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Abstract

The computation of the optimum of a dynamical or multi-period Optimal Power Flow problem

assuming an Interior Point Method (IPM) leads to linear systems of equations whose size is proportional

to the number of considered time steps. In this preprint we investigate a possibility to reduce the

amount of time steps needed to be taken into account: Assuming that the power grid’s dynamic is

mainly determined by changes of the residual demand, we drop time steps in case it does not change

much. Hence, the size of the linear systems can be reduced. We tested this method for the German

Power Grid of the year 2023 and a synthetic 960 h profile. We were able to reduce the amount of time

steps by 40% without changing the objective function’s value significantly.

1 Introduction

A dynamical or multi-period Optimal Power Flow problem1) addresses the question how to improve the
operation of a power grid with respect to a given objective in a given period of time. This question is
answered by computing the dispatch of power generation among the available sources. From a mathe-
matical point of view a multi-period Optimal Power Flow problem is a constrained optimisation problem
with repeating constraints, see [4] and references therein.

The problem is treated discretely, i.e. the considered period of time, denoted H, called optimisation
period and normally given in hours, is reduced to a set of time steps of equal length. The distance between
time steps is called the temporal resolution and denoted ∆t0 . The time steps are addressed with the
help of the index set T0. Hence, the cardinality of T0 equals the number of time steps considered, which
we denote NT .

The objective function f0 of the resulting optimisation problem is defined by means of

f0(x) =

NT∑
i=1

∆t0ft(x
ti) . (1)

ft denotes an objective function, which models the costs per unit of time at any time. It includes, for
example, the costs for a generator to provide a specified amount of power for a specified amount of time.
x = [xti ]i∈T0

is the complete vector of optimisation variables, which consists of the optimisation variables
pertaining to the time steps ti, i ∈ T0, i.e. xti . It, for example, contains the power output of a generator
at ti, the voltage of a node at ti or the amount of energy stored at ti in a storage system.

Since a power grid’s constraints, e.g. branch limits, voltage limits, and limits to power generation,
should not be violated at any time, they are required to hold at every time step. Furthermore, there are
some constraints, which may depend on the previous time step, e.g. constraints limiting the amount of
energy to be stored in a storage system or constraints which avoid a too fast increase in power generation
of conventional power plants [6].

1)A very concise and brief introduction to the Optimal Power Flow problem can be found in [2].
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We summarise this in the following equations describing a general constrained optimisation problem:

min
x

f(x) s.t.

gti(xti) = 0, for all i ∈ T0 ,

gtitd(x
ti−1 , xti) = 0, for all i ∈ T0 \ {1} ,
hti(xti) ≤ 0, for all i ∈ T0 ,

htitd(x
ti−1 , xti) ≤ 0, for all i ∈ T0 \ {1} .

(2)

The dimension of the vector of optimisation variables x is nx and, furthermore, xti ∈ Rnx,t . Thus,
nx = NT n

x,t. The number of optimisation variables and the number of constraints are proportional to
the number of time steps NT .[3, 8]

Depending on the explicit form of the constraints and the objective function, there are many different
algorithms to solve such an optimisation problem. We have chosen a Primal Dual Interior Point Method
(PDIPM ) [7]. First of all, it is an algorithm, which, in principal, is able to solve the most general class of
optimisation problems, i.e. non-convex and non-linear optimisation problems. Secondly, its computational
most intensive part is the solution of a linear system of equations, whose size is proportional to the number
of considered time steps as we will show in the next paragraphs. The following description is in line with
the implementation found in the Matlab package Matpower [11].

