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Mang, K., Schmidtobreick, M., Schoch, N., Schween, N., Schwegler, J., Song, C., Wlotzka, M.

November 22, 2017

Abstract

HiFlow3 Version 2.0 continues the path as a multi-purpose finite element software, which provides

powerful tools for efficient and accurate solution of a wide range of problems modeled by partial differen-

tial equations (PDEs). New features and functionalities, which allow to run numerical simulations with

more advanced solution algorithms and discretizations in comparison to previous releases of HiFlow3,

have been implemented. These comprise Uncertainty Quantification (UQ), energy-efficient multigrid

techniques, Schur complement solvers for saddle-point problems, extended third-party library support,

and adaptive local mesh refinement in a parallel computing environment. Furthermore, HiFlow3 has

been successfully integrated into advanced and state-of-the-art simulation environments by means of

the Medical Simulation Markup Language (MSML), for example.

The presented new algorithms and features as well as general under-the-hood improvements have

enabled excellent and relevant research activities in the fields of both medical engineering and meteorol-

ogy and environmental sciences. The described show cases demonstrate the potential and advantages,

which HiFlow3 can offer in performing a numerical simulation by means of finite element methods.

Especially, the high performance computing capabilities of HiFlow3 – not only in the mentioned fields

of applications, but also in general – have been significantly improved in Version 2.0.

1 Introduction

Complementing theory and experiment, computer simulation can be postulated as the ”third pillar”
of scientific research. In seeking the answers of today’s research challenges, modeling and simulation
provides for many applications valuable insights for the understanding of the underlying processes and
their impact. Translating the resulting formulas and equations into computer simulations enables to
quantify the quantities of interest. With that, numerical simulations can be used as an extension, a
preparation or even instead of real experiments. The strongly growing amount of available data can be
used in addition to calibrate computer simulations.

Partial differential equations are usually used in order to model physical processes. Typical examples
are the Poisson equation, the Navier-Stokes equations (e.g. simulation of a cyclone-cyclone interaction or
blood flow simulation in the aorta) as well as the elasticity equations (e.g., for soft tissue simulation). The
weak formulations of the underlying equations can be discretized by means of finite elements [28, 35]. This
results in a linear or nonlinear system of equations which is typically solved by Newton-type methods and
associated iterative solvers (e.g. GMRES). For instationary problems, time-stepping schemes need to be
considered. Applications in medical engineering, meteorology and environmental sciences usually require
a high accuracy resulting in huge sparse matrices with, in general, bad condition numbers. Therefore,
appropriate preconditioning techniques are needed for solving the discretized systems.

For dealing with uncertain parameters arising in mathematical models, uncertainty quantification is
needed. Hereby, classical methods like the Karhunen-Lòeve expansion and the polynomial chaos expansion
can be used.

1



HiFlow3 is a multi-purpose finite element software providing powerful tools for efficient and accurate
solving of a wide range of problems modeled by partial differential equations. Currently, HiFlow3 is mainly
used in numerical scenarios occurring in the areas of medical engineering, meteorology, environmental
physics and energy systems. In the field of medical engineering, patient-individual functional modeling
and numerical simulation can provide (virtual) insight into the operated tissues and their behavior and
functionality. Finite Element Method (FEM) based elasticity simulations may reveal the behavior of soft
tissues subjected to external forces and momentums, e.g., during or after surgical manipulation of the
mitral valve. Computational fluid dynamics or fluid structure interaction simulations can depict the flow
behavior of, e.g., blood in the aorta, and hence allow, e.g., for risk analysis in aortic aneurysms. In the field
of meteorology, numerical simulation with different physical models – i.e., different sets of underlying PDEs
– allows to investigate the effect of specific physical phenomena on the numerical solution in a unified and
mathematically sound framework. Based on these information, in a concretely given application scenario
the best model can be chosen in terms of accuracy, physical realism or compute time.

Based on the discussed aspects, the general focus of HiFlow3 is as follows: HiFlow3 is designed as
a library with high modularity, which allows to address a broad range of application scenarios, where
each scenario can be treated with a variety of methods in order to determine and choose the solution
methodology, that is best-suited for the considered problem. Best-suited is not only understood in the
sense of approximation quality, but also in the sense of the metric time-to-solution. The latter implies,
that each component of the software needs to stand out in good performance as well as parallel scaling
behavior. The importance of scalability arises from the fact, that many challenging problems of current
research in the considered fields of application require huge amounts of compute power.

In order to cope with the tasks and problems stated above, the HiFlow3 framework offers many features.
A first design feature is a generic modular structure, which reflects a typical simulation cycle based on
finite elements. This modular structure ensures the flexibility and maintainability of the software and is
presented in-depth in Section 2. Furthermore, the gained flexibility is a key-prerequisite in order to adapt
HiFlow3 to different mathematical and algorithmic needs as well as to different hardware and computer
architectures. The importance of the latter can not be underestimated, because high performance compute
clusters very often rely on highly heterogeneous hardware nowadays [127]. This observation motivates a
second feature of the HiFlow3 framework, namely the ability to map hardware-aware computing [11, 12].
By this term we understand the ability of the software to provide and utilize specialized implementations
of – especially performance critical – functions, which are adapted to the underlying hardware of the
current compute system in order to unleash as much of the available compute power as possible. In
the current state of the software, this is extensively done in the linear algebra module of HiFlow3 and
the realization is described in detail in the Subsections 2.3 and 2.5, respectively. A third feature is the
awareness of the HiFlow3 framework to the topic of energy consumption and energy efficiency, which
plays an important role in high performance computing [126]. In the context of HiFlow3, this is on the
one hand tightly connected to the hardware-awareness and on the other hand currently respected in the
design and implementation of a specific algorithm, e.g. in the context of a geometric multigrid method.
The details about the implementation of this algorithm in HiFlow3 are described in Subsection 2.3.3. Last
but not least, the integration of generalized Polynomial Chaos Expansion (gPCE) and specific solvers for
stochastic methods allow to easily include techniques of uncertainty quantification (UQ).

