 〈fτ , τ〉 = 0 ∀τ ∈ θn, n ≤ k
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where we used the equivalence between variational formulation 2.2 and fixed-point formulation 2.5 due to

Lemma 2.8. Let n ∈ N and (v, τ) ∈Wn×Tn be arbitrary. Due to weak convergence, we obtain for k →∞
convergence of the linear terms according to (uk,v) → (u∗,v), (θk, τ) → (θ∗, τ), av(uk,v) → av(u∗,v),

aτ (θk,v)→ aτ (θ∗, τ) and cτ (uk, θb, τ)→ cτ (u∗, θb, τ).

By Assumption 2.9 (iv) we have 〈F(θk + θb),v〉U∗ → 〈F(θ∗),v〉U∗ . Finally,

|cv(uk,uk,v)− cv(u∗,u∗,v)| ≤ |cv(uk − u∗,uk,v)|+ |cv(u∗,uk − u∗,v)|

≤ ‖uk − u∗‖4‖∇uk‖‖v‖4 + |cv(u∗,v,uk − u∗)|

≤ ‖uk − u∗‖4Gu ‖v‖4 + ‖u∗‖4‖∇v‖‖uk − u∗‖4

→ 0

and, similarly, cτ (uk, θk, τ)→ cτ (u∗, θ∗, τ). Summing up,

av(u∗,v) + cv(u∗,u∗,v)− 〈F(θ∗ + θb) + fv,v〉 = 0 ∀v ∈Wn, ∀n ∈ N

aτ (θ∗ + θb, τ) + cτ (u∗, θ∗ + θb, τ)− 〈fτ , τ〉 = 0 ∀τ ∈ θn, ∀n ∈ N
(2.7)

Since
⋃
n Wn ×

⋃
n Tn is dense in V ×Θ, (2.7) holds for all (v, τ) ∈ V ×Θ.

3 The TEHD Boussinesq Problem

In this section, we consider the combined problem of finding a solution (u, θ,Φ) of the stationary TEHD
equations. Existence of solutions is shown by applying a fixed-point iteration that is alternating between
solutions (u, θ) of the Boussinesq problem 2.2 and solutions Φ of Gauss’ law. Afterward, we show that
solutions are unique under certain restrictions onto the data. As final step in this section, we propose
certain ways of fitting the DEP force into the general force term F.

3.1 Variational Formulation and Existence of Solutions

In addition to spaces U,V,M,Θ used in the previous sections, we define the potential space Υ := H1
D(Ω)

and for given ε ∈ C(R,R) the mapping

aβ : L∞(Ω)×H1(Ω)×H1(Ω)→ R, (θ,Φ, β) 7→ (ε(θ)∇Φ,∇β).

Problem 3.1. (Stationary TEHD equations)

Let θb ∈ C1(Ω) and Φb ∈ C1(Ω) denote liftings of given boundary conditions and F : Θ × Υ → U∗, fv ∈
U∗, fτ ∈ Θ∗, fβ : L2(Ω) → Υ∗ be given body forces and ε ∈ C(R,R). Let either ū, ũ ∈ V, θ̄ ∈ Θ, Φ̄ ∈ Υ

denote fixed functions or the unknown variables u, θ,Φ.

For δ ≥ 0, ν, κ, γ > 0 find u ∈ V, θ ∈ Θ ∩ L∞(Ω),Φ ∈ Υ such that for all (v, τ, β) ∈ V ×Θ×Υ

av(u,v) + cv(ū,u,v) = 〈F(θ + θb, Φ̄ + Φb) + fv,v〉U∗

aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ + Φb, β) = 〈fβ(θ + θb), β〉Υ∗

Assumption 3.2. (Permittivity ε)

Let ε : R→ R be Lipschitz continuous with constant Lε.

Assumption 3.3. (Source term fτ )

For the temperature source term fτ ∈ Θ∗ we define conditions
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(i) δ > 0 and |〈fτ , τ〉Θ∗ | ≤ κ‖∇τ‖2 for all τ ∈ Θ

(ii) |〈fτ , τ〉Θ∗ | ≤ δ‖τ‖2 for all τ ∈ Θ

Assumption 3.4. (Source term fβ)

Let the potential source term fβ : L2(Ω)→ Υ∗ satisfy

(i) There are constant af , bf ≥ 0 such that for all θ ∈ L2(Ω) and β ∈ Υ

|〈fβ(θ), β〉Υ∗ | ≤ (af‖θ‖+ bf )‖∇β‖.

(ii) Let a sequence (θn)n ⊂ H1(Ω) be given that converges to θ∗ ∈ H1(Ω) in the following sense

θn ⇀ θ∗ in H1, θn → θ∗ in L4 and ‖θn‖1,2 ≤ K for all n ∈ N.

Then, for all β ∈ Υ there holds true

|〈fβ(θ∗)− fβ(θn), β〉Υ∗ | → 0.

(iii) fβ is Lipschitz continuous in the following sense: for all D > 0 there is Lβ ≥ 0, such that

|〈fβ(θ1)− fβ(θ2), β〉Υ∗ | ≤ Lβ‖θ1 − θ2‖1,2‖∇β‖ for all θ1, θ2 ∈ BD(0, H1(Ω)) and β ∈ Υ.

Theorem 3.5. (Existence and stability of stationary TEHD solutions)

Let the assertions in Problem 3.1 and Assumptions 2.9, 2.10, 3.2 and 3.4 hold. Let θ− := infΓD
(θ−b ),

θ+ := supΓD
(θ+
b ) and θ∞ := max{θ+, |θ−|}. Define ε− ≤ ε+ such that

ε ([θ−, θ+]) ⊂ [ε−, ε+].

Assume that θb is chosen such that ε− > 0 and ‖θb‖3 < d(aF(G̃Φ)) holds with

G̃Φ =
√
K2

2 + 1GΦ + ‖Φb‖1,2

GΦ =
ε+
ε−
‖∇Φb‖+

1

ε−
(af |Ω|

1
2 θ∞ + bf ).

Moreover, if θ̄ = θ let either Assumption 3.3 (i) or (ii) hold. If θ̄ ∈ Θ is fixed, assume that θ̄ ∈ L∞(Ω)

with (θ̄ + θb)(x) ∈ [θ−, θ+] a.e.