As in the well-known case of unconstrained optimisation, there are necessary and sufficient conditions
for a solution to be the optimum of a constrained optimisation problem. The necessary conditions are
the Karush-Kuhn-Tucker conditions (KKT conditions), which we summarised in the following equation
[3, 8]:2)

F(x, s, λ, µ) :=


∇xL0(x, λ, µ)

g(x)
h(x) + s
Sµ

 = 0, s, µ ≥ 0 . (3)

L0(x, λ, µ) denotes the Lagrangian function, which is given by

L0 : Rn
x

× Rn
λ

× Rn
µ

→ R
(x, λ, µ) 7→ f(x) + λT g(x) + µTh(x) ,

(5)

and s ∈ Rnµ is a vector containing slack variables and S ∈ Rnµ×nµ denotes a diagonal matrix whose
diagonal elements are Skk = sk. λ and µ are called Lagrange multipliers. Their dimensions (nλ and nµ)
equal the number of equality and inequality constraints respectively. Hence, they are proportional to the
number of time steps considered, i.e. nλ = nλ,tNT and nµ = nµ,tNT .

The PDIPM is an algorithm to find solutions to equation (3) and thus to find a point (x∗, λ∗, µ∗)
which complies with the necessary conditions to be a local minimum of the multi-period Optimal Power
Flow problem. Mathematically it solves a slightly modified version of this equation by applying to it
Newton’s method. The modification consists in adding a “term”, which decreases with iteration index k.
This term keeps the slack variables s away from zero and, thus, the inequality constraints inactive. This
means that solutions (x(k), s(k), λ(k), µ(k)) to this modified version of equation (3) are inside the feasible
region and not on its surface, hence, the name Interior Point Method. More rigorously formulated, we
find

Fγ(x, s, λ, µ) := F(x, s, λ, µ)−
(
0 0 0 γe

)T
= 0,

s, µ ≥ 0,
(7)

for a sequence of barrier parameters

γk := σ
(µ(k−1))T s(k−1)

nµ

where σ = 0.1 is the centering parameter and (µ(k−1))T s(k−1) is called complementary gap. Additionally,
e = (1, . . . , 1) ∈ Rnµ . For details we refer the inclined reader to [7, 11].

2)For the sake of correctness, it is also necessary to assume an additional constraint qualification, e.g. the linear

independence constraint qualification (LICQ) [7].
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The application of Newton’s method to equation (7) yields iterations in which the following linear
systems of equations must be solved:

∇Fγk(x(k), s(k), λ(k), µ(k))∆(k) = −Fγk(x(k), s(k), λ(k), µ(k)) . (8)

Henceforth we omit the iteration index k. Assuming that s, µ > 0, the Newton system (8) can be
transformed into a reduced, symmetric saddle point form(

∇2
xxL0(x, λ, µ) + (∇xh(x))TΣ(∇xh(x)) (∇xg(x))T

∇xg(x) 0

)
︸ ︷︷ ︸

=: A(x,s,λ,µ)

(
∆x
∆λ

)
︸ ︷︷ ︸
=:∆R

= −
(
rx
rλ

)
︸ ︷︷ ︸

=:b

(9)

with diagonal matrix Σ = diag
(
µ1

s1
, . . . , µnµsnµ

)
and

rx = ∇xL0(x, λ, µ) + (∇xh(x))TZ−1 (γe+ diag(µ)h(x)) ,

rλ = g(x) .

Please note the different meanings of the ∇-operator. If it is applied to a scalar function, it is the gradient
of this function. Applied to a vector function, it denotes the Jacobian of that function. Furthermore, if
there are no variables specified in its subscript, the derivative of the (vector) function has to be computed
with respect to all its arguments. ∇2

xxL0 denotes the Hessian matrix of the scalar function L0.
A look at the KKT matrix A, defined in equation (9), shows that its size is proportional to the number

of time steps: First of all, the size of the Hessian matrix is by definition proportional to the number of
optimisation variables x, which in turn are proportional to the number of time steps. Secondly, the
number of rows of the Jacobian ∇xg(x) equals the number of equality constraints and, consequently, it
is also proportional to the number of time steps. Finally, A ∈ Rn×n and n = nx + nλ = (nx,t + nλ,t)NT .
Since the computationally most intensive part of the PDIPM algorithm is the solution of equation (9), the
reduction of its size by means of a time step reduction method may strongly improve its time to solution.

