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Abstract
Attackers try to hijack the control-flow of a victim’s process by exploiting a run-time vulnerability. Vtable
hijacking is a state-of-the-art technique adversaries use to conduct control-flow hijacking attacks. It abuses
the reliance of language constructs related to polymorphism on dynamic type information. The Control
Flow Integrity (CFI) security policy is a well-established solution designed to prevent attacks that corrupt
the control-flow. Deployed defense mechanisms based on CFI are often generic, which means that they do
not consider high-level programming language semantics. This makes them vulnerable to vtable hijacking
attacks. Object Type Integrity (OTI) is an orthogonal security policy that specifically addresses vtable
hijacking. CFIXX is a Clang compiler extension that enforces OTI in the context of dynamic dispatch,
which prevents vtable hijacking in this setting. However, this extension does not enforce OTI in context of
polymorphism. The contribution of this work is a practical implementation to enable OTI in the context
of C++’s run-time type information for the dynamic_cast expressions and the typeid operator.

1 Introduction
Nowadays, applications such as browsers like Firefox, or Chrome are incorporated into our daily life.
Adversaries try to exploit the absence of certain security checks of such applications on source code level.
The Control Flow Integrity(CFI) has been established to mitigate these attacks, however, due to their
generic approach it remains unresolved for high-level programming language semantics [Association, 2003,
Davi et al., 2014]. The key concept is to alter the execution path intended by the programmer, called
control-flow [Davi, 2015]. For instance, an attacker that manipulated, or redirected the control-flow tries to
determine the next value of the program counter which allows them to arbitrarily modify the instructions
that are executed next. Consequently, an attack could install a backdoor or access sensitive data. An
important precondition for such an attack is an initial memory corruption such as a buffer overflow, or use
after free (UaF) error [Davi, 2015].

Control-flow hijacking can be broadly categorized into code-injection and code-reuse attacks [Davi,
2015]. Code-injection pivots the execution path toward instructions injected into the program’s address
space and requires an initial memory corruption. Whereas a code-reuse attack creates a malicious piece
of code by composing benign sequences of instructions already present in the address space. Due to the
limitation by the target system’s capabilities, as well as, defense mechanisms like data execution prevention
(DEP), code-injection attacks remain infeasible in practice. In case of a successful attack, adversaries rely
on code sequences, called gadgets, and can use them to form basic operations that result in malicious
computation. This approach is also known as return-oriented programming (ROP) [Checkoway et al., 2010,
Schuster et al., 2015]. However, the discovery of gadgets inside the victim application’s address space can
be obstructed through Address Space Layout Randomization (ASLR), making it opaque for adversaries to
find such gadgets Snow et al. [2013]. It maps the memory segments of a process (the call stack, the heap,
the executable code) in a secret, pseudo-random manner [Schuster et al., 2015]. Memory corruption errors
in C/C++ programs are the most common source of vulnerabilities in today’s systems other approaches,
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displaying the need for other approaches such as control-flow integrity Burow et al. [2017]. This draws
motivation for the implementation of CFIXX.

In this work, we present an extension of CFIXX that enables OTI for polymorphic objects during
dynamic dispatch and in the context of run-time type information (RTTI). First, in Section 2, we outline
background knowledge about control-flow attacks, and present corresponding prevention mechanisms.
Section 3 presents the original CFIXX implementation and gives motivation for our new adaption. Next,
we draw the design of our implementation and give insides into the implementation in the upcoming section.
Finally, Section 6 completes this report with a conclusion that summarizes the results and describes future
work in this regard.

2 Background
As a primer for the discussion of the OTI implementation, we provide a short summary of important aspects
of OTI. C++, being an object-oriented programming language, naturally offers support for polymorphism
[Stroustrup, 2013]. At its core, polymorphism provides a single interface to entities of different types
[Stroustrup, 2022]. C++ supports static (compile-time) polymorphism in the form of overloaded functions
and templates. Additionally, it supports dynamic (run-time) polymorphism, which is error-prone to vtable
hijacking [Stroustrup, 2022]. For instance, a derived class D that is accessed by the pointer B∗ of their
base class B is unknown at compile time.

Name binding is a part of the compilation process. Here, each identifier in the source code links to a
programming object - variable or function. With respect to function calls, it identifies a call site with the
corresponding functions’ implementation. For virtual functions, the binding is postponed to run-time due
to the function that calls the dependency on the dynamic type of the object.

In order to solve the problem of the selection of a function implementation at the virtual call site, we
need dynamic dispatch [Stroustrup, 2013]. The function calls the correct implementation that depends on
the dynamic type of the object. C++ compilers can implement dynamic dispatch through a mechanism
consisting of two components: a virtual function table (vtable) and a virtual function table pointer (vtable
ptr) [Bauer and Rossow, 2021]. The compiler creates for each polymorphic class, i.e. each class that defines
a virtual function, a vtable [Bauer and Rossow, 2021]. Vtables consist of function pointers to the most
derived implementation of each virtual function of the corresponding class [Bauer and Rossow, 2021]. Note
that the vtable generates on a per-class basis (dynamic type) rather than on a per-object basis [Bauer and
Rossow, 2021]. In addition, the compiler places a vtable ptr in all polymorphic class instances [Bauer and
Rossow, 2021]. Each constructor assigns the address of the vtable that is specifically associated with that
class to the vtable ptr [Bauer and Rossow, 2021]. Dynamic dispatch is accomplished by retrieving the
function pointer to the implementation from the vtable and dereferencing it [Stroustrup, 2022].