Then, there exists a solution (u, θ,Φ) of Problem 3.1. Further, all solutions of 3.1 satisfy

‖∇u‖ ≤ gu(‖θb‖3, aF(G̃Φ), bF(G̃Φ), ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗) = Gu,

‖∇θ‖ ≤ gθ(‖θb‖3, aF(G̃Φ), bF(G̃Φ), ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗) = Gθ,

‖∇Φ‖ ≤ GΦ,

(θ + θb)(x) ∈ [θ−, θ+] a.e.

with functions gu, gθ defined in Proposition 2.11.

Proof. As before, we only show the proof for the implicit case ū = ũ = u, Φ̄ = Φ.

We split Problem 3.1 into two parts: for given Φ# ∈ Υ find (u, θ) ∈ V ×Θ satisfying

(P1) :

av(u,v) + cv(u,u,v)− 〈F(θ + θb,Φ# + Φb) + fv,v〉U∗ = 0 ∀v ∈ V

aτ (θ + θb, τ) + cτ (u, θ + θb, τ)− 〈fτ , τ〉Θ∗ = 0 ∀τ ∈ Θ
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and for given (θ̄#, θ#) ∈ Θ×Θ find Φ ∈ Υ such that

(P2) : aβ(θ̄# + θb,Φ + Φb, β) = fβ(θ# + θb) ∀β ∈ Υ

We define the following fixed-point iteration: let Φ0 ∈ Υ be arbitrary and set for n ∈ N

· (un, θn) denotes the solution of (P1) for Φ# = Φn−1

· if θ̄ = θ, then θ̄n := θn. Otherwise, θ̄n := θ̄

· Φn denotes the solution of (P2) for (θ̄#, θ#) = (θ̄n, θn)

Here, Theorem 2.18 garuantees the existence of (un, θn). Moreover, according to the weak maximum

principle, Proposition 2.15, in combination with the assumptions on θb and fτ for the case θ̄ = θ, or the

assumptions on θ̄ if this variable is fixed, we have

(θ̄ + θb)(x) ∈ [θ−, θ+] a.e. and (θ̄n + θb)(x) ∈ [θ−, θ+] a.e. for all n ∈ N.

Therefore, εn := ε(θ̄n + θb) ∈ L∞(Ω) and εn ≥ ε− > 0 a.e.

For such kind of θ̄n, the bilinear form Υ×Υ 3 (Φ, β) 7→ aβ(θ̄n+θb,Φ, β) ∈ R is bounded and coercive.

Thus, there exists a unique solution Φn ∈ Υ of (P2) by Lax-Milgram and it is bounded according to

‖∇Φn‖ ≤
ε+
ε−
‖∇Φb‖+

1

ε−
(af‖θn + θb‖+ bf ) ≤ GΦ.

On the other hand, we have for all n ∈ N

‖∇un‖ ≤ Gu and ‖∇θn‖ ≤ Gθ,

according to Proposition 2.11 by using ‖Φn + Φb‖1,2 ≤ G̃Φ and the monotonicity of aF, bF, gu, gθ. As

in the proof of Theorem 2.18, there are (u∗, θ∗,Φ∗) ∈ V × Θ × Υ and a subsequence (uk, θk,Φk)k ⊂
(un, θn,Φn)n with uk ⇀ u∗ in V, θk ⇀ θ∗ in Θ and Φk ⇀ Φ∗ in Υ. Due to the compact embedding

W 1,2(Ω) ↪→↪→ L4(Ω) for d ∈ {2, 3}, we additionally have uk → u∗ in L4(Ω)d, θk → θ∗ in L4(Ω) and

Φk → θ∗ in L4(Ω). By Assumption 2.9 (iii),

|〈F(θ∗ + θb,Φ∗ + Φb)− F(θn + θb,Φn + Φb),v〉U∗ | → 0 for all v ∈ V.

Thus, as in the proof of Theorem 2.18, (u∗, θ∗) solves (P1) for Φ# = Φ∗ and it holds

ε((θ∗ + θb)(x)) ∈ [ε−, ε+] a.e.

since Proposition 2.15 also applies for θ∗.

It remains to show that Φ∗ solves (P2) for (θ̄#, θ#) = (θ̄∗, θ∗) with θ̄∗ = θ∗ if θ̄ = θ or θ̄∗ = θ̄ otherwise.

In the former case, let β ∈ C0,1
D (Ω) ∩W 1,6(Ω) be arbitrary but fixed. Then, using Hölder’s inequaility

and the Lipschitz continuity of ε,

|aβ(θk + θb,Φk + Φb, β)− aβ(θ∗ + θb,Φ∗ + Φb, β)|

≤ |((ε(θk + θb)− ε(θ∗ + θb))∇(Φk + Φb),∇β)|+ |(ε(θ∗ + θb)∇(Φk − Φ∗),∇β)|

≤ ‖ε(θk + θb)− ε(θ∗ + θb)‖3‖∇(Φk + Φb)‖‖∇β‖6 + |(ε(θ∗ + θb)∇(Φk − Φ∗),∇β)|

≤ LεGΦ‖θk − θ∗‖3‖∇β‖6 + |(ε(θ∗ + θb)∇(Φk − Φ∗),∇β)|

→ 0
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Here, convergence of both terms is implied by θk → θb in L4(Ω) and by Φk ⇀ Φ∗ in Υ, respectively.

By the assertion on fβ , we additionally have

〈fβ(θk + θb), β〉Υ∗ → 〈fβ(θ∗ + θb), β〉Υ∗ .

Combining both results yields

aβ(θ∗ + θb,Φ∗ + Φb, β) = 〈fβ(θ∗ + θb), β〉Υ∗ for all β ∈ C0,1
D (Ω) ∩W 1,6(Ω).

Since C0,1
D (Ω) ∩W 1,6(Ω) is dense in H1

D(Ω) and the linear form H1
D(Ω) 3 β 7→ aβ(θ∗ + θb,Φ∗ + Φb, β) is

continuous, Φ∗ solves (P2) for θ# = θ∗, θ# = θ∗.