Beside these more technical aspects, HiFlow3 is regarded as a platform for the implementation of
state-of-the-art methods in order to perform research in the field of scientific computing, where the
tackled problems are modeled by partial differential equations. Therefore, the new HiFlow3 version 2.0
release contains many new algorithms and possibilities to solve the resulting discrete problems. One focus
of the new release is on linear solvers, where the capabilities of HiFlow3 are heavily extended by a whole
bunch of newly implemented algorithms and methods. Within the HiFlow3 code base, the aforementioned
geometric algorithm as well as a Schur complement linear solver and preconditioner (cf. Subsection 2.3.2)
have been implemented. Furthermore, HiFlow3 version 2.0 features new interfaces to several third-party
libraries – PETSc [17–19] and hypre [33, 42], for example –, which are commonly regarded as well-
established libraries in their field of applications and methods (cf. Subsection 2.5). Another focus of the
new release is on the topic of adaptivity in a parallel setup. With the aid of the p4est library [30, 63],
HiFlow3 is now capable to perform adaptive mesh refinement in two and three space dimensions in a fully
parallel manner, cf. Subsections 2.1 and 2.5. A third core aspect of the new release are the features and
functionalities in the field of uncertainty quantification, cf. Subsection 2.4.
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It has to be mentioned, that there exists a numerous number of other non-commercial and commercial
parallel finite element software packages besides HiFlow3. In the context of this work we are not able
to give an exhaustive overview on the state-of-the art of finite element software, but we would like to
mention in alphabetical order at least a few of them: Abaqus 2017 - Unified FEA [105] is a commer-
cial FEM software which is sold by Dassault Systèmes Simula. It comprises three software packages:
Abaqus/CAE, Abaqus/Standard and Abaqus/Explicit. Abaqus/CAE is applied for modeling, analyses
of mechanical components and visualizing the finite element analysis. The FEM analysis itself is either
done by Abaqus/Standard (a traditional implicit integration scheme) or Abaqus/Explicit (explicit in-
tegration scheme to solve non-linear systems). The ADINA System [3] is a commercial FEM software
package, which is sold by the ADINA R & D Inc. It is used to solve structural, fluid, heat transfer,
and electromagnetic problems and is capable to deal with multiphysics problems including fluid-structure
interactions. The latest version is 9.3.3. and it was released in September 2017. ANSYS Fluent [10] is a
commercial Computational Fluid Dynamics (CFD) software package provided from Ansys Inc. It is one
of the most mature software on the CFD market. Alberta 3.0 [95], last updated in March 2014, is an
adaptive hierarchical finite element toolbox. Only simplices are used for the triangulation. Refinement
and coarsening is restricted to bisection. The main focus lies on adaptivity which is achieved by different
mesh modification algorithms and a data structure which stores the mesh in a binary tree. In March
2017 the company Autodesk stopped selling the software Autodesk Simulation Mechanical [15], though,
it is still a widely used finite element analysis software. Since then the finite element parts of the soft-
ware distributed by Autodesk are included in Autodesk Nastran In-CAD and Fusion 360 [16]. COMSOL
Multiphysics [58] is a commercial simulation software environment which is actively developed. It’s capa-
bilities range from defining the geometry, meshing, specifying the physics and solving, up to the problem’s
visualization. For good usability many common problem types are predefined as templates. The C++
programming library deal.II [13, 20] (Version 8.5.0) is an Open Source project and uses adaptive finite
elements for solving partial differential equations. It’s last major release was in April 2017. DUNE [23] is
a modular toolbox for solving PDEs with grid based methods. It is not restricted to Finite Elements but
also discretizes with Finite Volumes and Finite Differences. The main principles are abstract interfaces,
generic programming techniques and reuse of existing finite element packages.The current version is 2.5.1.
It was released in July 2017. FEAST [24] is a software package designed to solve finite element problems.
For better floating point performance in terms of speed it can use different co-processing platforms like
graphic cards (GPU) or Cell BE, for example. It is based on a specific structure grid which leads to sparse
banded matrices. It seems as if there is no further active development: the webpage’s last update was in
2013. The FEniCS Project [91] combines different free and open-source software components to provide
an accessible environment for automated solution of differential equations. Its FIAT (Finite element Au-
tomatic Tabulator) [69] component is a Python module that allows for the generation of arbitrary order
finite element basis functions on simplices and, thus, it is the FEM backend of FEniCs. The latest stable
release of FEniCS is version 2017.1.0, which was released on May 12 2017. NASTRAN [82] is a pro-
gram for general Finite Element Analysis which was originally developed in the late 1960s for the NASA.
The whole software package is quite large and powerful but due to its age it is written in FORTRAN.
OpenFOAM [53] is an open source CFD software, which primarily uses finite volume methods, but also
includes a small amount of finite element analysis. The latest release is OpenFOAM v1706, which was
made available to the public in June 2017. In most cases based on the finite element discretization, useful
packages for solving the obtained linear system are PETSc [18] and Trilinos [56] which are highly scal-
able linear algebra libraries providing data structures and routines for large scale scientific applications
modeled by partial differential equations. Their mechanisms are optimized for parallel application codes,
such as parallel matrix and vector assembly routines and linear solving routines, and allows the user to
have detailed control over the solution process.

1.1 License

With the European Union Public Licence (EUPL) v1.2 [41], the release 2.0 of HiFlow3 comes under
a new open-source software license. The EUPL grants free usage and distribution of derivative works
under a copyleft clause. Previously, HiFlow3 was licensed with the GNU Lesser General Public License
(LGPL). As opposed to the LGPL, the EUPL is legally valid in 23 official languages and is conform with
the copyright laws of each of the member states of the European Union. For distribution with other
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frameworks, the EUPL is compatible to a number of similar, widely used open-source software licenses.

2 Features and Functionalities of the Open-Source FEM Soft-

ware Toolkit HiFlow3

HiFlow3 features a modular structure, which reflects a typical simulation cycle based on the finite element
method [11, 12]. As the focus of HiFlow3 is on offering efficient and dedicated methods for solving chal-
lenging problems in an interdisciplinary context, the underlying geometries are assumed to be generated
by a give mesh generator. Therefore, it is assumed that the mesh data is given by a pre-processed external
file, e.g., VTK [102] file format. Consequently, the steps, that typically need to be taken for a simulation
inside HiFlow3, are the following:

1. The mesh has to be read from a given mesh file. If a higher spatial accuracy is required, the given
mesh can be further refined. And in the context of locally adaptive finite element methods, this can
be done iteratively by several runs of the whole simulation cycle, where the mesh is adapted in each
run due to measures, which are evaluated for the solution of the previous run. Furthermore, in order
to exploit distributed memory parallelism, the mesh needs to be distributed among several parallel
processes. The classes and methods, which are needed to fulfill these demands, are implemented in
the mesh module and are described in Subsection 2.1.

2. Based on the geometry, which is defined and managed by the mesh module, the finite element trial
(or shape) functions are defined by means of the finite element method (FEM) module. The shape
functions are uniquely determined by appropriately chosen functionals, which are called degrees of
freedom (DoF) in the context of FEM. The pair of DoF/FEM defines the trial space for an unknown
function in a PDE and these pairs are implemented in the DoF/FEM module. For vector-valued
problems, this pair can be defined per variable. The management of the DoF/FEM for all unknown
functions in a (possibly system of) PDE is done by the VectorSpace class of the space module. In
Subsection 2.2 the functionalities of the DoF/FEM module are described.

3. Inserting the shape functions into the weak formulation of PDE yields a finite-dimensional (possibly
non-) linear system of equations, where each entry in the solution vector is associated with a DoF
of the finite element trial space. These finite dimensional systems of equations are represented by
means of finite-dimensional vectors and, in the case of linear systems, matrices. The implementation
of (parallel) data structures for these objects is accomplished in the linear algebra module. Based on
the matrix/vector representations, the discrete version of the underlying PDE has to be solved by
means of (non-) linear solvers. These algorithms are implemented in the solver module. The linear
algebra and solver modules are described in Subsection 2.3.

4. The discrete solutions are represented by vectors, where the entries are associated with the DoF
of the finite element discretization. In order to inspect a solution visually, a visualization of the
solution of the PDE is implemented. HiFlow3 does not offer a visualization functionality directly,
but is capable of providing tools for writing appropriate output files in the well-established VTK
data format [102]. The input/output (I/O) capabilities of HiFlow3 are described in the context of
the extensibility by means of third-party software packages in Subsection 2.5.