Run-time type information is a mechanism that provides the dynamic type of a polymorphic object
by a given base class pointer [Stroustrup, 2013]. Compilers can solve it with vtable and vtable ptrs like
dynamic dispatch. Vtables being emitted on a per-class basis can be used to determine an object’s dynamic
type [Bauer and Rossow, 2021]. In addition, they are carrying information next to function pointers that
unambiguously identify the associated class type. RTTI provides the dynamic_cast and the typeid
operators for polymorphic objects [Stroustrup, 2022]. typeid takes a type, or expression and returns
a reference to the type_info object representing the type, or the type of the expression. type_info
objects are part of C++’s standard library. The compiler creates such an object for every type used in the
program, this includes built-in and user-defined types. For non-polymorphic types, the compiler statically
deduce the type typeid. For polymorphic types, however, typeid can only be resolved at run-time, as
it must return the dynamic type.

Before using dynamic_cast expression, we need to understand the inheritance model of C++ that
allows upcast and downcast. For Upcast, the cast progresses up the inheritance hierarchy and can be
conducted via a static_cast expression whereas downcast resolves from a base class pointer type to a
derived class pointer type. However, it is only valid if the specified derived class pointer type matches the
dynamic type of the object pointed to by the base class pointer. The cast can be verified by comparing
at run-time the specified destination type to the dynamic type of the casted object. Both expressions,
typeid and dynamic_cast, are deduced by following the argument’s vtable ptr and examining the
type_info object referenced by the corresponding vtable.
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2.1 Vtable Hijacking
The abuse of vtable and vtable ptr data structure is referred to vtable hijacking. Vtables are constant
look-up tables emitted by the compiler and placed in read-only memory, thus, protected from unwilling
alteration. Vtable ptrs inhabit polymorphic class instances that must fill writable memory pages due to
their mutable semantics in C++ [Davi, 2015]. For instance, if attackers succeed in manipulating a vtable
ptr, which is subsequently used to make a virtual function call, they divert the intended control flow of the
program. Instead of the original vtable, the attacker-chosen data is interpreted as function pointers. By
determining which data the hijacked virtual call invokes as a function pointer, the attacker also determines
which instructions are ultimately executed. This type of dynamic dispatch corruption is a form of vtable
hijacking [Davi, 2015]. Therefore, we assume that attackers can also exploit a corrupted vtable ptr used
for RTTI. Due to DEP, vtable hijacking needs to rely on code-reuse attack patterns [Davi, 2015].

Counterfeit Object-oriented Programming (COOP) is a code-reuse vtable hijacking attack scheme
introduced by Schuster et al. [2015]. COOP works by repeatedly calling existing virtual functions on fake
objects, which are essentially data inserted by the attacker. COOPlus is a variant of COOP proposed by
Chen et al. [2021]. By imitating the control-flow of benign C++ applications even more closely than COOP
does, it can even bypass CFI-based defenses that take C++ semantics into account, such as SafeDispatch.
SafeDispatch is a CFI-based defense mechanism suggested by Jang et al. [2014]. It is specially tailored
towards vtable hijacking. Generic CFI approaches are generally not aware of C++ semantics, they usually
only restrict virtual call sites to address-taken functions [Jang et al., 2014]. In contrast, SafeDispatch
focuses exclusively on control-flow transfers related to dynamic dispatch [Jang et al., 2014].

2.2 Control-Flow Integrity
First proposed by [Abadi et al., 2009, Banach and Lau, 2005], the key idea behind CFI is the protection
of control-flow transfers with dynamically determined targets. For CFI in order to work on a system, it
must meet two criteria [Abadi et al., 2009] First, the protected program’s source code must be immutable.
Second, a mechanism preventing code-injection, such as DEP, must be in place. CFI works in two phases
[Abadi et al., 2009]: (1) during compilation the program’s control-flow graph (CFG) is constructed, and
(2) the source is instrumented to perform run-time checks. The CFG consists of nodes representing basic
blocks (code sections without branches) and edges representing execution paths [Abadi et al., 2009]. Static
analysis either on the program’s source code or the compiled binary identify execution paths. Each edge is
a valid run-time control-flow transfer. At run-time inserted instrumentation validates that the control-flow
is aligned with the graph. After the CFG is constructed, run-time checks on the source-code level assert
the compliance of dynamic control-flow transfers with the CFG. The core idea is to link the CFG to the
source code to check whether a node that initiates a control-flow transfer is connected to the node that is
the destination of the transfer. For instance, verifying the integrity of the control-path could be realized
by labeling each node with a unique integer and performing a membership test to check if the integer is
included in a set of valid targets. If it is not, control-flow information must have been corrupted.

The quality of a given CFI implementation is influenced by the quality of the static analysis used to
construct the CFG [Abadi et al., 2009, Banach and Lau, 2005, Jang et al., 2014]. In general, static analysis
based on source code is more accurate than static analysis based on compiled binaries. Numerous CFI
implementations have been proposed, as there has been a decade of research [Burow et al., 2017].