Before we start describing the proposed time step reduction method, we have to introduce the concept
of a load profile [9]. The optimisation of the operation of a power grid heavily depends on the power
demanded by different kinds of consumers. A load profile depicts the evolution of this demand with time.
More importantly it is an integral part of the formulation of the constraints of the multi-period Optimal
Power Flow problem: As in the case of a small electric circuit, in a power grid current and voltage are
related by Kirchhoff’s laws and Ohm’s law. For example, if someone plugs in a hairdryer in Europe
(i.e. assuming a nominal voltage of ∼230 V), a current depending on the hairdryer’s resistance must
flow. Thus, the physical restrictions described by the above laws depend on the demand, have to hold
strictly and are not allowed to be violated at any ti. In equation (2) they are represented by the function
g(xti) and in the literature they are referred to as Power Flow equations. An explicit formulation of
these equations can be found in [2, 3, 10]. Please note that we use the terminology “load” and “demand”
interchangeably.

2 Methodology

Our time step reduction method is based on the assumption that if the load’s change is small, the change
in the optimisation variables is almost linear and, thus, in this case it should be possible to drop time
steps, i.e. to decrease the temporal resolution, and to compute the optimisation variables’ values at the
left out time steps by linear interpolation. In contrast, if the load changes rapidly, the non-linear character
of the optimisation problem (2) becomes dominant and forbids linear interpolation and, hence, to skip
time steps, i.e. a high temporal resolution is needed to map the power grid’s dynamic.

First of all, we approximately compute the load’s rate of change at node k of the power grid and at
the time steps ti, i ∈ T0 = {1, . . . , NT } \ {NT } , with the help of the difference quotient:

ṖL,k(ti) =
dPL,k

dt

∣∣∣∣
ti

≈
PL,kti+1

− PL,kti

ti+1 − ti
. (10)
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If the rate of change is small, the load’s change will be small, and, accordingly, we propose to drop some
time steps. For this purpose, we segment the optimisation period H accordingly and choose different
temporal resolutions ∆t for the individual sections.

2.1 Measuring the change in residual load

In order to adjust the temporal resolution ∆t based on the load’s rate of change, it is necessary to tell
small rate changes apart from large ones. On a mathematical level, this can be done by defining a measure,
i.e. a function which maps its arguments onto the interval [0, 1]. In a first step towards this definition,
we compute the mean value of the rate of change at time step ti:

ṖL,MV (ti) =
1

NB

NB∑
k=1

ṖL,k(ti) . (11)

NB denotes the number of nodes, which belong to the investigated power grid. In the second step, we
divide these mean values by their maximum ṖL,MV

max and, thus, obtain the definition of a measure of the
rate of change at time step ti:

φ : T0 → [0, 1]

i 7→ ṖL,MV (ti)

ṖL,MV
max

.
(12)

With this definition at hand, we may say that the load’s rate of change is big if the value of φ is close to
one.

2.2 Different ∆t for different changes

Moreover, we need to relate the rate of change’s measure to different temporal resolutions. To this end,
we define an additional step function Φ, which maps the rate of change’s size of every time step ti to
a temporal resolution ∆t. The possible temporal resolutions are obtained by deciding on the maximal
temporal resolution ∆tmax. Since we are only dropping time steps, it is clear from the outset, that possible
temporal resolutions can only be integer multiples of the load profile’s original temporal resolution ∆t0.
Hence, the number of possible temporal resolutions N∆t is ∆tmax/∆t0. Furthermore, the definition of Φ
requires, that we split the interval (0, 1] into N∆t parts:

(0, 1] =

N∆t−1⋃
l=0

(l
1

N∆t
, (l + 1)

1

N∆t
] .

We define the function Φ as

Φ: [0, 1]→ R

x 7→ (l + 1)∆t0 if x ∈ (
l

N∆t
,
l + 1

N∆t
] .