5. A specialty of the HiFlow3 framework are data structures and algorithms for performing intrusive
uncertainty quantification (UQ) on PDEs with stochastic parameters. These methods require specific
implementations of vectors and matrices – and, consequently, solution algorithms – based on the
combined discretizations of the physical and stochastic spaces. The resulting discrete problems
become usually very large, such that the full capabilities of HiFlow3 in terms of scalability and
performance need to be utilized in order to solve such problems in a feasible amount of time. The
specific data structures and algorithms for UQ problems are implemented in the UQ module, which
is described in Subsection 2.4
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2.1 Mesh

In many applications, the solution of a PDE exhibits a structure of varying spatial scales in different parts
of the physical domain. Adaptive mesh refinement is a common way of obtaining a finite element space
which is capable of resolving many different scales with a minimal amount of degrees of freedom. To this
end, the new release of HiFlow3 provides a mesh module which realizes a distributed, locally refined mesh.

Similar to the mesh implementation mesh dbview introduced in the very first version of HiFlow3,
the new module decouples the main mesh routines like refining, coarsening and ghost cell computation,
from the underlying data structures. These main routines are implemented in the object mesh pXest
which contains a pointer to the database object mesh database pXest. It is important to note, that
there exists only one database object at any time, but several instances of mesh pXest. The initial one
of these instances is built after reading in the coarse mesh from a file (e.g. in .inp format). All further
instances are created by modifying an existing mesh instance and do always point to the same database
object.

mesh database pXest can be roughly divided into two parts: The object mesh database has
already been part of previous HiFlow3 versions [11] and is responsible for storing and managing geometrical
data such as physical coordinates of mesh vertices, see also the section below. The second part of
mesh database pXest takes care of topological information between cells in potentially different meshes
which evolve from the same initial coarse mesh by adaption routines. This part makes heavy use of the
external software package p4est [30] which is based on a forest of quadtrees and octrees in case of 2D and
3D, respectively. mesh pXest is limited to meshes consisting of either quadrilaterals or hexahedra, since
p4est only supports these cell types. p4est provides routines for creating, storing and manipulating tree
based data structures that are distributed over several parallel processes and was primarily developed for
local mesh refinement.

Figure 1 gives a schematic overview of the reworked mesh module.

2.1.1 Data Structures

We now give a brief overview of the involved data structures which are stored in mesh database pXest.
These structures are distributed over several parallel processes according to the principle of domain
decomposition with an overlap due to ghost cell layers. In the following, we use the notion quadtree and
quadrant for both the 2D and 3D case.

Topological Data Structures
The main part of topological information is stored in the object p4est forest in form of a forest of
quadtrees. The root node of each tree refers to a cell in the initial mesh (in the following called coarse
mesh). All further nodes (in the following called quadrants) are created by successive refinement of indi-
vidual quadrants. In 2D, each parent quadrant has 4 child quadrants, whereas in 3D, each parent quadrant
has 8 child quadrants. Each p4est forest consists of several p4est tree objects which itself contain
an array of p4est quadrant objects. There is always exactly one instance of p4est forest whose
respective structure represents the most recent instance of mesh pXest. In particular, p4est forest
stores only those quadrants which do not have child quadrants (i.e. leaf quadrants) and it is exactly these
quadrants which are assigned to the cells in the current physical mesh.

Concerning parallelization, the set of all tree objects is distributed over all involved parallel processes
according to an initial partition of the coarse mesh. Each p4est quadrant stores a small amount of
integer data for describing its position within the complete forest:

• tree index t ∈ {0, . . . , Nt}
• refinement level l ∈ {0, . . . , Nl}
• Morton index m ∈ {0, . . . , 2Nl}

Here, the Morton index basically describes how to reach a specific quadrant starting from the root quadrant
of the corresponding tree. In addition, p4est offers the possibility to store a pointer to arbitrary user data
in each leaf quadrant object. Below, we describe how we make use of this option.

Besides p4est forest, there are two more crucial p4est objects to note: p4est ghost is used for
keeping track of ghost cells and for exchanging data between neighboring processes. Below, this object
will be described in more detail. Furthermore, the object p4est connectivity represents the coarse
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mesh_1 mesh_2 mesh_n
mesh_pXest

mesh_database_pXest

refine()
coarsen()
compute_ghost()

topological structure

p4est_forest

geometrical structure

mesh_database

Figure 1: Overview of mesh concept. Top: several instances of the class mesh pXest which are

created successively by adaption routines and do have access to the same mesh database pXest

object. Bottom left: schematic view on a p4est forest object consisting of two trees whose

roots refer to the cells of the initial coarse mesh. The leaf quadrants (without children) represent

the cells being present in the respective physical mesh. Bottom right: schematic view on the

corresponding physical mesh after two steps of local refinement.
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tdim 2D 3D

0 point point

1 edge, (facet) edge

2 cell face, (facet)

3 cell

Table 1: Definition of entities.

mesh and has to be set up before an initial p4est forest can be created. In contrast to p4est forest
and p4est ghost, this object is not distributed across processes. Instead, each process owns an identical
copy.

Geometrical Data Structures
Since mesh database has already been part of previous versions, we only give a very brief sum-
mary about its functionality. More details can be found in [11]. As noted before, the main task of
mesh database consists in storing data describing the geometrical properties of the mesh. To this end,
it stores an array containing the physical coordinates of all mesh vertices which lie in the local subdomain
assigned to the respective process. Moreover, for all entities of each topological dimension tdim (see also
Table 1), the indices of those vertices, forming the corresponding entity, are stored. Indexing of all entities
of different topological dimensions in mesh database is given in the form

j(tdim) ∈ J (tdim) =: {0, . . . , Ntdim}. (1)

These indices are defined locally and are the same for all mesh pXest instances sharing the same database.

Mapping between Topological and Geometrical Data Structures
In order to establish a connection between topological and geometrical information, we use the data
structures quad data and quad coord.

An instance of quad data is stored as user data in each leaf p4est quadrant, resulting in a
mapping from forest quadrant to physical cell

Jtg : {0, . . . , Nt} × {0, . . . , Nl} × {0, . . . , 2Nl} → J (cell),

(t, l,m) 7→ j(cell).
(2)

Among other data, quad data stores the cell index j(cell) of that physical cell which is represented by
the corresponding p4est quadrant. In addition, quad data stores the indices of all cells which are
represented by all ancestor quadrants of p4est quadrant.

In order to define a mapping in reverse direction, i.e.

Jgt = J−1
tg , (3)

for each cell j(cell) in mesh database there exists an instance of type quad coord. In particular, this
structure contains the coordinates (t, l,m) of that p4est quadrant that represents cell j(cell). Now,
inter-cell relationships can be obtained by combining the previously defined data structures and mappings.
E.g., computing the parent cell for some given child cell c is done by algorithm 1.

Mesh Class
The object mesh pXest serves as an interface to access the data stored in mesh database pXest. In
this way, it provides all functionality which is required by other modules in HiFlow3. An instance m of
this object is defined by a subset K(m) ⊂ J (cell) of all physical cells stored in the underlying database.
This set contains locally owned cells, as well as ghost cells, i.e.

K(m) = Kl(m) ∪̇ Kg(m). (4)
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Algorithm 1 Parent cell computation

Let child cell with index c be given.

Get corresponding p4est quadrant qc = Jgt(c).

Search leaf quadrants in p4est forest for a descendant quadrant ql of qc. If such a

quadrant is not found, search p4est ghost. Searching can be done efficiently by using

internal routines of p4est.

Retrieve parent cell index pc from quad data stored in ql.