In order to show the stated energy norm estimate, let (u, θ,Φ) ∈ V × Θ × Υ denote an arbitrary

solution. According to Proposition 2.15, ‖θ + θb‖∞ ≤ θ∞. Thus, as for Φn, we have that

‖∇Φ‖ ≤ ε+
ε−
‖∇Φb‖+

1

ε−
(af‖θ + θb‖+ bf ) ≤ GΦ,

which implies ‖Φ + Φb‖1,2 ≤ G̃Φ.

Moreover, by means of Proposition 2.11,

‖∇u‖ ≤ gu(‖θb‖3, aF, bF, ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗)

‖∇θ‖ ≤ gθ(‖θb‖3, aF, bF, ‖θb‖1,2, ‖fτ‖Θ∗ , ‖fv‖U∗)

with constants aF = aF(‖Φ + Φb‖1,2) ≤ aF(G̃Φ) and bF = bF(‖Φ + Φb‖1,2) ≤ bF(G̃Φ). Since gu, gθ are

non-decreasing in their arguments x2 and x3, we obtain the stated result.

By means of a standard procedure, see e.g. Lemma IX.1.2 in [10], existence of solutions for the problem
in mixed form can be shown.

Proposition 3.6. (Recovering the pressure)

Let (u, θ,Φ) ∈ V × Θ × Υ denote a solution of Problem 3.1. Then, there exists a pressure p ∈ M such

that (u, p, θ,Φ) is a solution to the mixed problem

av(u,v) + cv(ū,u,v)− b(v, p) = 〈F(θ + θb, Φ̄ + Φb) + fv,v〉U∗

aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ + Φb, β) = 〈fβ(θ + θb), β〉Υ∗

b(u, q) = 0

for all (v, q, τ, β) ∈ U×M ×Θ×Υ.

Proof. Define the linear operator B∗ : M → U∗ via 〈B∗p,v〉U∗ := b(v, p) = 1
ρr

(∇·v, p) and let a functional

l ∈ U∗ be given as

l(v) := av(u,v) + cv(ū,u,v)− 〈F(θ + θb, Φ̄ + Φb) + fτ ,v〉U∗ .

Then, l(v) = 0 for all v ∈ V, i.e. l ∈ V◦ = {g∗ ∈ U∗ : 〈g, v〉U = 0 ∀v ∈ V}. Since the inf-sup condition

holds for the space U×M , B∗ is an isomorphism from M to V◦ according to Theorem A.4. Thus, there

is p ∈ M such that B∗p = l, i.e. b(v, p) = l(v) for all v ∈ U. Moreover, b(u, q) = 0 for all q ∈ M , since

v ∈ V.
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3.2 Uniqueness of Solutions

We investigate uniqueness of solutions of Problem 3.1. To this end, let the assumptions in Theorem
3.5 hold and let (u1, θ1,Φ1) and (u2, θ2,Φ2) denote two solutions. Using the properties of F given by

Assumption 2.9, there is L
(Φ)
F > 0 such that

DF := sup
w∈V

sup
θ∈Θ

|〈F(θ + θb,Φ1 + Φb)− F(θ + θb,Φ2 + Φb), w〉U∗ |
‖∇w‖‖θ + θb‖1,2

≤ L(Φ)
F ‖Φ1 − Φ2‖1,2. (3.1)

Applying Lemma 2.13 with Fi = F(·,Φi + Φb) and introducing dx := x1−x2 with x ∈ {u, θ,Φ, ū, ũ, θ̄, Φ̄}
yields

‖∇du‖ ≤ D1‖∇dū‖+D2‖∇dũ‖+D5‖∇dΦ̄‖
‖∇dθ‖ ≤ D4‖∇dũ‖.

(3.2)

with Di, i ∈ {1, 2, 3, 4} given by (2.2) and D5 := 1
νL

(Φ)
F

(
Gθ(K

2
2 + 1) +

√
K2

2 + 1‖θb‖1,2
)

. Here, dy = 0

for y ∈ {ū, ũ, θ̄, Φ̄} if the corresponding variable y is fixed. Otherwise, dū = du, dũ = dθ, dθ̄ = dθ, dΦ̄ =
dΦ, respectively.

Coming to Gauss’s law, according to the assumptions and results from Theorem 3.5, there holds
0 < ε− ≤ ε(θi(x) + θb(x)) ≤ ε+ a.e. Thus,

ε−‖∇dΦ‖2 ≤ (ε(θ2 + θb)∇dΦ,∇dΦ)

= 〈fβ(θ1 + θb)− fβ(θ2 + θb), dΦ〉 − ((ε(θ1 + θb)− ε(θ2 + θb))∇(Φ1 + Φb),∇dΦ)

≤ Lβ‖dθ‖1,2‖∇dΦ‖ − ((ε(θ1 + θb)− ε(θ2 + θb))∇(Φ1 + Φb),∇dΦ).

If we assume that Φ1 ∈W 1,3(Ω), then the previous inequality together with H1 ↪→ L6 implies

ε−‖∇dΦ‖2 ≤ Lβ
√
K2

2 + 1‖∇dθ‖‖∇dΦ‖+ LεK6‖∇dθ̄‖‖∇(Φ1 + Φb)‖3‖∇dΦ‖ (3.3)

for constants α1, α2 ≥ 0. If Φ is less regular, we may only deduce

ε−‖∇dΦ‖2 ≤ Lβ
√
K2

2 + 1‖∇dθ‖‖∇dΦ‖+ Lε(GΦ + ‖∇Φb‖)‖dθ̄‖∞‖∇dΦ‖. (3.4)

Letting ‖dθ̄‖∗ ∈ {‖∇dθ̄‖, ‖dθ̄‖∞}, we summarize the previous estimates (3.2), (3.3), (3.4) as

‖∇du‖ ≤ α1‖∇dū‖+ α2‖∇dũ‖+ α3‖∇dΦ̄‖
‖∇dθ‖ ≤ α4‖∇dũ‖
‖∇dΦ‖ ≤ α5‖∇dθ‖+ α6(‖∇Φ1‖3)‖dθ̄‖∗

(3.5)

with constants given by

α1 = D1, α2 = D2, α3 = D5, α4 = D4

α5 =
Lβ
ε−

√
K2

2 + 1

α6(s) =
Lε
ε−

{
K6(s+ ‖∇θb‖3), ‖dθ̄‖∗ = ‖∇dθ̄‖
GΦ + ‖∇Φb‖, ‖dθ̄‖∗ = ‖dθ̄‖∞

.