2.3 Object Type Integrity
Object Type Integrity (OTI) operates at run-time [Burow et al., 2018]. Unlike CFI, it can incorporate the
run-time information to ensure that each polymorphic object instance is associated with its legitimate
(dynamic) class type [Burow et al., 2018]. In order to mitigate the corruption of the vtable ptr which
is equivalent to altering the dynamic type of the object, OTI tracks and applies integrity protection to
the dynamic type of all polymorphic objects allocated [Burow et al., 2018]. In practice, this is enforced
by using the correct, i.e. the compiler-assigned, vtable ptr. For instance, counterfeit objects which are
not assigned a vtable ptr by compiled emitted code, thus, are not being associated with a type by OTI
resulting in them being recognized as non-legitimate objects. In comparison to CFI, OTI is orthogonal due
to the protection of the integrity of the control-flow information whereas CFI enforces the transfer of the
control-flow [Burow et al., 2018]. A practical implementation of OTI is CFIXX by Burow et al. [2018].
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Figure 1: CFIXX metadata table structure and memory layout (derived from Burow et al. [2018]).

3 Related Work
CFIXX, proposed by Burow et al. [2018], is a defense mechanism against vtable hijacking. It is implemented
as a Clang compiler extension and guarantees integrity protection of the dynamic type of all polymorphic
objects during dynamic dispatch. This is accomplished by preserving the vtable ptrs of these objects in a
separate write-protected metadata table. In essence, this key-value store is a hash table that holds the
vtable ptrs on a per-object basis. For instance, each polymorphic object has a copy of its vtable ptr in a
table entry. If an attacker tries to exploit the vtable and a corrupted dynamic dispatch occurs, CFIXX
will not consider their vtable ptrs to be legitimate as they are not compiler-assigned. This concept offers
the opportunity to dispatch function calls with the vtable ptr from the metadata table. CFIXX protects
the metadata table from unintended alteration by using the Intel Memory Protection Extensions (MPX).

Due to the invariance of an object’s type, the vtable has a fixed location in the processes’ address space
and the vtable ptrs are constant Burow et al. [2018]. During the object construction, CFIXX only needs to
record an object’s vtable ptr once Burow et al. [2018]. Any write access to a vtable ptr compromises the
object’s type integrity and results in a corruption of dynamic dispatch Burow et al. [2018]. CFIXX verifies
the validity of dynamic dispatch by looking up the function pointer via a copy of the vtable ptr that the
metadata table stores, and thus, guaranteed to be uncompromised [Burow et al., 2018]. Apart from that,
the procedure remains unchanged. Next to the dynamic dispatch, two further mechanisms depend on the
vtable and vtable ptr; the typeid operator and dynamic_cast expression (also called RTTI). However,
the original implementation by Burow et al. [2018] does not focus on RTTI. The contribution of this work
is the extension of CFIXX to protect the entire RTTI system (see Section 5).

Technically, CFIXX extends the Clang 3.9.1 compiler and is targeting x86_64 systems using the
C++ Itanium ABI exclusively [Burow et al., 2018]. The extension mainly modifies the code generation
of constructors and virtual function calls. The compiler run-time library is also adapted to set up the
metadata table during process start-up. The metadata table must be allocated before any polymorphic
object is constructed. The allocation is specified in the .preinit-array section of the ELF file format,
which is used on x86 Unix systems. The metadata table is memory mapped and is a two-level hash table.
High-order bits of the pointer used as the key is the index into the table’s first level, which contains
pointers to the second-level tables. These are indexed by low-order bits of the pointer used as the key and
contain the actual value – the corresponding vtable ptr.

Figure 1 illustrates the logical structure and physical memory layout of the table. Figure 1a shows the
logical structure, which consists of two levels. Pointers in x86_64 systems are 64 bits wide, however, the
virtual memory addresses consist of only 48 bits. The keys in the metadata table are either the address of
the object instance or the address of a vtable ptr inside the object instance in cases of multiple vtable ptrs
per object and are 48 bits wide. The first 22 bits serve as the first-level index of the table. The next 23
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Figure 2: CFIXX address space rotation (derived from Burow et al. [2018]).

bits are the second-level index. Since every polymorphic object instance’s memory layout must include
at least one vtable ptr, the size of these instances is at least 64 bits. For this reason, the last 3 bits in
the key do not contain relevant information and are discarded. The memory allocated during start-up is
contiguous in the address space and sufficiently large to contain the first-level table and a certain number
of second-level tables. The operating system’s virtual memory management only allocates pages when
they are accessed for the first time. CFIXX only touches the tables when needed, therefore, optimizing
its memory usage [Burow et al., 2018]. The data structure is two levels deep resulting from the analysis
of allocation patterns of polymorphic objects, which was conducted by the authors during development.
High- and mid-level bits of polymorphic objects’ memory addresses did not contain enough entropy to
justify three levels.

CFIXX’s enforcement of OTI is tied to the integrity of the metadata table [Burow et al., 2018]. Any
kind of corruption must be prevented. A possible protection approach is information hiding. The CFIXX’s
authors decided to make use of the MPX instruction set extension to warrant the table’s intactness
[Oleksenko et al., 2018]. MPX provides an efficient bounds check of a pointer. For instance, there is a
special instruction verifying that a pointer is used for writing access points inside some lower and upper
bound. CFIXX modifies the code generation and ensures that only its own instrumentation is allowed to
modify the metadata table [Burow et al., 2018]. This prevents attackers from bypassing the extension.