Data Partitioning
To sum up, each process stores information on all cells in its local subdomain and on those cells, which
are located in the associated ghost layer with a user defined width, see below. Moreover, all cells that
are ancestors of any ghost cell are stored and the coarse mesh is present in each process in form of
p4est connectivity.

2.1.2 Main Routines

In this subsection, we give an overview of the main mesh routines that are usually needed in every FEM
application and are meant to be called by the user.

Creation and Initial Partitioning
The process of creating an initial instance of mesh pXest is implemented outside of this object. In
the first step, the master process builds the coarse mesh based on an input file in .inp format. To
this end, a preliminary, sequential mesh database object is created and filled with those vertex co-
ordinates and entities which are defined in the input file. Afterwards, this data is used to create the
p4est connectivity object representing the coarse mesh. Optionally, the coarse mesh can be refined
uniformly, e.g. if the number of parallel processes is higher than the number of coarsest cells.

In order to obtain an initial partition, any graph partitioner can be applied to the coarse mesh.
In particular, HiFlow3 provides an interface to METIS (see section 2.5.1) for accomplishing this task.
To propagate this partition to the subsequently created p4est forest, the cell and vertex indices
in p4est connectivity are permuted accordingly. After broadcasting this object and the initial
partitioning to all involved processes, the initial p4est forest object can be built by invoking the
corresponding routines provided by p4est. This and all further steps are executed in parallel on all
processes. Afterwards, the master process distributes the data stored in its mesh database object to all
other processes according to the previously computed partitioning. Now, every process is able to create
its own, local mesh database pXest and mesh pXest objects which, at this point, do only contain
locally owned cells. The initialization routine is finalized by setting up the quad data and quad coord
structures for all root quadrants and coarse mesh cells, respectively. Figure 2 visualizes the complete
procedure.

Mesh Adaption
Adaption of an existing mesh pXest is done by applying the routine refine(marker) for an existing
mesh pXest object. In the course of this routine, a new instance of mesh pXest is created and a pointer
to this object is given back as return value. Here, marker denotes an integer array whose size is equal to
the number of cells in the local subdomain. The respective values of this array denote different options
on how to adapt a specific cell, see also table 2. Here, a family F of cells (i.e. cells with the same parent
cell) is coarsened if and only if the following conditions hold

marker[c] ≤ 0 for all c ∈ F ,
1

|F|
∑
c∈F

marker[c] ≤ −1.
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initialize quad_data

initialize quad_coord

initialize quad_data

initialize quad_coord

create p4est_forest

create mesh_database_pXest

create mesh_pXest

create p4est_forest

create mesh_database_pXest

create mesh_pXest

partition coarse mesh

broadcast p4est_connectivity

broadcast partion

distribute coarse mesh data

(refine uniformly)

create p4est_connectivity

read in coarse mesh

Figure 2: Procedure for reading in, partition and distribution of coarse mesh and building local

mesh objects.

marker Action

0 keep cell

1 refine cell

< 0 potentially coarsen cell

Table 2: Definition of adaption markers.

This allows the user to decide how many cells per family should be marked for coarsening to actually
coarsen the corresponding cells. Remember that the mesh includes locally owned cells as well as ghost
cells. Therefore, the user has to provide adaption markers for ghost cells as well. However, ghost cells
always enter the newly created mesh without being refined or coarsened. In this way, the user does not
have to check whether a cell is locally owned or not when defining adaption markers in the application.
Keeping track of the cells that should be contained in the adapted mesh is realized by an array new cells
of cell indices j(cell) ∈ J (cell). In the first step, all cells marked for refinement are refined by executing
algorithm 2. Afterward, the coarsening step is realized by algorithm 3.

After these two adaption steps, it might be possible that neighboring cells differ in more than one
level of refinement. Such a case is problematic for the DOF/FEM module which requires that at most
one hanging node is present on each facet. In order to resolve this issue, p4est offers a balancing routine
which successively refines additional quadrants until neighboring quadrants differ in at most one level of
refinement. Here, several options of neighboring are possible and it is up to the user to select one of these,
see Table 3. All options result in having at most one hanging node per facet. A high balance mode leads
to more cells in the resulting mesh and a smoother transition of cell diameters. Balancing is accomplished
by means of algorithm 4.

For specific applications it might be desirable to have a mesh which is uniformly coarsenable, e.g.
when using a patch interpolation as higher order approximation in the Dual Weighted Residual (DWR)
method. In this case, the user has the option to enable the so called patch mode. Then, non-coarsenable
families of cells are identified by another call to p4est coarsen ext() (without actually coarsen any
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Algorithm 2 Refine mesh

Let those cells be given that should be refined. The integer array new cells is empty.

Compute coordinates and indices j(cell) ∈ J (cell) of corresponding child cells, done by

mesh database.

Pass indices of refined cells and child cells are passed to p4est forest.

Call p4est refine ext() to refine p4est forest accordingly. In this step, quad data

structures are created for child quadrants and are initialized by using quad data from their

respective parent quadrant. In addition, the previously defined cell index j(cell) is added to

this structure.

Add child cell indices to new cells.

Algorithm 3 Coarsen mesh

Let adaption markers be given for each cell which was not refined in algorithm 2. Let the integer

array new cells be given by algorithm 2.

Pass coarsening markers to p4est forest.

Call p4est coarsen ext() to coarsen p4est forest accordingly. In this step, the

quad data structure of the parent quadrant (now a leaf) is initialized by using quad data

of one of the later on removed child quadrants. The cell index assigned to the parent cell is

stored in p4est forest.

Add cell indices stored in p4est forest to new cells.

Add indices of all remaining cells with marker = 0 to new cells.

Create intermediate mesh object m of type mesh pXest with K(m) = new cells.

balance mode Two cells are neighbors if they share a common

0 edge(2D), face (3D)

1 vertex (2D), edge (3D)

2 vertex (3D)

Table 3: Definition of balance mode.

Algorithm 4 Balance mesh

Let balance mode be defined and the integer array new cells be given by algorithm 3.

Call p4est balance ext() to balance p4est forest. In this step, new quadrants are

created whose quad data structures are initialized by the corresponding parent data. How-

ever, at this stage, no cell index is available yet. Instead, all refined quadrants and their child

quadrants are stored in p4est forest.

Refine the respective cells Kp in mesh database based on the previously stored quadrants.

Put the newly defined cell indices Kc into the unfinished quad data structures.

Create a new mesh pXest object m+ 1 with

K(m+ 1) = (K(m) \ Kp) ∪ Kc. (5)
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Algorithm 5 Compute ghost cells

Let a distributed mesh pXest object be given and a ghost layer width be defined.

Call p4est ghost new() and p4est ghost expand() to create a p4est ghost object

of desired layer width.

Retrieve indices Km(m) of all mirror cells from the corresponding quad data structures by

iterating through all mirror p4est quadrant objects stored in p4est ghost.

Extract geometrical data and quad data structures for all mirror cells from

mesh database and store them in p4est ghost.

Call p4est ghost exchange custom() to exchange mirror cell data between processes.

Retrieve exchanged data from p4est ghost.

Create ghost cells from exchanged geometrical data and put them into mesh database.

This step yields indices Kg(m+ 1) for the current ghost cells.

Initialize ghost p4est quadrant objects in p4est ghost by using exchanged quad data

structures and indices Kg(m+ 1).