(3.6)

Based on the set of inequalities (3.5), the following theorem yields conditions under which uniqueness
of solutions for the stationary TEHD Problem 3.1 holds. Hereby, one needs to differentiate w.r.t. the
degree of implicitness in 3.1.

Theorem 3.7. (Uniqueness for small data)

Let the assertions of Theorem 3.5 hold and constants αi be given as in (3.5). Then, solutions of Problem

3.1 are unique under certain conditions:

(i) ũ ∈ V fixed
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(i.i) ū ∈ V fixed: without restriction

(i.ii) ū = u: α1 < 1

(ii) ũ = u

(ii.i) θ̄ ∈ Θ fixed: α1 + α2 + δΦ,Φ̄α3α5α4 < 1

(ii.ii) θ̄ = θ

(ii.ii.i) Φ̄ ∈ Υ fixed: α1 + α2 < 1

(ii.ii.ii) Φ̄ = Φ

(ii.ii.ii.i) d = 2: α1 + α2 + α3α4 (α5 + α6K∞) < 1

(ii.ii.ii.ii) d = 3: R > 0 such that α1 + α2 + α3α4α5 + α3α4α6(R) < 1 and Φ ∈ BR(0,W 1,3(Ω)).

Proof. The assertions are proven by using (3.5) with dx = 0 if x ∈ {ū, ũ, θ̄, Φ̄} is fixed, or dx̄ = dx for

x ∈ {u, θ,Φ} otherwise. In case (i), i.e. dũ = 0, (3.5) directly leads to dθ = dθ̄ = dΦ = dΦ̄ = 0. For (i.i),

also dū = 0, implying du = dθ = dΦ = 0 and therefore (u1, θ1,Φ1) = (u2, θ2,Φ2). In case (i.ii), we obtain

‖∇du‖ ≤ α1‖∇du‖,

i.e. du = 0 if 1 > α1. In (ii.i), (3.5) leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖+ δΦ,Φ̄α3α5α4‖∇du‖

‖∇dθ‖ ≤ α4‖∇du‖

‖∇dΦ‖ ≤ α5‖∇dθ‖

with δx,y denoting the Kronecker delta. Thus, uniqueness of solutions is given if α1+α2+δΦ,Φ̄α3α5α4 < 1.

If θ̄ = θ and dΦ̄ = 0, i.e. case (ii.ii.i), (3.5) with ‖dθ‖∗ = ‖dθ‖∞ leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖

‖∇dθ‖ ≤ α4‖∇du‖

‖∇dΦ‖ ≤ (α5 + α6(Φ1))‖dθ‖∞.

Now, α1 + α2 < 1 implies du = 0 and consequently, dθ = 0 and dΦ = 0. Finally, consider the case

(ii.ii.ii), i.e. the fully implicit problem. If d = 2, then ‖dθ‖∞ ≤ M∞‖∇dθ‖ by the Sobolev embedding

H1(Ω) ↪→ C0(Ω). Therefore, (3.5) with ‖dθ‖∗ = ‖dθ‖∞ leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖+ α3α4 (α5 + α6M∞) ‖∇du‖

‖∇dθ‖ ≤ α4‖∇du‖

‖∇dΦ‖ ≤ (α5 + α6M∞)‖∇dθ‖.

Thus, under the condition α1 +α2 +α3α4 (α5 + α6M∞) < 1, there holds du = dθ = dΦ = 0. If d = 3 and

Φ ∈W 1,3(Ω), (3.5) with ‖dθ‖∗ = ‖∇dθ‖ leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖+ α3α4 (α5 + α6(‖∇Φ1‖3) ‖∇du‖

‖∇dθ‖ ≤ α4‖∇du‖

‖∇dΦ‖ ≤ (α5 + α6(‖∇Φ1‖3))‖∇dθ‖.

In this case, du = 0 if α1 + α2 + α3α4α5 < 1 and ‖∇Φ1‖3 < R such that

α1 + α2 + α3α4α5 + α3α4α6(R) < 1.
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The previous theorem shows that solutions are unique without any restriction onto the problem data
only, if the convection terms in both momentum and heat equation are explicitly given. Otherwise,
uniqueness only holds under certain restrictions onto the data. A closer look on the involved constants
αi reveals that α1, α2, α3, α4 tend to zero as ‖θb‖1,2 tends to zero. Thus, if the energy that is put into the
system by means of the boundary temperature is sufficiently small, uniqueness of the solution is ensured.

3.3 Modeling of DEP Force

In this section, we propose several approximations to the body force

f = fE + fG = αe(∇Φ)2∇θ − αggθ

that satisfy Assumption 2.9. By means of Theorem 3.5, we may state existence of solutions u ∈
H1

0(Ω), θ, Φ ∈ H1(Ω). For such functions, the term (∇Φ)2∇θ is not contained in H−1(Ω), making
it necessary to replace it by an expression F(θ,Φ) that requires less regularity of θ and Φ to be an ele-
ment of H−1(Ω). In order to do so, we make use of an alternative form fE,a of fE which is obtained by
subtracting

∇
(
αe(∇Φ)2θ

)
= 2αe(∇2Φ∇Φ)θ + αe (∇Φ)

2∇θ =: −fE,a + fE

from the momentum equation and replacing p by the generalized pressure P := 1
ρr
p− αe(∇Φ)2θ.

The proposed approximations Fi rely on the idea of either replacing the potential Φ in fE,a by some
smooth, fixed function Φ0, or on applying a smoothing operator to Φ. The following definitions make use
of a fixed potential Φ0.

Definition 3.8. (Standard DEP force with fixed potential)

For Φ0 ∈W 1,6(Ω) define

Fs,0 : H1(Ω)×H1(Ω)→ U∗

(θ,Φ) 7→ αe((∇Φ0)2∇θ, ·)− αg(θg, ·).

Definition 3.9. (Alternative DEP force with fixed potential)

For Φ0 ∈W 2,3(Ω) define

Fa,0 : H1(Ω)×H1(Ω)→ U∗

(θ,Φ) 7→ −2αe((∇2Φ0∇Φ0)θ, ·)− αg(θg, ·).