Figure 2 outlines an address space rotation. The left side shows the normal memory layout. The
metadata table (colored brown) is located in between other data (colored blue and yellow). In order to
ensure that the metadata is not written, the MPX instructions are used to verify that the write target
is either above or below the table. As these two valid ranges are not contiguous, a two-bounds check is
necessary. CFIXX rotates the address space for that reason [Burow et al., 2018]. The result is shown on
the right-hand side of Figure 2. Since the valid area to be written is contiguous in the transformed address
space, a single check is sufficient.

4 Vtable Hijacking in context of run-time type information
In this section we present how vtable hijacking is achieved by abusing the RTTI language constructs.

The implementation of dynamic_cast expressions and the typeid operator relies on the vtable
data structure. Both constructs determine their argument’s dynamic type by means of the type_info
object referenced by the corresponding vtable. Consequently, passing a polymorphic class instance with a
corrupted vtable ptr to either of them results in an invalid type cast, or the return of a wrong type_info
object, respectively. Which, then again, is highly likely to cause an unintended control-flow transfer, that
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can be further abused. The fundamental principle behind vtable hijacking attacks initiated through RTTI
is the generation of out-of-bound memory access. Further exploitation involves a grand scheme of the
attack, similar to COOPlus described in Section 2. The out-of-bound memory access is introduced by the
invalid inference and subsequent usage of a wrong dynamic type for a polymorphic object.

For instance, the dynamic_cast expressions are commonly used to handle special cases in functions
operating on otherwise generic class interfaces. If a polymorphic object instance that contains a corrupted
vtable ptr is passed to such functions, differing memory layouts between distinct child classes of the generic
class interface are highly likely to result in out-of-bound memory access. On the other hand, the typeid
operator is commonly used to implement multiple (dynamic) dispatch. The returned type_info object
provides a hash value uniquely identifying the referenced type. It can serve as an index into a custom
vtable data structure. In such cases, returning the wrong type_info object has the same implications as
resolving C++’s built-in dynamic dispatch through a corrupted vtable ptr, which allows for attacks like
COOP, that was discussed in Section 2. The accompanying prototype implementation contains example
code showcasing how this could look like in practice.

Bottom line, attackers can not only achieve vtable hijacking by exploiting virtual function calls, but
also via the C++ RTTI system. While the first named is the most frequent vtable use case, and hence,
facilitates the majority of vtable hijacking, exploitation of dynamic_cast or typeid poses a serious
security risk as well.

4.1 Exploiting dynamic_cast expressions
This section illustrates how vtable hijacking could be carried out via a dynamic_cast expression. In the
example scenario the application is in need of text based identifiers, like URLs, or DOIs. Listing 1 depicts
a class hierarchy modelling these identifiers. The abstract class Identifier defines an interface common to
all identifiers. This includes a pure virtual function assign that takes a C string literal as argument (l.
3). However, the implementation is unique for each concrete identifier, as it depends on the specific data
structure in which the content of the identifier is stored.

DefaultIdentifier is a class representing the standard identifier which uses a simple string data structure
internally. It consists of the member size, representing the string’s size, and the member data, that points
to a char buffer storing the actual string (l. 8-9).

DefaultIdentifier::assign copies size characters from the argument string s into the buffer pointed to by
data (l. 12-15). The application also includes the class SpecialIdentifier. Such identifiers are fixed size,
hence, the member data being a stack array of length 10 (l. 22). Additionally, SpecialIdentifier instances
hold a member flags that stores metadata (l. 21). SpecialIdentifier::setSpecificFlags sets a certain flag
combination (l. 25). Part of the application is a complicated algorithm that takes an arbitrary identifier
as input. It is implemented in the function g that is showcased in Listing 2. In case the input Identifier
instance is of dynamic type SpecialIdentifier, the specific flags value needs to be set by setSpecificFlags
before the actual algorithm is executed. The function g checks whether this is the case by trying to
perform a downcast to SpecialIdentifier at first, and, if successful, calls setSpecificFlags on the object (l.
2-5).

Listing 3 below depicts how the vtable hijacking could take place. A DefaultIdentifier instance id
is created on the stack (l. 3). Later it is passed to the function g (l. 5). In between, however, the
attacker manages to corrupt the vtable ptr of id (l. 4). He replaces it with a pointer referencing the vtable
corresponding to the SpecialIdentifier class. As a consequence, when g is invoked on id, the downcast
to SpecialIdentifier will succeed and SpecialIdentifier::setSpecificFlags is invoked on the DefaultIdentifier
instance id. As member access is implemented as hardcoded offset from the object’s base address, this
causes the size member of id, that is wrongly interpreted as the flags member of a SpecialIdentifier instance,
to be set to the constant SOME_CONSTANT. As a result, id stores the wrong size for its buffer after g was
invoked on it. Should this invalid size be greater than the original size, a buffer-overread/write is provoked
as soon as size is used to control buffer access the next time.

In the example code, after g concluded, the virtual function assign is called on id (l. 6). Note that,
even though the vtable ptr of id is manipulated, DefaultIdentifier::assign is invoked, as this is not a virtual
call site bound at run-time, but at compile-time, since the dynamic type of id is statically known at the
call site.

The memory address that DefaultIdentifier::assign interprets as size now holds the value SOME_CONSTANT
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assigned to the flags member in SpecialIdentifier::setSpecificFlags. Given this new value is large enough,
the execution of the for-loop in DefaultIdentifier::assign causes a buffer-overwrite of the array pointed to
by data. This overflow is the result of the vtable hijacking via dynamic_cast. It can aid the overall
attack by subsequently serving as basis for a further exploit.