Create a new mesh pXest object m+ 1 with K(m+ 1) = Kl(m) ∪̇ Kg(m+ 1).

cells). Afterward, refine(patch marker) is called for the balanced mesh created by algorithm 4 with

patch marker[c] =

{
1, c is member of a non-coarsenable family,

0, else.
(6)

Note that one iteration of this process is sufficient, if balance mode is set to 1 (2D) or 2 (3D).

Ghost Cell Computation
Computation of ghost cells for each local subdomain can be done after a distributed mesh pXest object
is created. In particular, it is possible to apply several calls to refine() before the layer of ghost
cells is updated. Similar to the refine() routine, a new instance of mesh pXest is created every time
compute ghost() is called and a pointer to the corresponding object is returned. Moreover, the user can
specify up to which distance from locally owned cells, measured in number of neighboring relationships,
cells are considered to be ghost. The default value is one. Here, two cells are treated as neighbors if they
share a common vertex.

In order to recognize hanging nodes on facets that are adjacent to ghost cells, it is necessary that each
process contains all cells in its local mesh database that are ancestors of any ghost cell in the current
mesh. Therefore, cells might be exchanged although they are not part of the actual ghost layer. Figure
3 gives a schematic overview of this issue.

The actual ghost cell computation is based on the object p4est ghost. Among other data, this
object contains an array of mirror p4est quadrant objects (→ local cells that are ghost cells for
another process) and an array of ghost p4est quadrant objects (→ foreign cells that are adjacent to
locally owned cells). In order to compute a new mesh pXest object m + 1 from object m, algorithm 5
is performed.

2.2 DoF/FEM

The new release of HiFlow3 offers an increased variety of different finite element spaces. In addition to
continuous Lagrange finite elements that allow different element types (P or Q) and different polynomial
degrees to be employed, discontinuous Lagrange elements and pyramid elements G are available as well.
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process 0 process 1

mesh_1

partition()

mesh_2

adapt()

mesh_3

local 0 ghost 0 ghost 1

compute_ghost()

local 1

Figure 3: Schematic view of ghost cell computation for a locally refined mesh that is distributed

over two processes. Cells surrounded by dashed lines denote parent cells of ghost cells (bright color,

surrounded by solid lines) and are stored in mesh database, but not part of current mesh pXest

object.
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Figure 4: location and numbering of degrees of freedom for 1st and 2nd order pyramid element.

1st order case DOF numbering overlap also the numbering of vertices.

2.2.1 Pyramid Element

Besides hexahedral and tetrahedral elements, we also implemented a pyramid element in HiFlow3 for
the 3D case. Although the two former elements can already deal with most of complex geometries, the
pyramid element can play a role as ”glue element” (G) to connect tetrahedral and hexahedral grids.

Nevertheless, it has been proven that it is impossible to construct conforming continuously differ-
entiable basis functions on a pyramid element [118]. Therefore, the shape functions are built by using
composite elements, it means that we decompose the pyramid into 4 tetrahedrons and the basis functions
are constructed separately.

Figure 4 indicates first the geometry of a pyramid element, which consist of 4 triangles and 1 Quadri-
lateral. In HiFlow3, only the 1st and 2nd order elements are implemented. The numbering of the degree of
freedoms (DOFs) are also shown in Figure 4, the Gaussian quadrature points and corresponding weights
are provided in [32, 75].

2.2.2 Discontinuous Galerkin

Discontinuous Lagrange finite elements of the form read:

V dGh = {v ∈ L2(Ω), v|K ∈ L(K)l(K) ∀K ∈ Th}, (7)

which are available for a given triangulation Th of the physical domain Ω. When using the mesh
module mesh dbview, it is possible to mix different types of cells within a single mesh. In this case,
different cell-wise elements L(K) ∈ {P,Q,G} are used. When using mesh pXest, only L(K) = Q is a
valid option. In both cases, different polynomial degrees l(K) ∈ N0 in different cells are possible.

When applying a discontinuous Galerkin formulation for a given PDE, one usually has to evaluate
integrals of the form:

ae(uh, vh) :=

∫
e

f(uMh , u
S
h , v

M
h , v

S
h , ne) dσ,

be(vh) :=

∫
e

g(vMh , v
S
h , ne) dσ,

(8)

for an interface e = M(e) ∩ S(e) between two cells M(e), S(e) ∈ Th (master and slave), unit normal ne,
discontinuous functions uh, vh ∈ V dGh and some scalar functions f, g. e might also denote a boundary
facet, implying M(e) = S(e). Here, we set for x ∈ e:

vMh (x) := lim
h↓0

vh(x− hne(x)),

vSh (x) := lim
h↓0

vh(x+ hne(x)).
(9)

The DGGlobalAssembler object was developed to compute the additional contributions from DG
method to the corresponding system matrix by means of Algorithm 6. Contributions to the global system
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Figure 5: Interface with hanging node shared between one master and two slave cells.

Algorithm 6 Interface integral (contribution to global system matrix A)

Let {φKl , l ∈ I(K),K ∈ Th} be a basis of V dGh with an index set I(K) of local basis functions with

support in K and i(l,K) denoting the global dof index of basis function φKl .

for all inner interfaces e

for all K ∈ {M(e), S(e)}, for all K ′ ∈ {M(e), S(e)}

for all l ∈ I(K), for all j ∈ I(K ′)

Call local LocalDGAssembler to compute I := ae(φ
K
l , φ

K′

j ).

Add to global system matrix: Ai(j,K′),i(l,K) += I.

for all boundary interfaces e

for K = M(e), for K ′ = M(e)

for all l ∈ I(K), for all j ∈ I(K ′)

Call local LocalDGAssembler to compute I := ae(φ
K
l , φ

K′

j ).

Add to global system matrix: Ai(j,K′),i(l,K) += I.

vector are computed in an analogue way, see Algorithm 7. Moreover, the DGGlobalAssembler is
capable of dealing with interfaces that involve hanging nodes, see Figure 5. In this case, the portions e1

and e2 of a common parent interface e do both occur in the outer loop of Algorithm 6 and 7 instead of e.

2.3 Linear Algebra and Solvers

HiFlow3 Version 2.0 still features the same two-level linear algebra toolbox as described in [11, 12]. The
robustness, scalability properties and capabilities of this toolbox have been shown in several application
areas, cf. [57, 96, 100], for example.

Based on these capabilities, further abstractions, structures and algorithms have been developed and
implemented, which are described in detail in the following.

2.3.1 Abstract Matrix and Vector Interfaces

In previous versions of HiFlow3, the linear algebra toolbox and its capabilities and functionalities were
tied closely to the CoupledMatrix and CoupledVector classes for the representation of parallelly
distributed vectors. While CoupledMatrix and CoupledVector – in conjunction with the implemen-
tations of local matrices and vectors on the intra-node level – provide excellent performance and scalability
in terms of the Basic Linear Algebra Subroutines (BLAS), the ability to interact with third-party libraries
necessitates a more general interface.

To be more specific, third-party linear algebra libraries, e.g. hypre [33, 42] or PETSc [17–19], which
themselves employ parallel concepts and data structures and implement customized algorithms based on
their own data structures. These data structures provide an own Application Programming Interface
(API), which not necessarily coincides with the one, that is defined and used by HiFlow3. In order to
facilitate the interoperability in terms of matrix and vector assembly or a mixture of our own HiFlow3
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Algorithm 7 Interface integral (contribution to global system vector b)

Let {φKl , l ∈ I(K),K ∈ Th} be a basis of V dGh with an index set I(K) of local basis functions with

support in K and i(l,K) denoting the global dof index of basis function φKl .

for all inner interfaces e

for all K ′ ∈ {M(e), S(e)}

for all j ∈ I(K ′)

Call local LocalDGAssembler to compute I := be(φ
K′

j ).