(13)

In Fig. 1 we plotted one example Φ function to illustrate the way it relates different rates of change to
different temporal resolutions ∆t.

2.3 Segmenting the optimisation period

Due to the measure φ and the step function Φ we are able to assign a ∆t to every time step ti of the
optimisation period H. Since the aggregated load does not change abruptly, i.e. the load profile is
assumed to be continuously differentiable, it is likely that a time step ti is surrounded by a set of time
steps whose values of φ do not differ much and to whom the step function Φ consequently assigns the
same ∆t. Thus, it is possible to segment the optimisation period H into NA sections by grouping the time
steps with an equal ∆t. We write H =

∑NA
k=1Hk and denote the temporal resolution, which corresponds

to section Hk, ∆tk.
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N∆t
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N∆t
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N∆t

1
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2

3

4

∆t0 = 1h,∆tmax = 4hΦ(x)

x

∆t

Figure 1: Step function Φ(x). Smaller changes φ(i) . 0.5 are related to bigger temporal resolu-

tions ∆t.

The section’s different temporal resolutions ∆tk reduce the original set of indices T0, used to denote
the time steps and to formulate the original optimisation problem, to the subset

T =

NA⋃
k=1

Tk ⊂ T0 .

Where Tk = {ik +m(∆tk/∆t0) | m ∈ {0, . . . , (Hk/∆tk)− 1}} with

ik =

k−1∑
l=1

Hl

∆t0
+

∆tk
∆t0

for k > 1 .

For the sake of clarity, we depicted in Fig. 2 a section Hk and a subset Tk of the optimisation period H.

i ∈ T0

t

ti∆t0 ∆tkik tl

Hk, l ∈ Tk

Figure 2: Segmentation of the optimisation period H into sections Hk.

It is important to note, that the length of an optimisation section Hk is not always an integral multiple
of its temporal resolution ∆tk. In this case we add the “non-fitting” time steps to the next section. If
there are time steps left at the end of the optimisation period, we replenish it with an additional section
of temporal resolution ∆t0.

2.4 Temporal resolution profile. An example.

We would like to demonstrate the explained time step reduction method by considering a concrete example.
We take a look at the power grid and the synthetic 960 hour load profile referred to in Section 3. In
Fig. 3a we plotted the first ninety-six hours of the arithmetic mean of the load. The load profile repeats
itself after forty-eight hours. In Fig. 3b the load’s rate of change is plotted. A brief check of the minima
shows that the difference quotient used to compute it is a good approximation. Fig. 3c shows the result of
measuring the load’s rate of change with the help of φ and plugging its values into the step function Φ: If
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the load does not change drastically in an optimisation section Hk, the maximum ∆tmax is chosen. The
values of the step function Φ form the basis of the segmentation of the optimisation period, by grouping
its values as described above we obtain the temporal resolution profile shown in Fig. 3d3).

0 24 48 72 96
40

50

60

70

t

|P
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V
|

(a) Arithmetic mean of the load.

0 24 48 72 96
0
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V
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(b) Mean of the load’s rate of change.
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(c) Values of the function Φ.

0 24 48 72 96
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4
N∆t = 4

t
∆
t

(d) Temporal resolution profile.

2.5 Interpolation operator

After having applied the time step reduction method, we have the reduced set of time step indices T to
formulate the multi-period Optimal Power Flow problem. It is solved using an Interior Point Method.
Thus, after an unknown number of iterations the computed solution is an accord with the Karush-Kuhn-
Tucker conditions. This solution is used to determine the values of the optimisation variables at the
time steps we have dropped. This is done via linear interpolation. The definition of an according linear
interpolation operator IT consists of different parts for different sections of the optimisation period,
because it depends on the temporal resolution of the respective section. Before defining one part of it
for a specific section of the optimisation period, we remind the reader that the optimisation variables are
sorted by time steps: x̄ = [x̄ti ]i∈T . In the section Hk the corresponding part of the interpolation operator
is defined as:

x̃tak+mwk+l = l
∆t0
∆tk

(
x̄tak+(m+1)wk − x̄tak+mwk

)
+ x̄tak+mwk . (14)

The following definitions and values are used:

wk =
∆tk
∆t0

,

ak =

k−1∑
i=1

Hi

∆t0
(if k = 0, then a0 = 0) ,

l ∈ {1, . . . ,∆tk/∆t0 − 1} ,

m ∈ {0, . . . , (Hk/∆tk)− 1} .

