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Abstract

Inflammation in biological tissues follows a dynamical process where upon injury, interactions be-

tween cell types and exchange of growth factors occur. Depending on the distribution of different cell

types in space, healing or fibrosis occurs. This process is clearly spatially heterogeneous. An existing

modeling framework for this process assumes a spatially homogeneous distribution of fibroblasts and

macrophages and is therefore unable to capture spatial effects. We extend this framework to obtain

a spatially heterogeneous two-cell circuit also containing cell migration, chemotaxis and cytokine dif-

fusion. By means of a physical property of the resulting PDE model, a decoupled multiscale solution

strategy can be derived, where each linear problem is approximated by finite element methods. A nu-

merical investigation illustrates a clear impact of spatial effects on the separatrix of the PDE model. We

use non-intrusive methods from the field of uncertainty quantification to conduct a sensitivity analysis

of the most uncertain model parameters, enabling us to quantify this impact.

1 Introduction

Cell-to-cell communication plays a key role in multiple inflammatory processes and immune responses.
Immune cells need to communicate across spatial and temporal scales in order to eliminate invading
patogens or reduce abnormal inflammation as in fibrosis. Understanding the different factors that affect
this cell-to-cell communication becomes crucial if one wants to enhance the immune response in order to
eliminate the pathogens, or reduce the immune response in the case of abnormal inflammation. Immune
cells mainly communicate by cytokines signaling.

We study the two-cell circuit formed by fibroblasts and macrophages, as these two cell types exist in
most mammalian tissues and perform a typical homeostatic mechanism. The topology of the cell circuit
we consider is that of [9], where sufficient conditions on stability were determined. As seen in figure 1,
these are the imposition of a carrying capacity that constrains the total number of fibroblasts and growth
factor regulation by negative feedback. The latter process is modeled as auto-regulation (endocytosis),
where one cell type consumes the cytokine that the other produces. Our contribution is an investigation
an extended model. The original ODE two-cell circuit of [9] is augmented by terms modeling random cell
migration, chemotaxis and molecular diffusion. Cell migration is assumed to follow a diffusive process
whereas chemotaxis constitutes directed motion towards the cell type’s associated growth factor.

This paper is structured as follows. We first introduce the mathematical model formulation and
explain its physical parameters and the numerical simulation methods. This is followed by a discussion
of exemplary simulations of the resulting PDE model and computation of its separatrix for spatially
heterogeneous and homogeneous initial conditions. Afterwards, we quantify the influence of the most
uncertain model parameters on state transitions in the PDE model. Finally, the conclusion summarizes
our findings.
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Figure 1: Growth-factor dependent cell circuit between macrophages and fibroblasts.

2 PDE Model

2.1 Mathematical Model

The evolution of cell concentration of fibroblats and macrophages, as well as the molecule concentration
of growth factors can be described by a set of partial differential equations (PDEs). For the sake of
simplicity, we use the standard notations for this paper, as Lp(Ω) for Lebesgue spaces, and W k,p(Ω),
Hk(Ω) = W k,2(Ω) for Sobolev spaces.

∂F

∂t
= DF∆F − η1∇ · (F∇P ) + l1(

P

k1 + P
)F (1− F

K
)−m1F in (0, T ]× Ω , (1a)

∂M

∂t
= DM∆M − η2∇ · (M∇C) + l2(

C

k2 + C
)M −m2M in (0, T ]× Ω , (1b)

∂C

∂t
= D1∆C + b1F −

a1MC

k2 + C
− g1C in (0, T ]× Ω , (1c)

∂P

∂t
= D2∆P + b2M + b3F −

a2FP

k1P
− g2P in (0, T ]× Ω . (1d)

Here F and M are the concentration of fibroblasts and macrophages, C and P represent the concentration
of colony-stimulating factor (CSF) and platelet-derived growth factor (PDGF), respectively. T > 0 is
the final time, Ω ∈ Rd, d = {2, 3} is a bounded domain with a Lipschitz-continuous boundary. The
physical meaning of each term in Equation (1) are summarized in Table 1, and the physical parameters
appear in Equation (1) are listed in Table 2. Equation (1) contains the same reaction terms as the ODE
system described in [9], combined with a two-species, two-stimulant chemotaxis model [8]. We impose
homogeneous Neumann boundary conditions for all four variables as we want to avoid a flux of cells or
molecules over the boundary ∂Ω.