4.2 Exploiting typeid operator
Vtable hijacking based on the typeid operator pursues the same goal as the dynamic_cast variant. It
provokes an out-of-bounds memory access error when using a type in the wrong context. This results in a
function operating on data whose memory layout is incompatible with the function’s instructions.

The typeid operator can realize a multiple dispatch system. Recall how virtual function calls are
bound to an implementation depending on the dynamic type of the object that serves as hidden argument
- the this pointer. This process is called single (dynamic) dispatch. For instance, the selection of the
correct function implementation should not only depend on the dynamic type of a single argument, but
the dynamic type of two or more arguments. This is called multiple (dynamic) dispatch Stroustrup [2013].
While single dynamic dispatch comes built into C++ where the compiler takes care of selecting the correct
function implementation at run-time, there is no built-in support for multiple dynamic dispatch. One way
of realizing a multiple dynamic dispatch is successive single dispatch, like the Visitor pattern [Gamma,
1995]. Another way to implement multiple dispatch is the typeid operator. Given a function that
operates on multiple polymorphic base class types, the idea is to create a mapping from tuples of concrete
derived class types to specific function implementations. The multiple dynamic dispatch can then be
realized by selecting the correct implementation via the mapping. The type_info object returned by
typeid provides a unique hash code for each class typ, that can be used for this purpose. Thus, the
mapping associating a given tuple of polymorphic class types with a function implementation can be
implemented as a hash table.

Listing 4 shows a code example that achieves multiple dynamic dispatch for two polymorphic arguments.
The function f (l. 23-27) takes two base class pointers of type A and B. Both A and B are inherited by
two child classes A1 and A2, or B1 and B2, respectively. There is a unique implementation of f for each
combination of these derived class types: f_a1_b1, f_a1_b2, f_a2_b1, f_a2_b2 (l. 12-15). The hash
table h stores the mapping from a pair of derived class types to their dedicated implementation (l. 17-21).
The typeid operator returns type_info objects which provide the hash_code function to retrieve a
hash unique to the class type. The hash_combine function (l. 2) combines the two hashes returned for
each derived class pair. the hash_combine function (l. 2) returns a single unique hash that serves as key
into h. The function f acts as wrapper for the implementations and is called by the user. f looks up the
correct implementation in the hash table and delegates the call to the corresponding function (l. 25-26).

Listing 5 portrays how the vtable hijacking could take place. First, two class instances A1 and B2 are
allocated. They are referenced by the pointers pa and pb respectively (l. 1-2). The attacker then manages
to overwrite the vtable ptr of the object pointed to by pa with a pointer referencing A2 ’s vtable (l. 3).
Consider the consequences of this overwrite, when the function f is later invoked on pa and pb (l. 4). This
causes the typeid operator, which f applies to pa, to return the type_info object representing A2.
Because of that, the hash table look-up yields a function pointer to the implementation f_a2_b2 that
takes arguments of type A2 and B2 exclusively. However, the actual data to which this implementation is
subsequently applied represents an argument of type A1. This type mismatch is highly likely to cause
out-of-bound memory access, such as the buffer overflow illustrated in the dynamic_cast vtable hijacking
example, or other memory corruptions. This acts as a door opener for further exploits.

5 Preventing Vtable Hijacking in context of run-time type infor-

mation
In this section we present our implementation that renders vtable hijacking infeasible. To accomplish
our approach, we build up upon the CFIXX compiler extension that Burow et al. [2018] presented (see
Section 3). The prototype implementation is a fork of the original CFIXX project1. The prototype is

1https://github.com/HexHive/CFIXX

7

https://github.com/HexHive/CFIXX


available at GitHub2 It is based on three major modifications:

1. OTI is extended to cover dynamic_cast expressions

2. OTI is extended to cover the typeid operator

3. The protection of the metadata table is altered

By means of 1. and 2., all use cases of vtables are protected and vtable hijacking is rendered infeasible in
its entirety. 3. consists of the replacement of the now deprecated MPX instructions that were previously
used to protect the metadata table’s integrity with Intel’s newer Memory Protection Keys (PKEYS)
[Accardi et al., 2023].

5.1 Protecting dynamic_cast expressions
Our extension guarantees that the compiler-assigned vtable ptr is used to determine the dynamic type of
the polymorphic object. It achieves this the same way CFIXX does in the context of dynamic dispatch.
Instead of relying on the vtable ptr located in the object instance itself to determine the dynamic type of
the object, our extension retrieves the associated metadata table entry, i.e., the integrity-protected vtable
ptr.

The code generation for dynamic_cast expression is handled by CGExprCXX.cpp in Clang’s source
tree [Lattner and Topper, 2023]. The function CodeGenFunction::EmitDynamicCast checks whether
the dynamic_cast can be resolved statically, and does so, if possible. For instance, this is the case
if the argument is known to be a null pointer. Otherwise it invokes the ABI specific function Itani-
umCXXABI::EmitDynamicCastCall which is located in ItaniumCXXABI.cpp. The compiler does not
insert the implementation of dynamic_cast as instruction sequence but delegates it to the ABI-specific
run-time library libcxxabi. The library includes a function called __dynamic_cast which is the actual
implementation of the dynamic_cast expression. ItaniumCXXABI::EmitDynamicCastCall generates
the call instructions that invoke __dynamic_cast at run-time. The function takes the “this” pointer of
the object as first argument which is technically the address of the vtable ptr. To resolve the cast, it infers
the dynamic type through the type_info object referenced by the vtable.