The complete interpolation operator IT is defined as the linear interpolation of all optimisation variables
via the equation (14). We abbreviate this operation to x̃ = IT (x̄). The dual variables λ̃ and µ̃ are
computed analogously, i.e. λ̃ = IT (λ̄) and µ̃ = IT (µ̄).

3)The observant reader may will recognise that the first section H1 should have temporal resolution ∆t1 = 4.

The reason it does not is that we have not defined an extrapolation operator, which would be needed to compute

the values of the first time steps. We just set the temporal resolution of H1 to ∆t0 to avoid extrapolation.
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2.6 Estimating the error

Since dropping time steps will cause an error in the optimisation problem’s objective function, it is
important to estimate this error in the worst case. To find out about this, we construct an error estimator,
which is supposed to present an approximation of the absolute value of the error. We take advantage
of the interpolated optimisation variables x̃ and introduce x∗ to denote the solution of the multi-period
Optimal Power Flow problem without time step reduction, which, henceforth, will be referred to as the
reference problem.

The error of the objective function is given by:

f(x̄)− f0(x∗) = f(x̄)− f0(x̃)︸ ︷︷ ︸
=:∆1

+ f0(x̃)− f0(x∗)︸ ︷︷ ︸
=:∆2

. (15)

Since x̄ and x̃ are known after the IPM finished, ∆1 can be computed directly. In the following we will
derive a heuristic expression for the computation of the error ∆2:

∆2 = f0(x̃)− f0(x∗)

= L0(x̃, λ̃, µ̃)− λ̃T g(x̃)− µ̃Th(x̃)− L0(x∗, λ∗, µ∗)

=

∫ 1

0

l′(s) ds− λ̃T g(x̃)− µ̃Th(x̃) (16)

=
1

2
(l′(1) + l′(0)) +O(‖e‖3)− λ̃T g(x̃)− µ̃Th(x̃) (17)

where l(s) := L0(x∗ + sex, λ
∗ + seλ, µ

∗ + seµ). Moreover,

ex := x̃− x∗, eλ := λ̃− λ∗, eµ := µ̃− µ∗ and e :=
(
ex eλ eµ

)T
.

The integral in equation (16) was approximated by applying the trapezoidal rule to it. Computing the
derivative l′(s) yields

l′(s) = ∇xL0(. . . )ex +∇λL0(. . . )eλ +∇µL0(. . . )eµ

= ∇xL0(. . . )ex + gT (. . . )eλ + hT (. . . )eµ ,

and plugging into it the limits of the integral results in

l′(1) = ∇xL0(x̃, λ̃, µ̃)ex + gT (x̃)eλ + hT (x̃)eµ ,

l′(0) = ∇xL0(x∗, λ∗, µ∗)ex + gT (x∗)eλ + hT (x∗)eµ = hT (x∗)eµ = hT (x∗)µ̃ .