Migration: DF∆F , DM∆M . Chemotaxis: η1∇ · (F∇P ), η2∇ · (M∇C).

Proliferation: l1( P
k1+P )F , l2( C

k2+C )M Saturation: −l1( P
k1+P )F

2

K .

Removal: m1F , m2M . Diffusion: D1∆C, D2∆P .

Secretion: b1F , b2M , b3F . Endocytosis: −a1MC
k2+C , −a2FPk1+P .

Degradation: −g1C, −g2P .

Table 1: Physical meaning of each term in the partial differential model.
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l1, l2 maximal proliferation rate of fibroblasts and macrophages
m1,m2 removal rate of cells
K carry capacity of fibroblasts

k1, k2 binding affinity of growth factor CSF and PDGF
a1 maximal endocytosis rate of CSF by macrophages
a2 maximal endocytosis rate of PDGF by fibroblasts
b1 CSF secretion rate of fibroblasts
b2 PDGF secretion macrophages
b3 PDGF secretion rate of fibroblasts

g1, g2 degradation rate
D1, D2 cytokine diffusion coefficient
DF , DM diffusion coefficient of fibroblasts and macrophages mobility
η1, η2 chemotactic coefficient

Table 2: Summary of physical parameters in considered mathematical model.

2.2 Numerical Method

We consider the finite element method (FEM) to solve the considered coupled PDEs. Equation (1) has
to be transformed into the weak form, it implies that we multiply Equation (1) with test functions v
from an appropriate space V and apply integration by parts. Under the framework of the finite element
method, the space V h is precisely a finite dimensional space V h ⊂ V . The weak formulation for the
fibroblast-macrophage evolution model reads as:

Find u := (F,M,C, P )T ∈ U := V 4 such that

(
∂F

∂t
, vF ) + (DF∇F,∇vF )− (η1F∇P,∇vF )− (l1(

P

k1 + P
)F (1− F

K
), vF ) + (m1F, vF ) = 0 (2a)

(
∂M

∂t
, vM ) + (DM∇M,∇vM )− (η2M∇C,∇vM )− (l2(

C

k2 + C
)M,vM ) + (m2M,vM ) = 0 (2b)

D1(∇C,∇vC)− (b1F, vC) + (
a1MC

k2 + C
, vC) + (g1C, vC) = 0 (2c)

D2(∇P,∇vP )− (b2M,vP )− (b3F, vP ) + (
a2FP

k1 + P
, vP ) + (g2P, vP ) = 0 (2d)

for all test functions vF , vM , vC , vP ∈ V0 such that V0 := {v ∈ V : v|∂Ω = 0}.
In equations (2c, 2d), we assume ∂C

∂t = 0 = ∂P
∂t as the process of molecular diffusion is much faster

than that of cell migration and thus takes place on a larger time scale. For the remaining time derivatives,
we apply a θ-scheme with θ = 0.5 (Crank-Nicolson method). To resolve the coupling between the cell
equations and the cytokine equations, we utilize a decoupled, sequential solution strategy in each time
step.

1. Using (F k−1,Mk−1)T , apply a nonlinear solver to the cytokine equations, giving (Ck, P k)T .

2. Using (Ck, P k)T , apply a nonlinear solver to the cell equations, giving (F k,Mk)T .

Here (F 0,M0)T are simply the initial cell concentrations. All nonlinear systems are treated with an
inexact Newton’s method using the Eisenstat-Walker strategy [3].

3 Numerical Results

For our numerical tests, the computational domain is set to a 2D square, Ω = [L × L], L = 35 000 µm,
because its area is approximately equal to the area of the cell-culture dish which is used in the experiment.
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3.1 Initial Conditions

The initial conditions have to be defined before solving Equation (1). The initial values of colony-
stimulating factors and platelet-derived growth factors are set to 0, which corresponds the experimental
setting. The initial condition for fibroblasts and macrophages is defined by a shape of Gaussian distribu-
tion:

F (x, y, 0) = AF exp(− (x− xF )2

2r2
− (y − yF )2

2r2
) , (3a)

M(x, y, 0) = AM exp(− (x− xM )2

2r2
− (y − yM )2

2r2
) , (3b)

where (xF , yF ) and (xM , yM ) are the center of the Gaussian distributions for fibroblasts and macrophages.
r is the standard deviation of Gaussian distribution and is used in our model to control the size of the
distribution. AF and AM define the concentration of initial state.

