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Abstract

The structure of cells is a key to understanding cellular function, diagnosis of pathological conditions, and
development of new treatments. Soft X-ray tomography (SXT) is a unique tool to image cellular structure
without fixation or labeling at high spatial resolution and throughput. Ongoing improvements in faster
acquisition times increase demand for accelerated image analysis. Currently, the automatic segmentation
of cellular structures is a major bottleneck in the SXT data analysis pipeline. In this paper, we introduce
an automated 3D cytoplasm segmentation model - ACSeg - by use of semi-automatically segmented labels
and 3D U-Net, implemented in the online platform Biomedisa. The segmentation model is trained on
semi-automatically labeled datasets and shows rapid convergence to high-accuracy segmentation, therefore
reducing time and labor. ACSeg trained on 43 SXT tomograms of human immune T cells, the model
successfully segmented unseen SXT tomograms of human hepatocyte-derived carcinoma cells, mouse
microglia, and embryonic fibroblast cells. Furthermore, we could diversify the model by adding only 6
specific SXT tomograms, showing the potential for the development of an optimal experimental design.
The ACSeg is published on the open image segmentation platform Biomedisa, enabling high-throughput
analysis of cell volume and structure of cytoplasm in diverse cell types. The approach can be expanded for
automatic segmentation of other organelles visualized by SXT, providing means for structural analysis of cell
remodeling under different pathogens at statistically significant sizes, therefore enabling the development
of novel drug treatments.

1 Introduction

The analysis of structure is a fundamental task in cell biology, as the size, shape, and internal anatomy of
cells alter to enable new functions and adapt to changing environments, including pathological conditions
[1, 2]. Various disorders such as cancer, malaria, anemia [I], and sickle cell disease [3] result in abnormal
cell shape. With this in mind, determining the three-dimensional shape of cells is one of the most important
aspects of cell biology[4].

Thus many microscopy techniques have been focused on imaging and analysis of the cell structure
[5, 6, [7]. Among existing imaging techniques, soft x-ray tomography (SXT) enables imaging of whole
mammalian cells with a spatial resolution of a few tens of nanometers, without labeling or chemical
fixation, and at high throughput of 5 min for whole 3D volume [§]. While segmentation pipelines for light
and electron microscopy are firmly established, automatic analysis of SXT data is limited [9].

Most of the SXT-based structural cell analysis is based on manual segmentation [8, 10, 1T, [12].
Thresholding-based segmentation methods which require no prior labeled data have been proposed to
extract mitochondria and cytoplasmic vesicles in Nahas et al. study [I3] [14]. Cossa et al. [15] applied
random forest segmentation to extract nucleoids from Escherichia coli. To extract mitochondria, Polo et al.
[16] implemented a trainable weka segmentation machine learning tool [I7], accessible in Fiji. Furthermore,
neural network-based algorithms, such as convolutional neural networks (CNN) or U-Net, have been used
to extract membranous organelles in Dyhr et al [9], Francis et al.[I8] and Egebjerg et al. [19] study.



A segmentation method based on the combination of 2D U-Nets was used to automatically segment
whole f-cells anatomy [20]. Most of these methods are designed for a very specialized organelle type
or pathological condition and automatic segmentation of whole cell anatomy requires complex pre- and
post-processing steps.

Here, we propose an easy plug-and-play model (ACSeg) based on 3D U-Net to extract the cell cytoplasm
structure in various cell types. We exploit the semi-automatic segmentation based on 3D random walk
implemented in the open platform Biomedisa [2I]. Apart from minimizing the time for manual segmentation
[22], our results show that the high-quality of segmented labels enables us to train the 3D U-Net on only 20
tomograms to achieve a dice coefficient of 95.43%. Moreover, even though ACSeg was trained exclusively
on tomograms containing human T-cells, ACSeg was able to segment cell cytoplasm of 4 unseen cell types
with a dice coefficient of about 87.62%. This accuracy could be significantly improved with only additional
6 tomograms, diversifying ACSeg for automatic segmentation of various cell types. Interestingly, our data
shows that the success of ACSeg diversification depends on the type of cells and/or data quality, suggesting
that optimal experimental design should be in focus for the training of 3D U-Nets. Overall, the ACSeg
enables fast and accurate cell cytoplasm segmentation of diverse cells imaged with SXT. Published as
plug and play model in the online Biomedisa application, it enables analysis of changes in cell cytoplasm
under different pathological conditions of various cells without pre-processing of SXT data. With the
development of the lab-based SXT [23] and increasing use of SXT in viral research and development of
novel drugs, the ACSeg is an important step toward fully automatic analysis of cell structure.