With the evaluated derivatives at hand Equation (17) becomes

∆2 =
1

2
∇xL0(x̃, λ̃, µ̃) · (x̃− x∗)− 1

2
g(x̃)T (λ̃+ λ∗)− 1

2
h(x̃)T (µ̃+ µ∗) +

1

2
h(x∗)T µ̃+O(‖e‖3) . (18)

Since the exact solution of the reference problem (x∗, λ∗, µ∗) is needed and because of the error term
O(‖e‖3), it is not possible to actual compute ∆2. Further modifications are needed:

∆2 ≈
1

2
∇xL0(x̃, λ̃, µ̃) · (x̃− x̃Spline)− g(x̃)T λ̃− 1

2
h(x̃)T µ̃ (19)

We dropped the error term O(‖e‖3) and replaced the solution of the reference problem x∗, λ∗, µ∗ with its
interpolated counterpart x̃, λ̃, µ̃. But note, to avoid that the first term of equation (18) vanishes, we had
to replace the first appearance of x∗ with x̃Spline. To compute it, we replaced the linear interpolation
with a Spline interpolation. These modifications are motivated by an analogous construction of an error
estimator in the field of Partial Differential Equations, which, for example, can be found in [1]. Numerical
experiments showed, that ∆2 was bigger than f(x̄) and, consequently, not suited to provide a good
error estimation. Thus, we attempted to drop the last term of equation (19), which yielded reasonable
estimations. Hence, we settled on the following formula for ∆2:

∆2 ≈
1

2
∇xL0(x̃, λ̃, µ̃) · (x̃− x̃Spline)− g(x̃)T λ̃ . (20)

We would like to emphasise that the above construction of an error estimator is based on a heuristic and
the numerical experiments presented in Section 3 show that there might be a better way to compute an
estimator.
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3 Results

We implemented the proposed time step reduction method in an expanded version of the free and open-
source software Matpower. Matpower already contains the Primal Dual IPM, but it needed to be
expanded by a mechanism, which is able to work with multiple time steps and different temporal reso-
lutions to set up the KKT matrix for a multi-period Optimal Power Flow problem.4) We developed an
Octave function, which creates temporal resolution profiles for different ∆tmax. Furthermore, we imple-
mented the interpolation operator by means of Octave’s interp1 function and provided an additional
function to compute an estimation of the objective function’s error.

We tested the time step reduction method on a power grid, which represents a possible variant of the
German Transmission Grid in the year 2023 and consists of 1215 nodes, 2247 AC lines, 8 DC lines, 181
conventional power plants, 355 renewable energy sources and 67 storage facilities. For more details, we
refer the reader to [5].

At the outset we had a synthetic 48h load profile, which we concatenated to obtain a test case
comprising 48 days with a temporal resolution of ∆t0 = 1h, i.e. NT = 960 time steps. This causes the
linear system (9), which has to be solved in every PDIPM iteration, to be of size n = nx+nλ = 6.168 ·106.

In a first step, we solved the reference problem, i.e. we solved the multi-period Optimisation problem
considering the complete optimisation period H = 960h without dropping any time steps.5) In this way
we obtained the reference value f0(x∗) of the original objective function. In a next step, we tested how
many time steps can be dropped without causing too big errors in the objective function. Due to the
construction of the proposed time step reduction method, the more time steps will be ignored, the bigger
∆tmax is chosen. We tested the following values for ∆tmax: 2h, 3h and 4h.

Fig. 4a shows on the x-axis the number of time steps, which had to be taken into account after we
had applied the time step reduction method. For example, ∆tmax = 3∆t0 = 3h resulted in 442 time
steps. The dark blue line represents the deviation of the objective function from the reference value in
percentage. The dashed grey lines depict the estimated error of the objective function, which we computed
with the help of equation (20). The numerical experiments showed, that the choice ∆tmax = 2∆t0 yields,

403 (4h) 442 (3h) 561 (2h)

90

95

99
100
101

105

110
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[%
]

(a) Deviation of the objective function

403 442 561

100

300

600
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340

595
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it
er

at
io

n
s

(b) Increase in IPM iterations

from a practical point of view, the most promising results. Although we were able to further decrease the
number of time steps by setting ∆tmax = 3∆t0 or ∆tmax = 4∆t0 without deviating too much from the
reference value of the objective function, we observed a destabilisation of the Interior Point Method. To