3.2 Separatrix

The separatrix is a boundary between states with distinct dynamic behavior in a system of differential
equations. In [9], the authors used an analytical screening approach with an ordinary differential model
of two-cell circuits [1] to show that in regards to different range of initial conditions for fibroblasts and
macrophages there exist three states: ”ON”, ”OFF” and ”ON-OFF”. ”ON” state represents the con-
centration of fibroblasts and macrophages flow to a stable coexistence. ”OFF” state means that the
concentration of the two cell types decays to zero. ”ON-OFF” state signifies the unstable state, where
one cell’s concentration increases, and another decreases to zero.

For our numerical studies, we focus on the separatrix of the two stable states as mentioned above. We
investigate the how spatial relations between fibroblasts and macrophages can effect the on the separatrix
on stable states by using the partial differential model (Equation (1)).

3.3 Spatial Effect on Separatrix

Concerning the spatial influence on the separatrix, the phase portrait calculate by the model based
ordinary differential equations (ODE) is considered as the reference results in this study. The ordinary
differential model is formulated as follows:

dF

dt
= l1(

P

k1 + P
)F (1− F

K
)−m1F , (4a)

dM

dt
= l2(

C

k2 + C
)M −m2M , (4b)

dC

dt
= b1F −

a1MC

k2 + C
− g1C , (4c)

dP

dt
= b2M + b3F −

a2FP

k1P
− g2PΩ . (4d)

The physical parameters here are the same as in Equation (1).
Two different types of initial conditions are studied: homogeneous and inhomogeneous initial condition.

The homogeneous initial condition is used to mimic the initial condition in the ordinary differential model
(Equation (4)), where no spatial relation on fibroblasts and macrophages plays a role. The inhomogeneous
initial condition is represented by Equation (3), the spatial relation between F and M is characterized by
the radius r and the density AF and AM .

Figure 2 shows the separatrix computed by the PDE model (Equation (1)) taking into account of
two types of initial condition comparing with the phase portrait obtained from ODE model. The inho-
mogeneous initial condition is set to d = 12 000 µm and r = 2500 µm. The red line is the separatrix,
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(a) Homogeneous initial condition. (b) Inhomogeneous initial condition.

Figure 2: Comparison of separatrix for homogeneous and inhomogeneous initial condition, d =

12 000 µm, r = 2500 µm.

Parameter Value Parameter Value

l1 0.9 D−1 l2 0.8 D−1

m1,m2 0.3 D−1 K 1.0× 106 Ce

a1 1.3536× 106 Mo/Ce/D a2 7.344× 105 Mo/Ce/D

b1 6.768× 105 Mo/Ce/D b2 1.008× 105 Mo/Ce/D

b3 3.56× 105 Mo/Ce/D k1 1.8× 108 Mo

k2 2.3× 108 Mo g1, g2 1.92 D−1

D1, D2 8.64× 106 µm2/D η1 72 µm2/D/Mo

η2 144 µm2/D/Mo DF 146.9 µm2/D

DM 4.752 µm2/D

* D: days. Ce: cells. Mo: molecules.

Table 3: Physical parameters used in PDE model.

and the yellow and blue areas are obtained by the ODE model (Equation (4)), the x- and y-axis are
the initial values for fibroblasts and macrophages, respectively. The yellow region represents the ”OFF”
state, meaning with these initial values, the concentration of fibroblasts and macrophages will decay to
zero. The blue region represents the ”ON” state, where the concentration of fibroblasts and macrophages
will remain constant after certain period of time. As the computation of PDE model is much more time
consuming than ODE model, we only study three trajectories of two stable states per each different ini-
tial conditions (i.e. per each combination of d and r) which are CM = CF , CM = 0.01 × CF + 1 and
CM = 100× CF − 100, here, CF and CM mean the initial concentration of fibroblasts and macrophages.