5.2 Protecting typeid expressions
The extension provides OTI for the typeid operator in the same way it does with dynamic_cast
expressions. It guarantees that typeid when being passed as a polymorphic argument uses its compiler-
assigned vtable ptr to determine its dynamic type. This is accomplished by retrieving the vtable ptr of
objects in question via the metadata table. Other than that, the behaviour of typeid remains unchanged.
The code generation for typeid is implemented in CGExprCXX.cpp which is in Clang’s source tree. The
function CodeGenFunction::EmitCXXTypeidExpr first checks if the operator’s arguement is polymorphic.
If not, it statically deduces the type_info object to be returned. Otherwise, it calls the funciton
EmitTypeidFromVTable. It examines whether the argument is null and calls the ABI specific Itanium-
CXXABI::EmitTypeid which is defined in ItaniumCXXABI.cpp. This function retrieves the type_info
object to be returned by following the vtable ptr which is done by invoking CodeGenFunction::GetVTablePtr
from CGClass.cpp. The original CFIXX extension provides CodeGenFunction::GetVTablePtrCFIXX in
the same file which retrieves the vtable ptr by querying the metadata table. Our extension modifies
ItaniumCXXABI::EmitTypeid to invoke CodeGenFunction::GetVTablePtrCFIXX instead of CodeGen-
Function::GetVTablePtr. This is the only change required to enforce OTI in context of the typeid
operator.

5.3 Modifications to metadata table protection
As described in Section 3, the original CFIXX extension protects the metadata table by means of MPX.
At run-time the metadata table verifies that no memory write access targets the pages populated, unless it
is a write access that was generated as part of polymorphic object construction to insert a new table entry.
MPX has been deprecated since then and is not available on all future architectures [Intel Corporation,

2https://github.com/MarcoSchroeder/vtable_hijacking
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2023]. For this reason, the metadata table protection through MPX has been replaced with a different
mechanism. Protection of the metadata is essential for the extension to be practical. Otherwise, the
attacker could realize vtable hijacking by manipulating the metadata entry associated with an object. This
would lead to the same result as if the vtable ptr placed in the object instance is corrupted in contexts
that are not protected by CFIXX. As stated by Burow et al. [2018], the Intel’s Memory Protection Keys
(PKEYS) would improve the protection. Our extension realizes this approach. PKEYS share most of their
interface with mprotect but utilizes previously unused bits in page table entries to enforce access rights on
individual page level [Accardi et al., 2023]

Our extension removes the x86 assembly code generation that inserts run-time checks to verify if
no emitted instructions target the pages holding the metadata table. The changes CFIXX introduced
to X86AsmPrinter::EmitInstruction located in X86MCInstLower.cpp are reverted Burow et al. [2018].
In addition, the assertion if MPX is available on the host system defined as process_specific_init and
process_specific_finish in mpxrt.c has been removed. In consequence, the metadata table protection
through MPX is removed.

CFIXX extends the compiler-rt run-time library with a cfixx.c which contains, among other functions,
the function cfixxInitialization, which allocates the metadata table during process startup [Burow et al.,
2018]. Our extension implements two new function pairs in cfixx.c:

1. cfixxEnableMetadataWritesAll and cfixxDisableMetadataWritesAll

2. cfixxEnableMetadataWrites and cfixxDisableMetadataWrites

The first pair enables or disables write access for the entire metadata table.
Listing 6 sets the length of the metadata table by the difference of the table’s base address and the

current table. This is essential due to the change in length when more second-level pages are allocated.
Next, mprotect is invoked on the entire length of the table starting from the base address. Write access to
the pages is enabled by passing the flag PROT_WRITE. If mprotect fails, the application will be terminated.
The implementation of cfixxDisableMetadataWritesAll only differs in the access right PROT_READ passed
to mprotect. This implementation uses the regular mprotect system call which is only used as a fallback if
PKEYS are unavailable on the target system [Burow, 2018, Accardi et al., 2023]. pkey_mprotect has the
same effect as the regular mprotect. The interface differs in its fourth parameter pkey which is a protection
key allocated at process start-up. The selection between pkey_mprotect and regular mprotect is done
through conditional compilation.

After allocating the metadata table via mmap, cfixxInitialization calls cfixxEnableMetadataWritesAll
to protect the entire metadata table from corruption. Write access is only enabled briefly whenever the
extension needs to legally insert a new entry. There are only two cases in which this occurs. First, during
construction of polymorphic objects. Second, as outlined in Section 3, the compiler emits type_info
objects, that are returned by the typeid operator. As these objects are polymorphic, they require an entry
in the metadata table to be recognized as legal under CFIXX. As no regular constructor is called for them,
CFIXX manually inserts entries for these objects [Burow et al., 2018]. Accordingly, write access is enabled
in this context as well. The run-time overhead of mprotect is linear in the number of pages for which
access rights are changed. Creating a new table entry touches two pages, specifically the page containing
the first-level entry and the page holding the second-level entry. Altering access rights of all pages the
metadata table inhabits by calling cfixxEnableMetadataWritesAll and its counterpart, would therefore be
inefficient. For that reason, the function pair cfixxEnableMetadataWrites and cfixxDisableMetadataWrites
are additionally provided. Both take the key as an argument and adjust access rights solely for the two
pages that will be modified.