Add to global system vector: bi(j,K′) += I.

for all boundary interfaces e

for K ′ = M(e)

for all j ∈ I(K ′)

Call local LocalDGAssembler to compute I := be(φ
K′

j ).

Add to global system vector: bi(j,K′) += I.

algorithm with those provided by third-party software packages, abstract base classes for (parallel) matri-
ces and vectors as well as linear solvers and preconditioners have been defined which are used throughout
the whole HiFlow3 library.

These abstract base classes – namely Matrix, Vector, Preconditioner, LinearSolver and
Preconditioner, respectively – allow an easy implementation of wrapper classes to the data structures
and algorithms of external software packages by means of inheritance from the corresponding abstract
base classes. The wrapper class agitates as translator between the HiFlow3 API and the respective API
calls of the wrapped third-party data structure or algorithm. Especially, the explicit and costly conversion
between our own HiFlow3 data structures and those of third-party packages is avoided, because the third-
party data structures are created and assembled directly. Therefore, the difference in runtime for creating
data structures – especially, parallelly distributed matrices and vectors – is almost the same for using the
HiFlow3 and third-party data structures.

Examples, where this concept is employed, can be found in the wrappers to the hypre library, see
the HypreMatrix, HypreVector, HypreBiCGSTAB, HypreBoomerAMG, HypreCG, HypreGMRES,
HypreLinearSolver and HyprePreconditioner classes, for example.

2.3.2 Schur Complement Preconditioner and Solver

Schur complement preconditioners and solvers are a well-established choice to solve the saddle-point
problems, that arise in the solution of the incompressible Navier-Stokes equations or in multi-physics
problems, see [27, 64, 103], for example.

First, we describe the overall idea of the Schur complement preconditioner. Let a linear systemAξ = b,
A ∈ RN×N , in block matrix form

Aξ =

(
A B
C D

)(
x
y

)
=

(
f
g

)
(10)

be given and assume, that A is regular. By performing a block Gaussian elimination on (10), this linear
system is equivalent to the following two equations:(

D − CA−1B
)
y = g − CA−1f , (11)

x = A−1f −A−1By. (12)

The matrix Σ := D −CA−1B ∈ RN1×N1 , 0 ≤ N1 ≤ N , is called the Schur complement of A in the block
matrix A and (11) is called the Schur complement equation for y. The strategy to solve equations (11)
and (12) is given in Algorithm 8.
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Algorithm 8 Solution strategy for Schur complement equation

Let an initial solution ξ0 ∈ RN , a right hand side vector (f, g)> ∈ RN , a system matrix A ∈ RN×N ,

a relative tolerance εrel > 0, an absolute tolerance εabs > 0, a maximum iteration number Imax ∈ N
and preconditioning matrices M−1

j ∈ RN1×N1 , j ∈ N for the Schur complement matrix Σ be given.

1. Solve Schur complement equation (11) for y by the Flexible Generalized Minimum Residual

(FGMRES) method [94] and the given parameters εrel, εabs, Imax and M−1
j .

2. Compute x via (12).

For the computation of the multiplication of A−1 with a vector, any linear solver routine that is
available in HiFlow3 can be used. The implementation of Algorithm 8 is straightforward and only a
specialized routine to compute the matrix-vector multiplication with the matrix Σ is needed.

The main difficulty is to compute the partitioning of the system matrix A into the block matrices A,
B, C and D as well as the partitionings of ξ and b, respectively. The objective is to create parallelly
distributed matrices A, B, C and D such that their row and column numberings are consecutive in parallel
in order to be able to apply any – possibly provided by a third-party software package – linear solver to
compute the multiplication with A−1. The procedure to compute the partitionings is described in detail
in the following.

To illustrate the concepts, we consider the example of a three-dimensional flow problem with velocity
field v := (u, v, w) and pressure p. Furthermore, let the variable numbers in the VectorSpace object
be (u, v, w, p) = (0, 1, 2, 3). Then, a classical splitting according to (10) is

A =

(
A B
C D

)
:=

(
Av,v Av,p

Ap,v Ap,p

)
.

The Init function of the SchurComplement class expects three arguments in order to compute
the partitionings: the VectorSpace object of the current finite element simulation as well as two
std::vector<int> objects, which describe the variable numbers of the blocks in (10). In the case
of the three-dimensional flow example, this yields the vectors

block one variables = (0, 1, 2),

block two variables = (3),

i.e., block one variables is associated with the variables of the test and trial functions of the block
matrix A and block two variables with those of the block matrix D. Consequently, block matrix B
consists of the couplings

block one variables× block two variables

and block matrix C of the couplings

block two variables× block one variables,

respectively. With these notions, the Init function takes the following steps:

1. Compute the sparsity structure of the block matrices A, B, C and D in the DoF numbering of the
system matrix A. This is done precisely in the same way as for the matrix A during the setup phase
of the simulation, but the considered couplings are restricted to those associated with the individual
four block matrices. These sparsity structures are stored in std::map<int, SortedArray<int>
> data structures. Concerning to a by-product, whose key-values of the maps for block A and block
D precisely coincide with the DoFs associated with these blocks in the system DoF numbering of the
system matrix A. Let these sets of DoF indices be denoted by {sai}

NA
i=1 for block A and by {sdj}

ND
j=1

for block D, respectively. Then, it holds

{sai}
NA
i=1 ∩ {sdj}

ND
j=1 = ∅.

This step is done on every parallel process, which is independent of all other processes in the global
DoF numbering of matrix A.

16



2. Compute the global offsets of the sets {sai}
NA
i=1 and {sdj}

ND
j=1. These offsets denote, how many DoFs

in these blocks are owned by the individual processes.

3. Based on the results of the two previous steps, consecutive global block numberings for the blocks A
and D can be computed, i.e., maps

{sai}
NA
i=1 ↔ {1, . . . , NA}

and
{sdj}

ND
j=1 ↔ {1, . . . , ND}

are created.

4. Determine the index numbers of the ghost DoFs in the individual block numberings as well as maps
from the system to the block numbering for these DoFs.

5. Translate the sparsity structures, that have been determined in step 1, from the system to the block
numbering by applying the maps created in the previous steps.

6. Create the block matrices A, B, C and D as well as the block-vectors x, y, f and g based on the
block sparsity structures and numberings determined above.

Then, the SetupOperator function copies the entries from the system matrix A to the individual
blocks based on the mappings and sparsity structures determined during the Init routine.