Definition 3.10. (Linearized alternative DEP force)

For Φ0 ∈W 2,12(Ω) define

Fa,1 : H1(Ω)×H1(Ω)→ U∗

(θ,Φ) 7→ −2αe((∇2Φ0∇Φ)θ, ·)− αg(θg, ·).

Proposition 3.11. (Properties of the body force)

Fs,0, Fa,0 and Fa,1 satisfy Assumption 2.9.

Proof. Assumption (i) and (ii) directly follow by the linearity of Fs,0,Fa,1,Fa,1 w.r.t. θ and their grwoth

rate w.r.t. ‖Φ‖1,2 being linearly at most. Validness of (iii) is shown for Fa,1 only: Let sequences

(θn)n ⊂ H1(Ω) and (Φn)n ⊂ H1(Ω) be given that converge to θ∗ ∈ H1(Ω) and Φ∗ ∈ H1(Ω), respectively,

in the following sense

θn ⇀ θ∗ in H1, θn → θ∗ in L4 and ‖θn‖1,2 ≤ K for all n ∈ N

Φn ⇀ Φ∗ in H1,Φn → Φ∗ in L4 and ‖Φn‖1,2 ≤ K for all n ∈ N.
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Then, for arbitrary v ∈ U,

|〈F(θ∗,Φ∗)− F(θn,Φn),v〉| ≤ |〈F(θ∗,Φ∗)− F(θ∗,Φn),v〉|+ |〈F(θ∗,Φn)− F(θn,Φn),v〉|

≤ 2αe|((∇2Φ0∇(Φ∗ − Φn))θ∗,v)|+ 2αe|((∇2Φ0∇Φn)(θ∗ − θn),v)|

+ αg|((θ∗ − θn)g,v)|

≤ C|((∇2Φ0∇(Φ∗ − Φn))θ∗,v)|+ CK‖θ∗ − θn‖4‖v‖6 + C‖θ∗ − θn‖4‖v‖ 4
3
.

Noting that θ∗ v · ∇2Φ0 ∈ L2(Ω) follows by the assumption on Φ0 and the Sobolev embedding H1(Ω) ↪→
L6(Ω), the first term converges to 0 due to Φn ⇀ Φ∗ in H1. Moreover, both other terms converge to 0

by θn → θ∗ in L4.

A justification for the proposed approximations can be given by employing Lemma 2.13. Therefore,
let F∗(θ,Φ) := 〈(∇Φ)

2∇θ, ·〉U∗ and assume that a solution (u∗, θ∗,Φ∗) of Problem 3.1 with F = F∗ exists
with Φ∗ ∈ W 1,6(Ω). Now, let (u, θ,Φ) denote another solution for F = Fs,0. If either ū and ũ are fixed
of if the data is sufficiently small, then Lemma 2.13 yields

‖∇(u∗ − u)‖+ ‖∇(θ∗ − θ)‖ ≤ C DF,

with

DF = sup
w∈V

sup
θ∈Θ

|〈F∗(θ + θb,Φ
∗ + Φb)− Fs,0(θ + θb,Φ + Φb), w〉U∗ |
‖∇w‖‖θ + θb‖1,2

≤ C‖∇(Φ∗ − Φ0)‖6 (‖∇(Φ∗ + Φb)‖6 + ‖∇(Φ0 + Φb)‖6) .

In this case, the difference between both solutions is proportional to the difference between the exact po-
tential Φ∗ and its approximation Φ0. Such an a priori approximation Φ0 could be defined as regularization
of the solution Φ00 of Gauss’s law for some given reference temperature θ0, i.e.

(ε(θ0)∇(Φ00 + Φb),∇β) = 0 for all β ∈ Υ.

Note that

‖∇(Φ1 − Φ2)‖ ≤ ‖ε
(1) − ε(2)‖∞

ε
(2)
−

‖∇(Φ1 + Φb)‖

for potentials Φi solving Gauss’s law with respective permittivities ε(i) ∈ L∞(Ω), ε(i) ≥ ε(i)− > 0 a.e. If the
permittivity is chosen as in [20], i.e. ε(θ) = εr(1 − γθ), we obtain for the relative H1-deviation between
Φ00 and the potential Φ∗ determined by the correct temperature θ∗ + θb:

‖∇(Φ00 − Φ∗)‖
‖∇(Φ∗ + Φb)‖

≤ γ‖θ0 − (θ∗ + θb)‖∞
1− γθ∞

. (3.7)

Here, we assumed that both temperatures satisfy the same maximum principle, thus having their values
a.e. in an interval of width dθ = supΩ θ0 − infΩ θ0 = supΩ(θ∗ + θb) − infΩ(θ∗ + θb). When considering
dielectric fluids with permittivity of low temperature dependency, e.g. some silicon oils take values
γ = O(10−3), and temperature regimes in which the Boussinesq approximation is fairly accurate, i.e.
dθ, θ∞ = O(1), then the right hand side term in (3.7) is rather small. If, in addition, the effect of
regularization is moderate, i.e. ‖∇(Φ00 − Φ0)‖ is small, we heuristically conclude that the proposed
modellization of the DEP force is justified by the underlying physics under some restrictions on the
fluid and the temperature boundary conditions. In a work that is currently under preparation, we will
substantiate this reasoning with numerical experiments.

Following the previously stated idea of regularization, we propose another approximation to fE,a that
is based on mollification of the electric potential.
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Definition 3.12. (Mollifier)

A nonnegative function ψ ∈ C∞(Rd,R) with supp(ψ) = B1(0,Rd) and
∫
Rd ψ(x)dx = 1 is called mollifier.

For such kind of function and t > 0 define the mollifying operator

Sψ,t : L
1(Ω)→ C∞c (Rd)

f 7→ ft := (f̃ ∗ ψt) =

∫
Rd

f̃(· − y)ψt(y)dy

with ψt(y) := t−dψ(yt ) and f̃ denotes the extension of f by 0 outside of Ω.