Listing 7 shows cfixxEnableMetadataWrites implementation. The function receives as argument the
pointer representing the key associated with the table entry for which write access is to be enabled. It
passes this pointer to the function getMetadataAddresses, which returns a structure containing the base
addresses of the pages containing the first and second-level entries that have to be modified. The first-level
entry might require modification if the key is used the first time and a new second-level page needs
to be allocated. The second-level entry stores the vtable ptr and is written in any case. The rest of
the function is similar to cfixxEnableMetadataWritesAll. Since two access rights are modified for two
pages individually, two calls to mprotect are performed. They are passed the base address of the page,
adr.level1 or adr.level2, the system’s page size, which is returned by the sysconf system call, and the flag
for write access PROT_WRITE. The counterpart cfixxDisableMetadataWrites differs only by the access
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right PROT_READ passed. As with the function pair operating on the entire metadata table, if PKEYS are
available the system call pkey_mprotect is selected instead of regular mprotect via conditional compilation.

The function getMetadataAddresses takes the pointer serving as key into the metadata table and returns
the base addresses of the two pages, which contain the associated first and second-level entry. Listing 8
shows the implementation. The function returns a structure called MetadataAddresses, that consists of
two pointers, one for the first, and one for the second-level entry. The function first calculates the first and
second-level index based on the key it is passed. The computation follows the rules described in Section 3.
Next, the address of the first-level entry is set, which is the start of the metadata table with the first-level
index applied as offset. After that, the base address of the corresponding second-level table is retrieved,
which is the first-level table entry. Lastly, the address of the second-level table entry is set. It’s the base
address of the second-level table, defined in the previous step with the second-level index applied as offset.
The addresses of the first- and second-level table entries are stored as level1 and level2 respectively. For
both, write access is supposed to be enabled. However, the mprotect and pkey_mprotect system calls only
operate on the base addresses of pages. Therefore, the base addresses of the corresponding pages need to
be defined. To do that, the page size is determined via the sysconf system call. The page base address of
a memory address can be set by dividing the address through the page size, which is an integral division,
hence, the result is automatically rounded to the nearest smaller integer. By multiplying that result with
the pagesize again, the base address is obtained. This formula is applied to the address of both the first-
and second-level entry, and the result is returned.

The file ItaniumCXXABI.cpp in Clang’s source tree contains the function ItaniumRTTIBuilder::Build-
TypeInfo, in which the entries for the type_info objects are created [Lattner and Topper, 2023]. This is
done by calling the compiler-rt run-time function cfixxSetVTablePtr, that is defined in cfixx.c. Our extension
inserts calls to cfixxEnableMetadataWrites and cfixxDisableMetadataWrites after function entry and before
function exit respectively. The second case is polymorphic object construction. The original CFIXX
already modified the responsible code generation function CodeGenFunction::InitializeVTablePointer,
which is located in CGClass.cpp, to insert a corresponding metadata table entry. Our extension inserts
calls to cfixxEnableMetadataWrites and cfixxDisableMetadataWrites accordingly.

With all described modifications applied, the metadata table’s integrity is protected from unintended
modification by an adversary and vtable hijacking is prevented effectively.

6 Conclusion
In summary, vtable hijacking is a state-of-the-art technique leveraged by attackers to conduct code-reuse
control-flow attacks. Defense mechanisms that enforce the well-established CFI policy can prevent control-
flow hijacking effectively in theory. However, they regularly fail to do so when it comes to the subset
of vtable hijacking attacks. CFI-based solutions are limited by the inaccuracy of their static analysis,
which is caused by performance requirements and a lack of run-time information. CFIXX is an innovative
approach that tackle the problem. While the corruption of dynamic dispatch of vtable hijacking has been
prevented effectively, the corruption of RTTI is an open attack strategy that has not been covered yet.
We have shown the precondition for the dynamic_cast expression and typeid operator in context of
polymorphism of an successful exploit and how an adversary could realize such an attack. Moreover, we
protected RTTI language construct by extending the compiler extension CFIXX. We also conducted the
replacement of the deprecated MPX instructions with the newer PKEYS.
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A Listings

Listing 1: dynamic_cast vtable hijacking attack code example I.

1 c l a s s I d e n t i f i e r {
2 pub l i c :
3 v i r t u a l void a s s i gn ( char const ∗ s ) = 0 ;
4 // . . .
5 } ;
6
7 c l a s s D e f a u l t I d e n t i f i e r : I d e n t i f i e r {
8 s i ze_t s i z e ;
9 char ∗data ;

10
11 pub l i c :
12 void a s s i gn ( char const ∗ s ) ov e r r i d e {
13 f o r ( s i ze_t i = 0 ; i < s i z e ; ++i ) {
14 data [ i ] = s [ i ] ;
15 }
16 }
17 // . . .
18 } ;
19
20 c l a s s S p e c i a l I d e n t i f i e r : pub l i c I d e n t i f i e r {
21 s i ze_t f l a g s ;
22 char data [ 1 0 ] ;
23
24 pub l i c :
25 void s e t S p e c i f i c F l a g s ( ) { f l a g s = SOME_CONSTANT; }
26 // . . .
27 } ;

Listing 2: dynamic_cast vtable hijacking attack code example II.