2.3.3 Energy-efficient Geometric Multigrid Solver

With Version 2.0, HiFlow3 expands its capabilities to the area of energy-aware high performance com-
puting by means of a new energy-efficient geometric multigrid solver and related techniques. HiFlow3’s
geometric multigrid framework is available in the new namespace hiflow:la:gmg comprising the struc-
tures for mesh hierarchy, grid transfer operators, smoothers and coarse grid solvers. In this subsection,
we present the new features related to the energy-efficient multigrid solver. However, we first give an
overview of the basic terms and concepts of energy-aware HPC since Version 2.0 is the first HiFlow3

release which expands into that field. Following the overview on energy efficiency, we introduce the new
geometric mutligrid framework.
Energy consumption of high performance computing centers has gained significant attantion in recent
years due to the increasing amounts of energy necessary to feed the computer hardware and building
infrastructure. The recent developments in computer architecture, especially in multi-, many-core and
accelerator technology, have triggered considerable performance gains in computing, allowing the con-
tinued increase of computational power. To this end, hardware is being rapidly adopted in computing
facilities. Nevertheless, further performance improvements attained from a substantial increase in the
number of cores, is constrained by the aggregated energy budget necessary for large-scale high perfor-
mance computing systems. In particular, power consumption has a direct impact on the operation and
maintenance costs of these centers, compromising their existence and impairing the installation of new
ones. Already today, the electricity costs for many computing centers exceed the hardware acquisition
costs in just a few years. Furthermore, energy consumption results in carbon dioxide emissions, a hazard
for the environment and public health. Also, heat is produced, which reduces the reliability and lifetime
of hardware components. Therefore, the concerns about the rise of an energy crisis, climate change and
fault-tolerance in large-scale systems lead to a well justified call for energy efficiency in high performance
computing.

Energy metrics, tracing and analysis for scientific applications The traditional performance
metric in HPC, floating point operations per second (Flop/s), is used to rank the most powerful super-
computers in the world by means of the Linpack benchmark performance in the bi-annual Top500 list
[127]. The most common metric for energy efficiency is the Flop/s metric divided by the power draw,
yielding floating point operations per second and per Watt (Flop/sW), or equivalently floating point op-
erations per Joule. This is used by the Green500 list [126], which ranks the Top500 candidates by the
Flop/sW metric. However, there is a discussion in the scientific community on other metrics, see for
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example [26]. Besides the relative quantities of Flop/s and Flop/sW, there are the absolute metrics of
total time to solution T and total energy to solution

E =

∫ T

0

P dt (13)

for a specific application run, where P is the instantaneous power draw. Clearly, these absolute metrics
are connected to the relative Flop/s and Flop/sW metrics by the total number of floating point operations
performed. From (13) we see that optimization for performance may imply optimization for energy if, at
the same time, the power draw is not increased too much. In addition, energy-aware high performance
computing seeks dedicated energy optimizations which reduce the power draw without affecting, or at
least not impairing too much, the performance.

Proper tracing and analysis of applications is required in order to understand the performance and
energy characteristics, to identify inefficiencies, and to find opportunities for improvement. There exists a
rich set of performance tracing and analysis tools, including well-known packages such as the HPCToolkit
[2], TAU [104], Scalasca [129], HPCView [80], Vampir [70], Paraver [90], Score-P [71], and more may
be found in [83]. In recent years, also for power and energy measurement, tracing and analysis tools
and devices have been developed including PowerMon 2 [25], PowerPack [50], Extrae in conjunction with
Paraver [6], pmlib [21, 22], and a more extensive overview is given in [116]. Power and performance traces
are typically obtained from instrumented application code or from built-in hardware sensors and counters
obtained from machine specific registers. However, power information of hardware sensors is often not
gained through actual measurements, but rather estimated from performance counters by means of a
power model, as it is the case with Intel’s Running Average Power Limit (RAPL) [60]. This has driven
the attempt to employ dedicated power meters to obtain accurate measurements. Power meters like ZES
Zimmer LMG450, Yokogawa WT300 or Tektronics PA5000 can be used as external devices to measure
the total power draw between the external power source and the power supply unit of the computer.
Individual power lines between the power supply unit and other components inside the computer such as
mainboard, CPU, memory, or accelerators can be measured with internal devices like ArduPower [38].

Energy-efficient techniques for multi-core processors In embedded and mobile systems, energy
consumption of the hardware has ever been an issue due to limited power supply or thermal restrictions.
Performance states and power states, two important developments for improving energy efficiency, have
been defined in the Advanced Configuration and Power Interface Specification (ACPI) standard [4], which
most current processors adhere to. The standard defines means to configure the processor according to
the workload, which can be used to adjust the power consumption of the processor.

Performance states A performance state, or P-state, is defined by a pair of values for the processor
operating voltage V and frequency f . Since the dynamic power P of a processor is related to voltage
and frequency as P ∼ V 2f , lowering operating power and frequency reduces the energy consumption of
the processor. The state P0 defines the nominal operating voltage and frequency yielding the nominal
performance (not considering “boost modes”, overclocking etc.), while the deeper states P1, P2,... define
successively reduced voltages and frequencies. The P-states featured by processors are usually vendor- and
product-specific, often customized for particular purposes and applications. An example of the P-states
for two processors is given in Table 4. Some processors allow to set individual P-states for each core on
the socket, while others force all cores to the same P-state. Furthermore, in some processors the memory
bandwidth is linked with their frequency. The common technique of changing the P-states during runtime
of an application in order to adjust the processor performance to the needs and to save energy is called
dynamic voltage and frequency scaling (DVFS). On Linux systems, the P-states can be controlled from
user space by means of governors. The user-space governor can be used to set a fixed P-state, and the
on-demand governor employs a heuristic to adjust the P-state depending on the workload. Changing
P-states is affected with a performance and energy cost due to the latency of the transition between the
states. The usual approach is to use higher P-states, i.e. higher frequencies and voltages, for compute-
bound operations to minimize the execution time. In contrast, switching to a deeper P-state may yield
energy savings for memory-bound operations if execution time is not increased. However, optimizing
for energy-efficiency through DVFS is often a tedious task due to the complex dependencies between
hardware properties and application characteristics.
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Intel E5504 (4 cores) AMD 6128 (8 cores)

voltage [V] frequency [GHz] voltage [V] frequency [GHz]

P0 1.04 2.00 1.23 2.00

P1 1.01 1.87 1.17 1.50

P2 0.98 1.73 1.12 1.20

P3 0.95 1.60 1.09 1.00

P4 n/a n/a 1.06 0.80

Table 4: Performance states (P-states) for the Intel E5504 and the AMD 6128 processor.

Power states The power states, or C-states, define what parts of a processor are switched off during
idle time. While C0 defines the active working state, the sleeping C-states C1,C2,... can be adopted
when the processor is idle. In the sleeping states, certain components like the floating point unit or
caches are switched off, thus saving energy, but the processor cannot perform any computation. Deeper
C-states can potentially yield larger energy saving, but the latency for the transition to the active state
is longer. Similar to the P-states, also the C-states are vendor- and product-specific. Since the C-states
are controlled by the hardware and operating system (OS), programmers can try to create conditions in
their program where the OS will promote the processor to a sleeping state when idle.

Shared memory systems and energy-aware runtimes Multi-core processors, including many in-
tegrated cores (MIC) devices like the Intel Xeon Phi [62], represent shared memory systems, which are
often programmed by means of threads to exploit task parallelism. The threads are assigned to tasks
and mapped to processor cores for execution. Threads may depend on each other through shared data
objects, thus requiring proper synchronization. Usually, the programmer defines parallel regions and data
dependencies in the program source code by means of specific compiler directives. The actual assign-
ment of threads to tasks and the mapping to cores is done by the underlying runtime. One widely used
shared memory programming model for Fortran and C/C++ is the Open Multi-Processing (OpenMP)
[88] application programming interface (API).