2 Material and Methods

2.1 Soft-X-ray tomography

SXT imaging was performed at the XM-2 beamline of the Advanced Light Source at the Lawrence Berkeley
National Laboratory [24]. We have used a 60 nm outermost zone width Fresnel Zone plate to image cells in
full rotation tomography [25]. The cells were mixed with polystyrene beads, and plunge frozen in thin-wall
glass capillaries and 92 x-ray projection images were acquired over 180° rotation with an exposure time of
200 ms. The 3D reconstructions of cells were obtained with AREC3D [26]. Further experimental details
can be found elsewhere [27].

2.2 Dataset

On average, the tomograms have dimensions of 472 x 472 x 491 voxels with slight variability due to
shifting of the capillary in the x-ray beam and thus a variable field of view [26]. The 53 tomograms of
T cells are randomly divided into two partitions 80% to 20%: 43 for training, and 10 for testing of the
network.

The dataset for testing the accuracy of divergent cell types consisted of a total of 39 tomograms
containing four different cell types: 12 Huh-7, 12 BV-2, 9 MEF, and 3 [-cells [20, 28]. In order to generalize
the training dataset, 6 additional tomograms containing Huh-7, BV-2, and MEF cells individually were
added to the training dataset in 3 different retraining. Briefly, a total of 54 tomograms were used for the
entire generalization process, which means that another 18 tomograms were used for training, and 39 were
used for testing.

2.3 Semi-Automated Labeling

To generate ground truth, testing datasets were manually segmented with Slicer3D using the segment
editor tool [29, [30]. Similarly, we have performed manual segmentation of 43 tomograms used for training.
For training, we decided to use Biomedisa which is an open-source online platform, to segment 3D volumes
based on smart interpolation of sparsely segmented slices [22]. To generate 3D masks semi-automatically,
labels were assigned manually to cell cytoplasm and polystyrene beads in every 20th slice. These sparsely
labeled slices were submitted to Biomedisa for smart interpolation to obtain labels of whole 3D volume. If
the generated 3D labels were mislabeled or the quality to the naked eye was insufficient, we added a few



manually labeled slices. From 43 tomograms used in this work, 95 percent were segmented with 20+3
manually labeled slices, and for 5 percent 3D tomograms 3043 slices were required to obtain 3D labels.

2.4 Model Training

In this work, we applied 3D U-net integrated into the online platform Biomedisa. This implementation of
the 3D U-net is one level deeper than classical 3D U-net [3I]. Details on the network architecture and
parameters used in the 3D U-net of Biomedisa can be found elsewhere [22]. The model was trained on
43 SXT tomograms containing a different number of T cells and polystyrene beads with the following
parameters: 200 epochs, a batch size of 24, and a learning rate of 0.01. The training data were split
(80%) and (20%) for training and self-validation of the network as controlled by the Biomedisa parameter
settings. The best network is achieved after 33 hours.

3 Results

3.1 Automatic segmentation workflow for cell cytoplasm

To train our U-Net model for cytoplasm segmentation in SXT data, it is first necessary to generate 3D
labels. In order to reduce manual work, we used Biomedisa for semi-automatic 3D segmentation [22]. We
manually labeled every 20th slice in tomograms and submitted labels to Biomedisa for generating 3D labels
by using smart interpolation, see Figure 1. By use of semi-automatic labeling, we reduced the amount of
manual work required to train the model by 94.6 percent compared to fully manual segmentation. The
generated 3D labels along with 3D tomograms were used to train our U-Net model, implemented within
Biomedisa for the automatic segmentation of cell cytoplasm. The segmentation workflow is summarized in
Figure 1, where the trained network is depicted as ACSeg for the automatic cytoplasm segmentation.