1 void g ( I d e n t i f i e r ∗ s ){
2 S p e c i a l I d e n t i f i e r ∗p = dynamic_cast<S p e c i a l I d e n t i f i e r ∗>(s ) ;
3 i f (p ) {
4 p −> s e t Sp e c i a lF l a g s ( ) ;
5 }
6
7 // compl icated a lgor i thm . . .
8 }

Listing 3: dynamic_cast vtable hijacking attack code example III.

1 const char ∗ text = "some␣ s t r i n g " ;
2
3 D e f a u l t I d e n t i f i e r id ;
4 // id ’ s v tab l e ptr i s r ep laced with a S p e c i a l I d e n t i f i e r v tab l e ptr
5 g(& id )
6 id . a s s i gn ( t ext ) ; // causes bu f f e r over f l ow
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Listing 4: typeid vtable hijacking attack code example I.

1 // combine two hashes to c r e a t e a new hash
2 s i ze_t hash_combines ( s i ze_t a , s i ze_t b ) ;
3
4 c l a s s A { /∗ . . . ∗/ } ;
5 c l a s s A1 : pub l i c A { /∗ . . . ∗/ } ;
6 c l a s s A2 : pub l i c A { /∗ . . . ∗/ } ;
7
8 c l a s s B { /∗ . . . ∗/ } ;
9 c l a s s B1 : pub l i c B { /∗ . . . ∗/ } ;

10 c l a s s B2 : pub l i c B { /∗ . . . ∗/ } ;
11
12 void f_a1_b1 ( ) { /∗ . . . ∗/ } ;
13 void f_a1_b2 ( ) { /∗ . . . ∗/ } ;
14 void f_a2_b1 ( ) { /∗ . . . ∗/ } ;
15 void f_a2_b2 ( ) { /∗ . . . ∗/ } ;
16
17 HashTable h ;
18 h [ hash_combine ( type id (A1 ) . hash_code ( ) , type id (B1 ) . hash_code ( ) ) ] = &f_a1_b1 ;
19 h [ hash_combine ( type id (A1 ) . hash_code ( ) , type id (B2 ) . hash_code ( ) ) ] = &f_a1_b2 ;
20 h [ hash_combine ( type id (A2 ) . hash_code ( ) , type id (B1 ) . hash_code ( ) ) ] = &f_a2_b1 ;
21 h [ hash_combine ( type id (A2 ) . hash_code ( ) , type id (B2 ) . hash_code ( ) ) ] = &f_a2_b2 ;
22
23 void f (A ∗a , B ∗b)
24 {
25 FctPtr f p t r = h [ hash_combine ( type id ( a ) . hash_code ( ) , type id (b ) . hash_code ( ) ) ] ;
26 }

Listing 5: typeid vtable hijacking attack code example II.

1 A∗ pa = new A1 ;
2 B∗ pb = new B2 ;
3 // a t tacke r co r rupt s pa ’ s v tab l e ptr to r e f e r e n c e A2 ’ s v tab l e
4 f ( pa , pb ) ;
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Listing 6: enableMetadataWritesAll implementation

1 void cf ixxEnableMetadataWritesAl l ( )
2 {
3 s i ze_t tableLength = ( s i ze_t ) cf ixxTableEnd − ( s i ze_t ) c f ixxLookupStart ;
4 i f ( mprotect ( ( void ∗) c f ixxLookupStart , tableLength , PROT_WRITE) )
5 {
6 e x i t ( c f i xxEx i tEr ro r ) ;
7 }
8 }

Listing 7: enableMetadataWrites implementation

1 cf ixxEnableMetadataWrites ( void ∗ th i sP t r )
2 {
3 MetadataAddresses adr = getMetadataAddresses ( th i sP t r ) ;
4 i f ( mprotect ( adr . l e v e l 1 , sy s con f (_SC_PAGE_SIZE) , PROT_WRITE) )
5 {
6 e x i t ( c f i xxEx i tEr ro r ) ;
7 }
8
9 i f ( mprotect ( adr . l e v e l 2 , sy s con f (_SC_PAGE_SIZE) , PROT_WRITE) )

10 {
11 e x i t ( c f i xxEx i tEr ro r ) ;
12 }
13 }

Listing 8: getMetadataAddresses implementation

1 typede f s t r u c t MetadataAddresses {
2 void ∗ l e v e l 1 ;
3 void ∗ l e v e l 2 ;
4 } MetadataAddresses ;
5
6 MetadataAddresses getMetadataAddresses ( void ∗ th i s_ptr ) {
7 s i ze_t index1 = ( s i ze_t ) th i s_ptr >> 26 & mask22 ;
8 s i ze_t index2 = ( s i ze_t ) th i s_ptr >> 3 & mask23 ;
9 s i ze_t ∗ l e v e l 1 = ( s i ze_t ∗) ( c f ixxLookupStart + index1 ) ;

10 s i ze_t ∗ leve l2_base = ( s i ze_t ∗ ) ( ( ( s i ze_t ∗) c f ixxLookupStart ) [ index1 ] ) ;
11 s i ze_t ∗ l e v e l 2 = leve l2_base + index2 ;
12
13 long page s i z e = sys con f (_SC_PAGE_SIZE) ;
14 MetadataAddresses r e t ;
15 r e t . l e v e l 1 = ( void ∗) ( page s i z e ∗ ( ( s i ze_t ) l e v e l 1 / page s i z e ) ) ;
16 r e t . l e v e l 2 = ( void ∗) ( page s i z e ∗ ( ( s i ze_t ) l e v e l 2 / page s i z e ) ) ;
17 re turn r e t ;
18 }
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