In Figure 2a, the numerical results with homogeneous initial condition agrees with the ODE model,
because the homogeneous initial condition imitates the computation setting in ODE model, and there is
no spatial impact. However, when separating the centers of cell cultures for fibroblasts and macrophages
in the initial condition (Figure 3), the separatrix becomes smaller than the separatrix defined by ODE
model (Figure 2b).

Figures 3 to 5 are the simulation snapshots of the PDE model for a period of 30 days with inhomo-
geneous initial condition, where d = 12 000 µm, r = 2500 µm, CF = CM = 1× 104 Cells. As described
earlier, only the concentration of fibroblasts and macrophages are defined for the initial condition, CSF
and FPDG are set to zero (Figure 3). After 15 days cell culture of fibroblasts and macrophages move
towards each other, CSF and PDGF are also generated (Figure 4). One can observe that macrophages
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(a) F (b) M

(c) CSF (d) PDGF

Figure 3: Numerical results of PDE model with inhomogeneous initial condition, d = 12 000 µm,

r = 2500 µm. Day 0.

move much faster than fibroblasts because its chemotactic coefficient is twice larger than fibroblasts. The
”ON” state is reached after a longer period of time (Figure 5), fibroblasts and macrophages associated at
high concentration of both cells.

Table 4 summarizes the initial values of fibroblasts on three trajectories, where the separatrix is
found for PDE and ODE model. For the PDE model, the spatial relationship between fibroblasts and
macrophages cell cultures in the initial condition is characterized by varying r and d in Equation (3).
First, we observe the separatrix of PDE model is always smaller than those defined by ODE model, in
other words, the ”ON” state is attained with smaller amount of cell for the initial condition. One also
needs the higher cell concentration to reach the ”ON” state, when the distance between two cell clusters is
larger. The larger radius r means the cell concentration is lower for the same initial value, thus the higher
initial value is required for reaching the same separatrix. In accordance with these three trajectories, the
cell concentration of macrophages seems to be more important, if there exists considerable amount of
macrophages, then the initial value of fibroblasts does not have to be very large, the two-cell system can
still reach the stable state.

4 Global Sensitivity Analysis with Polynomial Chaos Expansion

The global sensitivity analysis (GSA) [5] is a process of studying the respective impact of input uncertain
parameters on model outputs. The variance-based sensitivity analysis, i.e. Sobol’s indices [6], has received
much attention since it can provide accurate information for most models.

Sobol’ indices are an important tool to establish an importance ranking of input parameters and their
interactions
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(a) F (b) M

(c) CSF (d) PDGF

Figure 4: Numerical results of PDE model with inhomogeneous initial condition, d = 12 000 µm,

r = 2500 µm. Day 15.

Trajectory
r = 2500

ODE
d = 0 d = 4000 d = 8000 d = 12000

CM = CF 84.5 95.8 128.7 140.5 954.9

CM = 0.01× CF + 1 116.7 128.7 139.1 161.7 1513.5

CM = 100× CF − 100 12.7 16.3 31.9 95.8 102.3

Trajectory
r = 5000

ODE
d = 0 d = 4000 d = 8000 d = 12000

CM = CF 217.8 227.5 260.5 293.4 954.9

CM = 0.01× CF + 1 298.8 326.3 359.3 369.7 1513.5

CM = 100× CF − 100 32.5 35.4 43.2 62.8 102.3

Trajectory
r = 7500

ODE
d = 0 d = 4000 d = 8000 d = 12000

CM = CF 416.6 425.2 445.2 491.1 954.9

CM = 0.01× CF + 1 543.3 553.2 570.7 598.1 1513.5

CM = 100× CF − 100 62.8 64.9 71.5 81.7 102.3

Table 4: Initial value of fibroblast of separatrices for three trajectories from PDE and ODE model

with different initial condition.
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(a) F (b) M

(c) CSF (d) PDGF

Figure 5: Numerical results of PDE model with inhomogeneous initial condition, d = 12 000 µm,

r = 2500 µm. Day 30.