3.2 Evaluation of ACSeg

Previous work on U-Net segmentation showed that the number and quality of training datasets are crucial
to achieving high accuracy of segmentation [32] 33]. Therefore, we have measured the accuracy of the
ACSeg by computing Dice coefficients [34, [35] for U-net trained on various SXT tomograms. We trained
the ACSeg on 5, 10, 20, 30, and 43 datasets, see Table 1 and Figure 2. With only 20 training datasets, our
ACSeg achieved a dice coefficient above 95 %. We have investigated whether such fast convergence of dice
coefficient is due to the higher quality of semi-automatic segmentation in the prediction of labels which
was mentioned in insect studies [32]. We have compared the ACSeg trained on manually segmented labels
in comparison to semi-automatically with Biomedisa. The ACSeg trained on the manual labels showed a
lower dice coefficient for 5 training datasets with 87 % accuracy compared to 90 % with ACSeg trained on
3D labels from Biomedisa, see Figure 2. Interestingly, this relatively low difference of 3 % in accuracy is
not compensated by the increased number of tomograms. ACSeg trained on 43 datasets results in 94 % for
manually labeled data and 98 % for Biomedisa labeled data. We have fitted the so-called 1st order delay
function, that is 1 — b - exp(—ax), to find the number of manually labeled tomograms required to achieve
98 % accuracy. This approximation shows that about 52 additional manually segmented tomograms (95
in total) would be required to achieve the same accuracy as ACSeg trained on 43 semi-automatically
segmented datasets.

For ACSeg trained on Biomedisa results, adding 10 datasets increases the accuracy at first steeply
but then only gradually with more than 20 datasets, suggesting that the addition of more datasets is
unnecessary. It has been shown that choosing the dice coefficient as a performance metric is often not an
adequate measure for training models [35]. To assess the performance of the ACSeg from the biological
perspective, we calculated two major parameters used in cell biology to normalize for cell variability and
change of structure, that is volume and surface-to-volume ratio of cells [I0]. We found no significant
difference in volume (Figure 3A) compared between ground truth (generated with Biomedisa) by producing
Biomedisa and ACSeg predictions. On the contrary, the probability for the surface-to-volume ratio is
only 0.001478 (Figure 3B). Consistent with this, we found differences in the cytoplasmic morphology that
are noticeable in 3D renderings (Figure 3C5-3Cy). Many cells have cytoplasmic projections with fine
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Figure 1: Automated cytoplasm segmentation workflow with semi-automated labeling



Table 1: The effect of alteration of the number of tomograms for training on the dice coefficient of the

model
# of cells Dice coefficient, %
for training Biomedisa labels Manual labels
5 90.03 £ 15.61 86.81 £ 30.90
10 94.22 £+ 15.33 87.69 £ 17.48
20 95.43 4+ 11.94 90.93 £+ 12.72
30 96.17 £+ 11.00 92.61 £+ 10.37
43 97.78 £ 2.13 93.87 £ 7.37
100 97.78
i 95.43 sl
2N 95 94.22 93.87
ved 92.61 o
o 90.93 o
& 90.03 ®
T 0 87.69
S 86.81 ®
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Number of used tomograms for training

Figure 2: Dice coefficient according to alteration of the number of the training data

ultrastructure which is hard to detect automaticaly. Noticeably, the ACSeg segmentation did not predict
the ultrastructure of some filopodia in comparison to the ground truth. We believe that the reason behind
the low surface-to-volume ratio is that there is a considerable loss in surface resolution due to dataset
scaling. In conclusion, the ACSeg trained on 43 datasets is sufficient to successfully predict the gross cell
volume and most of the filopodia, which are sufficient for morphological analysis where cell volume is used
for normalization and visual structural representation used in cell biology.