4)We would like to express our gratefulness to Nico Meyer-Hübner, who wrote the extension of Matpower.
5)Since the size of the KKT matrix A was very big, we solved the optimisation problems on a cluster taking

advantage of a parallelization method, which we had developed previously. For more details, we refer the reader to

[3, 8].
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illustrate this point, we plotted in Fig. 4b the number of IPM iterations against the number of time steps.
It took the PDIPM algorithm 41 iterations to solve the reference problem. A look at this plot shows a
dramatic increase in IPM iterations in comparison to the reference. Moreover, convergence of the PDIPM
algorithm could only be obtained by easing the convergence criteria. It’s tempting to assume that the
reduced size of the KKT matrix A and the according decrease in the solution time compensates for the
increase in iterations, but that’s not the case for choices ∆tmax > 2∆t0. In contrast, in case ∆tmax is set
to 2∆t0, we observed only a slight increase in IPM iterations and a negligible deviation from the objective
function’s reference value. At the same time the number of time steps could be reduced to 561, i.e. by
around 40 percent. This led to a large decrease in the solution time: in the reference problem an iteration
took on average 441.05s, which is much more than the 200.36s needed in the 2∆t0 case.

In an attempt to further benchmark the proposed time step reduction method, we dropped every
second time step and solved the multi-period Optimal Power Flow problem again. Dropping every second
time step reduced the number of time steps to 4866). The IPM needed 58 iterations to converge and every
iteration took on average 190.61s. Hence, it took longer to solve the optimisation problem, even though
less time steps were considered. Furthermore, the deviation from the reference value of the objective
function was 25 times bigger in comparison with the 2∆t0 case.

4 Conclusion and Outlook

In case the parameter ∆tmax was set to 2∆t0, the proposed time step reduction method yielded good
results. The amount of time steps could be reduced by ∼40% while the objective function’s deviation from
its reference value was only 0.000176%. Moreover, the PDIPM algorithm was almost twice as fast. And
in comparison with a näıve reduction of time steps, i.e. dropping every second time step, it performed
well.

Unfortunately, if ∆tmax > 2∆t0, the time step reduction caused the IPM to become unstable. It is
still unclear why the number of iterations increases so dramatically and further research on it is required.

Furthermore, the proposed error estimator over estimates the objective function’s error. To find a
better heuristic further investigation is needed.

This contribution represents a preliminary work and the proposed approach needs clearly further
testing with more power grids and load profiles, especially load profiles which do not repeat themselves
and are not synthetic. This is the next step.
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Philipp Lösel, Katrin Mang, Maraike Schmidtobreick, Nicolai Schoch, Nils Schween,

Jonathan Schwegler, Chen Song, Marin Wlotzka: HiFlow3 Technical Report on Release

2.0

No. 2017-05 Nicolai Schoch, Vincent Heuveline: Towards an Intelligent Framework for Personalized

Simulation-enhanced Surgery Assistance: Linking a Simulation Ontology to a

Reinforcement Learning Algorithm for Calibration of Numerical Simulations

No. 2017-04 Martin Wlotzka, Thierry Morel, Andrea Piacentini, Vincent Heuveline: New features

for advanced dynamic parallel communication routines in OpenPALM: Algorithms and

documentation

No. 2017-03 Martin Wlotzka, Vincent Heuveline: An energy-efficient parallel multigrid method for

multi-core CPU platforms and HPC clusters

No. 2017-02 Thomas Loderer, Vincent Heuveline: New sparsing approach for real-time simulations

of stiff models on electronic control units

No. 2017-01 Chen Song, Markus Stoll, Kristina Giske, Rolf Bendl, Vincent Heuveline: Sparse Grids

for quantifying motion uncertainties in biomechanical models of radiotherapy patients

No. 2016-02 Jonas Kratzke, Vincent Heuveline: An analytically solvable benchmark problem for

fluid-structure interaction with uncertain parameters

No. 2016-01 Philipp Gerstner, Michael Schick, Vincent Heuveline, Nico Meyer-Hübner, Michael
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