4.1 Variance-Based Method

The variance-based method aims to decompose the variance of model outputs as a sum of contribution
from each uncertain input variable, it is also referred as ANOVA technique, which stands for ”Analysis
Of Variance”. Let us consider first a model f with M uncertain input parameters ξ = {ξ1, ξ2, ..., ξM},
and the output y:

y = f(ξ) . (5)

Assuming ξ are mutually independent and f is square-integrable with respect to associated probability
measure, the Sobol’ decomposition of Equation (5) has the following form in summands of increasing
dimension [6]:

f(ξ) = f0 +

M∑
i=1

fi(ξi) +

M∑
i≤j

fi,j(ξi, ξj) + · · ·+ f1,2,...,M (ξ) , (6)

or equivalently

f(ξ) = f0 +
∑
β 6=∅

fβ(ξβ) , (7)

where f0 is the expected value of y, β = {i1, ..., is} ⊆ {1, ...,M} are multivariate index sets, ξβ is a
subset of ξ containing the components indexed in β. In other words, the total number of summands in
Equation (7) is 2M − 1. This decomposition is uniquely defined if fi1,...,is(ξi1 , ..., ξis) with {i1, ..., is} ⊆
{1, ...,M} are orthogonal functions, i.e.∫

fβ1
(ξβ1

)fβ2
(ξβ2

)dξ = 0, β1 6= β2 . (8)
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The variances of y are defined by

Vβ = Vi1,...,is =

∫
f2
i1,...,isdξi1 ...dξis , (9)

and

VT =

∫
f2(ξ)dξ − f2

0 , (10)

=

M∑
i=1

Vi +

M∑
j>1

Vi,j + · · ·+ V1,...,M (11)

denotes the total variance of f(ξ). Vi is the partial variance according to random input ξi itself, Vi1,...,is is
the partial variance defining by the interactions between random inputs {ξi1 , ..., ξis} ⊆ {ξ1, ..., ξM}. The
variance-based Sobol’s sensitivity indices can be then defined:

Sβ = Si1,...,is =
Vi1,...,is
VT

=
Vβ
VT

. (12)

The Sobol’s indices quantify the contribution of random input parameters on the output variance. The
higher value of Sobol’s index means the random input or the interplay between random inputs introduces
more uncertainty into the system. Moreover, the first order sensitivity index is defined by:

Si =
Vi
VT

, (13)

which quantify the additive effect of each input parameter on the response variability separately. The
second order sensitivity index is defined as:

Sij =
Vij
VT

, (14)

which expresses the amount of variance of f(ξ) explained by the interaction between ξi and ξj .

4.2 Polynomial Chaos Expansion

The square-integrable random response f(ξ) in Equation (5) have the following polynomial chaos (PC)
expansion [7]:

f(ξ) =

∞∑
|α|=0

α∈NM

cαΨα(ξ) , (15)

where α = {α1, ..., αM} is the multi-index, αi is a non-negative integer that specifies the order of univariate

basis polynomial, and |α| =
∑M
i=1 αi. cα are the stochastic modes of f(ξ), the multivariate orthonormal

polynomial Ψα(ξ) is defined by a tensor product of 1D polynomials and reads:

Ψα(ξ) =

M∏
i=1

ψαi(ξi) , (16)

where ψαi(ξi) is the univariate orthonormal polynomial of degree αi in ξi, ψ(ξ) is chosen regarding the
probability distribution of ξ.

The orthogonality of Ψα is defined with respect to ξ, i.e.∫
ΩM

Ψα1
(ξ)Ψα2

(ξ)ρ(ξ)dξ = 0 , α1 6= α2 , (17)

where ρ(ξ) is joint probability density function of ξ.
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For the computational convenience, Equation (15) needs to be approximated with a truncated series:

f(ξ) '
p∑

|α|=0

cαΨα(ξ) =

P∑
i=0

ciΨi(ξ) , (18)

where p is the truncated total polynomial order, P is the total stochastic modes depending on p and the
number of uncertain parameters M ,

P + 1 =
(M + p)!

M !p!
. (19)

4.3 Sparse Grid Numerical Integration

The purpose of applying the polynomial chaos expansion technique is to obtain the coefficients Ci in
Equation (18), such the stochastic moments of quantities of interest can be calculated. Taking the inner
product of the output of PC expansion with Ψk(ξ) based on the orthogonality of chaos basis, it reads

Ck =
〈f(ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉

, ∀k . (20)

Therefore, determining the chaos polynomial coefficients reduces to computing the following integral:

Ik =

∫
ΩM

f(ξ)Ψk(ξ)ρ(ξ)dξ , (21)

where, ρ(ξ) is again joined probability density function. The sparse grid interpolation is used as the
numerical integration scheme for the calculation of the equation above.