3.3 Comparison of ACSeg to other approaches

Intuitively, one could think that cytoplasm segmentations in the SXT data should be easy to capture by
conventional approaches, such as thresholding. It is worth mentioning that the content of SXT tomograms
varies a lot. For SXT imaging, cells are suspended in thin-wall glass capillary inside the microscope
[27]. Many cells are touching the capillary wall. Additionally, polystyrene beads are added for SXT
normalization in the imaging of large cells. Their distribution is random and not consistent between
tomograms. The biology of cells starts to play a role as well. Some cells are apoptotic with fragments of
their cytoplasm visible in SXT tomograms. All these effects are stochastic and can not be controlled in
the SXT experiments. To demonstrate this effect, we show 4 cases in Figure 4: an isolated cell with debris
from other cells, a cell touching the glass capillary, cells tightly packed in the capillary, and a cell between
two polystyrene beads. We have used thresholding methods, such as the adaptive and Otsu thresholding,
which do not perform well in segmentation in most cases, see Figure 4. While these methods can be
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Figure 3: ACSeg segmentation and morphological quantification of T cells. The volume (A) and surface
area to volume ratio (B) of the cell were measured in the ground truth and prediction of cytoplasm
segmentation with the ACSeg. ns : p>0.05, % : 0.01<p<=0.05, ** : 0.001<p<=0.01, using paired t-test. N
= 10. C) 3D rendering of Biomedisa (C1) and prediction of the ACSeg (C2) respectively, visual comparison

of Biomedisa and our model’s prediction(C3).

optimized with pre- and post-processing to increase segmentation quality, such an optimization pipeline
would need to be adjusted to individual cases. The ACSeg segmentation of these difficult cases remains
accurate without any pre- and post-processing steps.

3.4 ACSeg transfer to other cell types

Because the cells are so diverse in size and morphology, it is typically difficult to apply a segmentation
network trained on one type of cells to others. We therefore first tested our model on the open SXT
datasets of 8-cells (INS-1E - a rat insulinoma cell line). Li et al. already segmented cytoplasm and some
organelles [20]. Comparing cytoplasm segmentation, we achieved 95.31 4+ 5.59 % dice coefficient for 3
tomograms which is slightly better than the results from Li’s study (dice coefficient of 91.60 + 2.19 %).
To test even more divergent cell types, we have tested ACSeg on SXT datasets of hepatocyte-derived
carcinoma Huh-7, murine microglia BV-2, and mouse embryonic fibroblasts MEF cells, see Table II.
For MEF cells, the ACSeg showed high accuracy with 94.43% measured by the dice coefficient. The
segmentation of Huh-7 and BV-2 cells, however, was not successful with 82.93 % and 84.06 % dice
coefficients respectively. To see whether ACSeg will have higher accuracy by generalization of training
datasets, we included other cell types. We have added to 43 3D labels of T cells, 3D labels of 6 SXT
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Figure 4: Quantification of Cytoplasm Segmentation Accuracy. A) A representative example 2D slice
from the 3D tomogram that was tested. 3D rendering of the Biomedisa results(B), adaptive threshold
results (C), otsu threshold results (D), and our method results (E), respectively.

tomograms for Huh-7 cells to our training data. Interestingly with the addition of such a small number of
data, the retrained ACSeg showed a 10 % increase not only for Huh-7 cells but also for BV-2 cells. We
explored whether ACSeg can be as successfully generalized by using an equivalent number of training
datasets from BV-2 cells. The ACSeg trained on 43 3D labels of T cells and 6 BV-2 cells showed lower
accuracy than generalization with Huh-7 cells with dice coefficient of 90.25%, 87.67%, and 94.58% for BV-2,
Huh-7, and MEF cells correspondingly. Similarly we generalized ACSeg by the addition of 6 MEF cells
and a mixture of Huh-7, BV-2, and MEF cells (6 tomograms each). Although both retraining processes
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provided to increase in the overall dice coefficient, they, however, have not reached the success obtained
from the network trained by combining 43 T cells with 6 Huh-7. The experiments revealed that the best
accuracy measured by the dice coefficient was ACSeg trained on 43 T cells and 6 Huh-7 cells. Based on
3D labels segmented by ACSeg and Biomedisa (Figure 5), we can say that Huh-7 cells are more similar in
number and structure of filopodia to BV-2 than T cells. However, at the moment we have no explanation
why the generalization of the ACSeg on BV-2 cells does not increase accuracy on the same scale for Huh-7
cells or independent of ACSeg generalization the same accuracy is achieved for MEF cells. Possible metrics
affecting the generalization of the ACSeg are under investigation.