By replacing Φ by Sψ,tΦ in the formulation of fE,a, we are able to construct a body force F = Ft that
satisfies Assumption 2.9, thus implying existence of a family of solutions of Problem 3.1, {ut, θt,Φt}t>0.
Since Sψ,t converges point wise to the identity operator on Lp(Ω) as t→ 0, see Lemma A.9, it is natural
to ask whether a sequence of solutions (utn , θtn ,Φtn)n with tn → 0 converges in some sense. To answer
this question, we need to introduce another modification of fE,a to ensure that the growth parameters,
aF = aF(t) and bF = bF(t), stay bounded for t→ 0.

Definition 3.13. (Cut off operator)

For K > 0 let mK ∈ L∞(Rd)d denote a Lipschitz continuous function with mK(x) = x if |x| ≤ K. Define

the cut-off operator

PmK
: L1(Ω)d → L∞(Ω)d

g 7→ mK ◦ g.

By combining the previously defined operators, we may define a regularized electric gravity gE,t.

Definition 3.14. (Regularized electric gravity and DEP force)

Let a mollifier ψ and a cut off function mK according to Definitions 3.12 and 3.13 be given. For t > 0

define the regularized electric gravity

gE,t : H
1(Ω)→ L3(Ω)d

Φ 7→ PmK

[
∇2Sψ,tΦ · ∇Sψ,tΦ

]
.

The corresponding body force is defined by

Ft : H
1(Ω)×H1(Ω)→ U∗

(θ,Φ) 7→ −2αe(θ gE,t[Φ], ·)− αg(θ g, ·).

Proposition 3.15. (Properties of mollified body force)

Ft satisfies Assumption 2.9 with growth rates aF, bF being independent of t.

Proof. For Φ ∈ H1(Ω), note that the following estimates hold by means of Lemma A.9 and Definition

3.13
‖∇Sψ,tΦ‖6 ≤ C‖∇Sψ,tΦ‖∞ ≤ CC∇(ψ, t)‖Φ‖2 ≤ C∇(t)‖Φ‖1,2

‖∇2Sψ,tΦ‖6 ≤ C‖∇2Sψ,tΦ‖∞ ≤ CC∇2(ψ, t)‖Φ‖2 ≤ C∇2(t)‖Φ‖1,2

‖gE,t[Φ]‖3 ≤ C‖mK‖∞

‖PmK
[f1]− PmK

[f2]‖p ≤ LmK
‖f1 − f2‖p

(3.8)

with LmK
denoting the Lipschitz constant of mK and C denoting a generic constant that only depends

on Ω and p.
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We abbreviate the proof by setting the involved physical parameters to 1 and only considering the

DEP term of Ft, since the stated assertions easily follow for (θg, ·). Assertion (i) of Assumption 2.9

follows from the estimates

|〈Ft(θ1,Φ)− Fψ,t(θ2,Φ),v〉| = |((θ1 − θ2)gE,t[Φ],v)|

≤ ‖θ1 − θ2‖2‖gE,t[Φ]‖3‖v‖6

≤ C‖mK‖∞‖θ1 − θ2‖1,2M6‖∇v‖

and

|〈Ft(θ,Φ1)− Ft(θ,Φ2),v〉| = |(θ (gE,t[Φ1]− gE,t[Φ2]),v)|

≤ ‖θ‖‖v‖6‖gE,t[Φ1]− gE,t[Φ2]‖3

≤M6LmK
‖θ‖1,2‖∇v‖(

‖∇2Sψ,t(Φ1 − Φ2)‖6‖∇Sψ,tΦ1‖6 + ‖∇2Sψ,t(Φ2)‖6‖∇Sψ,t(Φ1 − Φ2)‖6
)

for arbitrary R > 0, Φi, θi ∈ BR(0, H1(Ω)), Φ, θ ∈ H1(Ω),v ∈ U and by using (3.8).

Assertion (ii) follows from

|〈Ft(θ,Φ),v〉| = |(θgE,t[Φ],v)| ≤ ‖gE,t[Φ]‖3‖θ‖2‖v‖6 ≤ C‖mK‖∞‖θ‖1,2‖v‖6,

i.e. bF = 0 and aF = C‖mK‖∞.

Finally, let sequences (θn)n, (Φn)n be given according to Assumption 2.9 (iii). Then,

|〈Ft(θ∗,Φ∗)− Ft(θn,Φn),v〉| ≤ |((θ∗ − θn)gE,t[Φ∗],v)|+ |(θn (gE,t[Φ∗]− gE,t[Φn]) ,v)|

≤ C‖mK‖∞‖θ∗ − θn‖4‖v‖6 + CLmK
‖θn‖‖v‖6(

‖∇2Sψ,t(Φ∗ − Φn)‖6‖∇Sψ,tΦ∗‖6 + ‖∇2Sψ,t(Φn)‖6‖∇Sψ,t(Φ∗ − Φn)‖6
)

→ 0

Here, convergence follows from ‖Φn − Φ∗‖4 → 0, ‖θn − θ∗‖4 → 0, the uniform boundedness of ‖Φn‖1,2,

‖θn‖1,2 and the estimates (3.8).

Due to Proposition 3.15, Ft satisfies the requirements of the existence Theorem 3.5 for all t > 0. Under
the remaining conditions of 3.5, we may therefore state the existence of a family of solutions {ut, θt,Φt}
of Problem 3.1. Moreover, Theorem 3.5 provides energy bounds

‖∇ut‖ ≤ Gu, ‖∇θt‖ ≤ Gθ, ‖∇Φt‖ ≤ GΦ

with constants Gi that depend on Ft only via aF(t) = const, bF = 0. Thus, they are uniform w.r.t. t.
Choosing an arbitrary sequence tn → 0 and using again the reflexivity of U,Θ,Υ, we obtain functions
u∗ ∈ U, θ∗ ∈ Θ, Φ∗ ∈ Υ such that

utn ⇀ u∗, θtn ⇀ θ∗, Φtn ⇀ Φ∗.

Moreover, we have by construction, ‖gE,tn [Φtn ]‖3 ≤ C‖mK‖∞. Since L3(Ω)d is reflexive, we also obtain

gE,n := gE,tn [Φtn ] ⇀ gE for some gE ∈ L3(Ω)d.