4.4 PC-based Sensitivity Functions

Due to the orthogonality of the basis and linearity of polynomial chaos expansion, we can reorder Equa-
tion (18) in order to separate the contribution of each parameter ξi as in Equation (6). Let us rewrite
Equation (18) as

f(ξ) =

p∑
|α|=0

cαΨα(ξ) =
∑
α∈A

cαΨα(ξ) , (22)

then we can define intersection sets with β in Equation (7):

Aβ = {α ∈ A : k ∈ β ⇔ αk 6= 0} . (23)

The PC-based Sobol’ indices can be obtained by

Sβ =
Vβ
VT

=

∑
α∈Aβ c

2
α∑

α∈A c
2
α

. (24)

Therefore, computing the Sobol’ indices by using PC expansion as a surrogate model is to determine the
coefficient of chaos polynomials in Equation (18). There exist two distinguished methods for calculating
the coefficient of calculate ci: the intrusive and non-intrusive methods. In this paper, we use the non-
intrusive method, more precisely the stochastic Sparse-Grids method [2, 4], because we can use the
numerical model described in the last section as a black box, and compute the indices as a post-processing
step from model evaluations.

Our quantity of interest is the point on the separatrix given by the trajectory NF = NM for inho-
mogeneous initial conditions. The parameter distributions are shown in table 5. As seen in the second
order indices of figure 6, the separatrix exhibits sensitivity to all four parameters under consideration.
The binding affinity k1 is almost exactly proportional to the separatrix, which explains its large index.
The radius of the populations determines the cell density, which in turn for a smaller radius also increases
the growth factor density. Thus, a smaller radius leads to a decreased separatrix. The sensitivity to k2

is lower than that of k1; the macrophage growth rate therefore does not appear to significantly drive the
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Figure 6: Total Sobol’ indices STi in orange, the first-order Sobol’ indices Si in blue.

separatrix. For this trajectory, it can also be established that d is the least significant parameter. This
may be explained by the macrophage populations nearly always reaching their fibroblast-produced growth
factor before vanishing, even for large distances. For all indices, second-order interactions are much less
significant than first-order effects.

Parameter Distribution

k1 U(1.8× 107 Mo, 1.8× 109 Mo)

k2 U(2.3× 107 Mo, 2.3× 109 Mo)

r U(2000µm, 7500µm)

d U(0µm, 10 000µm)

Table 5: Parameter distributions for the sensitivity analysis.

5 Conclusion and Outlook

In this work, we conducted the first investigation of a PDE model that represents a spatially heterogeneous
two-cell circuit. Using a multiscale numerical approach, we found that the PDE model accurately captures
the results of a previously published ODE model for homogeneous initial data. We also found that
its separatrix for heterogeneous initial conditions is lower than that of the homogeneous case. This is
due to the homogeneous initial conditions having the lowest possible local cell concentration: The cell
concentration immediately dictates the growth factor concentration, and lower growth factor concentration
due to lower cell concentration thus increases the separatrix. Our sensitivity analysis of the separatrix
found that in the set of uncertain model parameters, the binding affinity of PDGF is clearly most important
as it determines the growth rate of fibroblasts. There is also a large sensitivity to the radius of the cell
populations since it is inversely proportional to the cell concentration and thus cytokine concentration.
The separatrix does not exhibit large sensitivity to the binding affinity of CSF, neither does the distance
between fibroblast and macrophage populations appear to have a strong impact. Thus, while there is a
quantifiable spatial effect on the separatrix, the radius of the cell populations appears to account for most
of it.
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Supplementary Materials

(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 7: Magnitude of gradient from PDGF, from day 5 to day 30.

(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 8: Gradient from PDGF in x direction, from day 5 to day 30.
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(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 9: Gradient from PDFG in y direction, from day 5 to day 30.

(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 10: Magnitude of gradient from CSF, from day 5 to day 30.

(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 11: Gradient from CSF in x direction, from day 5 to day 30.
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(a) Day 5. (b) Day 10. (c) Day 15. (d) Day 20.

(e) Day 25. (f) Day 30.

Figure 12: Gradient from CSF in x direction, from day 5 to day 30.
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