Table 2: Accuracy results of ACSeg and its variants on divergent cell types

# of tomograms Dice coefficient, %
for training BV-2 (12) Huh-7 (12) MEF (9)
43 (T cell) 83.19 £+ 30.52 85.01 4+ 23.98 94.43 + 7.04

43 (T cell)+ 6 (BV-2 cell)  90.25 + 13.90 87.67 + 27.89 94.58 + 6.21
43 (T cell) + 6 (Huh-7 cell)  95.49 + 1.57  94.90+£10.95  94.56 + 7.45
43 (T cell) + 6 (MEF cell)  88.95 + 17.72 86.76 & 24.51 94.80 + 7.07

43 (T cell) + 6 (Huh-7 cell)
+ 92.82 £ 12.70 90.61 £+ 31.29 94.74 + 6.73
6 (BV-2 cell) + 6 (MEF cell)

4 Discussion

Our work presents a pipeline for training a 3D U-Net on semi-automatically segmented SXT datasets for
robust automatic segmentation of the cellular cytoplasm (ACSeg). Since ML and deep learning algorithms
rely heavily on accurately labeled data that require expert knowledge, extensive time, and effort to train,
we investigated a semi-automated segmentation approach using Biomedisa to generate increased quality
of labeled training data for a 3D U-Net, generating a model that can segment the cytoplasm with high
accuracy of more than 95 % within 1 minute. The use of labels generated with Biomedisa, provides
faster convergence in training to higher dice coefficient compared to manual segmentation. These results
illustrate that the quality of the labeling in the training dataset for the 3D cytoplasm segmentation is an
important factor to achieve decent dice coefficient with less training data.

Even though we achieved a high dice coefficient with our model, we did not rely only on this pixel-wise



metric. In biology, segmented images are mostly used for statistical analysis of cell morphology. For this
reason, we compared volume and surface-to-volume ratio as evaluation metrics as well. While the cell
volume obtained with ACSeg is accurately measured, the surface-to-volume ratio of cells is not accurate.
We believe this is due to build in scaling of tomograms to a size of 256 x 256 x 256 voxels. To achieve
higher accuracy for fine features of the cell cytoplasm, alternative architectures such as Double U-Net
should be considered [36]. Such an approach will help to improve the segmentation of fine features without
a drastic increase in time for model training.

Although our model was trained on tomograms containing only one cell type, we have applied it to
other cells of distinct morphology. Without any pre-processing methods, ACSeg showed high accuracy of
more than 95 % for 8-cells and mouse embryonic fibroblasts (MEF) cells [20]. For cells with lower accuracy,
such as mouse microglia (BV-2) and epatocyte-derived carcinoma cells (Huh-7) cells, we generalize ACSeg
with addition of a very small number of datasets in the training. Interestingly, the results show that
there is cell-type (or dataset) specific success of model generalization. We expect that identifying optimal
experimental design in terms of image quality and cell type should enable the development of automatic
segmentation models based on small number of datasets.

5 Conclusion

In this paper, we described an automatic segmentation method based on a 3D U-net and a semi-automated
labeling tool - Biomedisa - to automatically segment the cytoplasm of cells in SXT data with our novel
ACSeg. The approach minimizes time and labor for the training of the model. We demonstrate that our
test accuracy reaches more than 95% for T cells. By adding several tomograms of other cell types, we
improved the performance of the ACSeg and demonstrated its generalization. The ACSeg is published as
a free and easy-to-use model within Biomedisa. Without any pre-processing, it can be used for automatic
and accurate segmentation of cell cytoplasm, enabling structural analysis and normalization of other cell
metrics to cell volume. In the future, we envision extending such automatic segmentation of SXT data to
other distinguishable organelles, like nuclei, mitochondria, and lipid droplets.
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