Letting (v, τ, β) ∈ V ×Θ×Υ denote arbitrary test functions for Problem 3.1, we obtain convergence of
all bi- and trilinear forms as in the proof of Theorem 3.5, e.g. av(utn ,v)→ av(u∗,v), etc. Thus, it only
remains to consider convergence of the term 〈Ftn(θtn ,Φtn),v〉U∗ . To this end,

|(θngE,n,v)− (θ∗gE,∗,v)| ≤ |(θ∗(gE,∗ − gE,n),v)|+ |((θn − θ∗)gE,n,v)|
≤ |(θ∗(gE,∗ − gE,n),v)|+ C‖θn − θ∗‖4‖gE,n‖3‖v‖6
→ 0
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Here, the first term converges towards 0 by gE,n ⇀ gE , and the second term by uniform L3 boundedness
of gE,n and the compact embedding H1(Ω) ↪→↪→ L4(Ω).

These considerations are summarized by the following theorem.

Theorem 3.16. (Existence of solutions with weak approximation of electric gravity)

Let the requirements of Theorem 3.5 and Proposition 3.15 hold. Then, there are (u, θ,Φ,gE) ∈ V ×Θ×
Υ× L3(Ω)d such that

av(u,v) + cv(ū,u,v) = −((θ + θb)(2αegE + αgg),v) + 〈fv,v〉U∗

aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ + Φb, β) = 〈fβ(θ + θb), β〉Υ∗

(3.9)

holds for all (v, τ, β) ∈ V ×Θ×Υ. The connection between gE and Φ is given in the sense that there is

a sequence (tn,Φn)n ⊂ (0,∞)×Υ with

tn → 0

Φn ⇀ Φ in H1(Ω)

gE,tn [Φn] ⇀ gE in L3(Ω).

(3.10)

with approximate electric gravity given by Definition 3.14.

According to Theorem 3.16, we obtain a notion of a solution for the stationary TEHD equations 3.1,
where the strong connection between electric gravity and potential, gE = ∇2Φ · ∇Φ, is replaced by the
weaker form (3.10).

4 Conclusion and Outlook

In this work, we proposed a functional analytic framework that allows to prove existence, stability and
uniqueness of solutions to the stationary TEHD equations. In doing so, we additionally extended the
theory on well-posedness of the standard stationary Boussinesq equations by allowing a more general force
term. Due to the high regularity requirements imposed by the DEP force, it was necessary to replace it by
a suitable approximation. So far, this approximation has been justified by heuristic arguments. However,
we have already conducted numerical experiments that underline this reasoning. These results will be
presented in a further publication, together with a numerical analysis of the Finite Element Method
applied to the stationary TEHD equations. An extension of the presented results to the instationary
problem is part of our ongoing research.
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A Appendix

Lemma A.1. (Subspaces of Separable Spaces)

Let X denote a separable normed space. Let U ⊂ X,U 6= ∅ denote some subspace. Then U is separable.
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Proof. Let Q ⊂ X denote a countable set with Q = X. Let {cn : n ∈ N} = Q>0 denote an enumeration

of the positive rational numbers. For each q ∈ Q,n ∈ N choose uqn ∈ U ∩ BX (q, cn) =: Uq,n if the

intersection is non-empty. Then,

U ′ :=
⋃

n∈N,q∈Q,Uq,n 6=∅

{uqn}

is a countable subset of U .

Now, let u ∈ U ⊂ X, ε > 0 be arbitrary. Since Q is dense in X, there exists q ∈ Q with ‖u− q‖ < ε
4 .

Choose a positive rational number cN such that ε
4 ≤ cN ≤ ε

2 . Then, ‖u − q‖ < cN and thus, u ∈ Uq,N ,

i.e. Uq,N 6= ∅. Therefore, there exists an element u∗ = uqN ∈ U ′, which satisfies ‖u∗ − q‖ < cN ≤ ε
2 .

Therefore,

‖u∗ − u‖ ≤ ‖u∗ − q‖+ ‖q − u‖ ≤ ε

2
+
ε

4
< ε.

Since u and ε are chosen arbitrarily, U ′ is dense in U . By construction, U ′ is a countable subset of U and

therefore the assertion follows.

Lemma A.2. (Compact Operator in Finite Dimensions)

Let X denote a finite dimensional Hilbert space and F : X → X a continuous operator. Then, F is

compact.

Proof. Let M ⊂ X denote a bounded set. Then, M is closed and bounded, thus compact since X is

finite dimensional. Let K := F (M) and C denote an open cover of K. Since F is continuous, F−1(U) is

open for all open subset U ⊂ X. Therefore, D := {F−1(U) : U ∈ C} is an open cover of M . Since M is

compact, there exists U1, . . . , Um ∈ C for some m ≥ 1 such that M ⊂ F−1(U1) ∪ . . . ∪ F−1(Um). Now

F (M) ⊂ F
(
F−1(U1) ∪ . . . ∪ F−1(Um)

)
⊂ F (F−1(U1)) ∪ . . . ∪ F (F−1(Um))

= U1 ∪ . . . ∪ Um.

Therefore, C contains a finite covering of F (M), i.e. F (M) is compact. Thus, it is also bounded, implying

that F (M) ⊂ F (M) is bounded as well. Therefore, the closure of F (M) is bounded and closed, thus

compact in X.

Theorem A.3. (Lax-Milgram Lemma, Satz 4.2 in [3])

Let H denote a real Hilbert space with norm ‖ · ‖H , a : H ×H → R a bilinear form and l : H → R a linear

form. Assume there exists M,N,α > 0 such that for all u, v ∈ H:

a(u, v) ≤M‖u‖H‖v‖H

a(v, v) ≥ α‖v‖2H
l(v) ≤ N‖v‖H

Then, there exists a unique solution u of

a(u, v) = l(v) for all v ∈ H. (A.1)

Moreover, this solution satisfies

‖u‖H ≤
N

α
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Theorem A.4. (Well-Posedness under inf-sup Condition, Satz 2.1 in [21] )

Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) denote Hilbert spaces and let a bilinear form b : X×M → R be given which

is assumed to be bounded, i.e.

|b(v, p)| ≤M‖v‖X‖p‖M for all v ∈ X p ∈M.

Define linear operators

B : X →M∗, x 7→ b(x, ·)

B∗ : M → X∗, p 7→ b(·, p)

and spaces

V := {v ∈ X : b(v, q) = 0 ∀q ∈M}

V ◦ := {g∗ ∈ X∗ : 〈g, v〉X = 0 ∀v ∈ V }

V ⊥ := {x ∈ X : (x, v)X = 0 ∀v ∈ V }

Then, the following assertions are equivalent.

(i) There is β > 0 such that

inf
p∈M,p6=0

sup
v∈X,v 6=0

b(v, p)

‖v‖X‖p‖M
≥ β.

(ii) B∗ is an isomorphism from M to V ◦ with

‖B∗p‖X∗ ≥ β‖p‖M for all p ∈M.

(iii) B is an isomorphism from V ⊥ to M∗ with

‖Bv‖M∗ ≥ β‖v‖X for all v ∈ V ⊥.

Theorem A.5. (Poincare-Friedrichs inequality for H1
0 , Theorem I.1.1 in [11])

Let Ω be open, bounded and connected. Then, there is CPF > 0 such that

‖u‖2 ≤ CPF ‖∇u‖2 for all u ∈ H1
0 (Ω).

Theorem A.6. (Generalized Poincare-Friedrichs, Proposition 7.1 in [7])

Let Ω be open, bounded and connected and p ∈ (1,∞). Assume that (X, ‖ · ‖X) is a closed subspace of

W 1,p(Ω) that does not contain the function f ≡ 1 and for which the restriction of the canonical embedding

W 1,p(Ω) ↪→ Lp(Ω) to X is compact. Then, ‖ · ‖X is equivalent to ‖∇ · ‖p.

Theorem A.7. (Poincare-Friedrichs inequality for W 1,2
D (Ω))

Let Ω ⊂ Rd be open, bounded and connected. Assume that ∂Ω = ΓN + ΓD with ΓD having positive

(d− 1)−Hausdorff measure. Then, there is CPF > 0 such that

‖u‖2 ≤ CPF ‖∇u‖2 for all u ∈ H1
D(Ω).

Proof. Let (X, ‖ · ‖X) := (H1
D(Ω), ‖ · ‖1,2). By definition, X = C0,1

D (Ω) ∩W 1,6(Ω)
W 1,2

, and γDv = v|ΓD

for all v ∈ C0,1(Ω) according to Theorem 1.5.1.3 in [12] with γD ∈ L(W 1,2(Ω),W
1
2 ,2(ΓD)) denoting the

boundary trace operator w.r.t. ΓD. Since C0,1
D (Ω) ⊂ ker(γD), we have X ⊂ ker(γD) by continuity of γD.
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Moreover, we have the embeddings

(H1
D(Ω), ‖ · ‖1,2) ↪→W 1,2(Ω) ↪→↪→ L2(Ω),

where the first embedding is obvious and the second embedding follows from the Sobolev embedding

Theorem 4.12 in [1]. Therefore,

(H1
D(Ω), ‖ · ‖1,2) ↪→↪→ L2(Ω).

Finally, the function f : Ω → R, x 7→ 1 is not contained in X, since γD(f) ≡ 1 6= 0 on ΓD and ΓD has

non-zero measure. Thus Theorem A.6 yields the existence of some C > 0 such that

‖ · ‖2 ≤ ‖ · ‖1,2 := ‖ · ‖X ≤ C‖∇ · ‖2 on X.

Lemma A.8. (Properties of convolution)

Let φ ∈ C∞0 (Rd), f ∈ L1
loc(Rd), g ∈ Lp(Rd) for p ∈ [1,∞) and 1

p + 1
p∗ = 1. Then,

(i) ‖(g ∗ φ)‖∞ ≤ ‖g‖p‖φ‖p∗

(ii) ∂
∂xi

(f ∗ φ) = (f ∗ ∂
∂xi

φ)

(iii) ∂2

∂xi∂xj
(f ∗ φ) = (f ∗ ∂2

∂xi∂xj
φ)

Proof. (i) follows from

‖(g ∗ φ)‖∞ = sup
x∈Rd

|
∫
Rd

g(x− y)φ(y)dy| = sup
x∈Rd

|
∫
Rd

g(y)φ(x− y)dy|

≤ sup
x∈Rd

‖g‖p‖φ(x− ·)‖p∗ = ‖g‖p‖φ‖p∗

(ii) follows by applying the definition of ∂i, the Mean Value Theorem and Dominated Convergence

Theorem. (iii) follows by iteratively applying (ii).

Lemma A.9. (Properties of mollifiers)

Let p ∈ [1,∞) and p∗ such that 1
p + 1

p∗ = 1 and f ∈ Lp(Ω). The following properties hold for the Mollifier

operator Sψ,t given by Definition 3.12.

(i) Sψ,t ∈ L(Lp(Ω), L∞(Ω)) with ‖Sψ,t‖ ≤ ‖ψt‖p∗,Rd

(ii) Sψ,tf → f in Lp for t→ 0.

(iii) ‖∇Sψ,tf‖∞ ≤ C∇(ψ, t)‖f‖p

(iv) ‖∇2Sψ,tf‖∞ ≤ C∇2(ψ, t)‖f‖p

(v) If fn → f in Lp, then ∇Sψ,tfn → ∇Sψ,tf in L∞(Ω)

Proof. (i): Let g ∈ Lp(Ω) with ‖g‖p = 1 and denote by g̃ its extension by 0 outside of Ω. Then, by

Lemma A.8 (i),

‖Sψ,tg‖∞ = ‖(g̃ ∗ ψt)‖∞ ≤ ‖g̃‖p,Rd‖ψt‖p∗,Rd = ‖ψt‖p∗,Rd .
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Since Sψ,t is obviously linear, (i) follows.

For (ii), see e.g. Theorem 2.29 in [2]. (iii) is obtained by using Lemma A.8 in

‖∇Sψ,tf‖∞ = sup
x∈Ω

(
d∑
i=1

(|∂iSψ,tf(x)|)2

) 1
2

≤

(
d∑
i=1

(sup
x∈Ω
|∂iSψ,tf(x)|)2

) 1
2

=

(
d∑
i=1

(‖∂i(f̃ ∗ ψt)‖∞)2

) 1
2

≤

(
d∑
i=1

(‖f‖p‖∂iψt‖p∗,Rd)2

) 1
2

=: C∇(ψ, t)‖f‖p.

(iv) follows analogously. (v) is a direct consequence of (iii) and the linearity of Sψ,t.
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