Considerable research has been dedicated to the development of runtimes with features like decompos-
ing high-level operations into tasks, analyzing task dependencies, and optimized out-of-order scheduling
of the tasks. Examples include Cilk [59], Harmony [37], Kaapi [48], Mentat [52], StarPU [14], and OmpSs
[39]. Runtimes and libraries dedicated to numerical schemes, in particular to linear preconditioners and
solvers, include SuperMatrix [31] an ILUPACK [5].

For current multi-core processors, usually larger execution time results in increased energy consump-
tion. Therefore, optimizations towards energy-efficiency mostly imply, or are even equivalent to, perfor-
mance optimizations. However, researchers seek to apply further energy optimizations without hurting
the performance by exploiting the P-states and C-states. A typical approach is to identify idle threads,
e.g. waiting for their task dependencies to get fulfilled, and letting them wait in a blocking mode instead
of a busy wait, thus preventing frequent polling. The goal of this technique is to fulfill the conditions upon
which the operating system would promote cores to an energy-saving deeper C-state. One can also try
to leverage the P-states in order to save energy, but this is often far more difficult due to the complexity
mentioned above. Clearly, measures to reduce the power draw are only beneficial if they do not increase
the execution time too much, so that the positive effect on the energy consumption in not impaired.

Offloading to co-processors Another typical energy-efficient technique is to offload computations to
co-processors, also called accelerators, like many integrated core (MIC) devices, graphics processing units
(GPU), or field programmable gate arrays (FPGA). The goal of offloading computations to co-processors
is to leverage their superior Flop/s and/or Flop/sW metrics for specific tasks. MIC are often built
on the same architecture as multi-core processors. Therefore, they are usually programmed using the
shared memory thread parallelism as discussed above. In contrast, GPU and FPGA require dedicated
programming techniques due to their different architecture. While FPGA are not yet common place in
HPC systems and therefore not considered in this work, today many of the most powerful machines are
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equipped with GPU. The prevalent programming techniques for GPU are the CUDA extension to the C
programming language [87], OpenACC directives [111], and OpenCL [112].

The first task when offloading computations is to identify those parts of the algorithm at hand which
can run efficiently on the co-processor. Typical candidate code sections are regular workloads comprising
mostly integer or floating point arithmetic, as they appear for example in linear algebra operations. To
increase performance and to decrease energy consumption through offloading, the ability of an algorithm
to exploit the massive parallelism of GPU and MIC is often a necessary prerequisite. Also, time and
energy for data transfer between host and device memory, and any overhead for co-processor function
and kernel invocation need to be considered. Furthermore, it is essential to avoid unnecessary energy
consumption of the host system during co-processor computations. To this end, one option is to overlap
host and device computations as far as possible to let both host and device do useful work. Another
strategy is to aggregate co-processor kernel invocations. This can either be done by kernel merging where
the work of several small kernels is united in one larger kernel, or by invoking kernels directly from the
device without host interaction. The benefit of both methods for aggregating co-processor kernels is that
invocations take longer time to return to the host system, so that the host can potentially spend longer
time in an energy-saving idle state.

Distributed memory systems and clusters Distributed memory means the separation of the avail-
able memory in distinct address spaces. This may be inherent to the computer platform, e.g. the
individual compute nodes of a cluster each have their own memory address space which is not accessible
from other nodes. A distributed memory setup may also be induced by the co-existence of several host
processes with individual private address spaces within the same node. This is a fundamentally different
situation compared to shared memory platforms, where all host processes or threads can access the same
memory using a common address space. Unless the application is “embarrassingly parallel”, which de-
notes a situation without any dependency between the processes, a technique for making data from one
process available to other processes is needed. The widely used standard technique in HPC is explicit data
transfer between processes using the message passing interface MPI [81]. Recently, also partitioned global
address space (PGAS) approaches such as Unified Parallel C (UPC) [115], Co-array Fortran (CAF) [92]
or the Global Address Space Programming Interface (GASPI) [47] have received considerable attention.

Generally, all energy-aware techniques for shared memory systems, including offloading to co-processors,
also apply to the node level in distributed memory systems. Furthermore, data transfer over the network
between nodes can become a major issue not only with respect to performance, but also with respect to
energy consumption. Therefore, the traditional performance optimizations like overlapping computation
and communication, seeking lean communication patterns, and avoiding communication as far as possible,
are likewise essential for energy efficiency.

Energy-efficient geometric multigrid solver The new HiFlow3 namespace hiflow:la:gmg com-
prises the geometric multigrid framework introduced with Version 2.0. Table 5 lists the relevant classes.
Opportunities for making multigrid solvers energy-efficient can be sought in all building blocks of the
method, including the grid hierarchy setup, grid transfer operators, smoothers, and coarse grid solvers
[124]. Due to their different roles in the multigrid algorithm, these building block usually need to be
addressed by individual measures for performance and energy optimization.

The smoother’s purpose is to remove high frequency error contributions. Besides this smoothing prop-
erty, it does usually not need to yield an accurate solution. This gives space for the choice and optimization
of smoothers. Traditional smoother choices include the Jacobi or Gauss-Seidel iteration and their damped
variants. For smoothers it might however be acceptable to modify these schemes by removing synchroniza-
tions. This leads to asynchronous iterations which can benefit from massively parallel architectures like
many-core devices or graphics processing units (GPUs) due to their relaxed synchronization requirements.
Asynchronous schemes can easily be adapted to fit the hardware at hand, e.g. by aggregating the com-
ponents into blocks and mapping them to the cores of a multi-core processor or to the thread blocks of a
CUDA GPU. Thus the adaption of the classic, synchronized relaxation scheme allows to efficiently exploit
the parallelism of modern hardware, and in particular it offers an opportunity to benefit from the superior
flops per Watt characteristics of GPUs. HiFlow3 offers a (block-)asynchronous iteration solver/smoother
dedicated to GPU-accelerated platforms in the class hiflow::la::AsynchonoursIterationGPU.
This has been proved very efficient as a linear solver in conjunction with a mixed precision iterative
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BasicLevel single level in a grid hierarchy holding a mesh, a finite ele-

ment space, a system matrix, a solution and a right-hand-

side vector

ConnectedLevel inherits from BasicLevel; holds connections to the next

coarser and finer grids

GMGLevel inherits from ConnectedLevel; holds an additional vec-

tor for the residual computation in multigrid methods and

the facilities needed for GPU offloading of matrix and vec-

tors, i.e. the memory transfer operations between host and

device

AbstractHierarchy defines a hierarchy of objects of arbitrary type, access func-

tions and interators through the hierarchy

BasicHierarchy inherits from AbstractHierarchy; hierarchy of

BasicLevel objects and initialization of finitel element

space, matrix and vectors

AsymmetricDataTransfer transfers vectors between grid levels which may use arbi-

trary parallel distributions

DofIdentification identifies finite element degrees of freedom across the grid

hierarchy

BasicConnection sets up the DofIdentification and the

AsymmetricDataTransfer between two grid lev-

els

GMGConnection inherits from BasicConnection; provides functions for

solution, right-hand-side and residual transfer between two

GMGLevels

LinearInterpolation linear interpolation of fine grid degrees of freedom from the

neighbouring coarse grid degrees of freedom

LinearRestriction restriction of fine grid degrees of freedom to the neigh-

bouring coarse grid degrees of freedom, adjoint operator

to LinearInterpolation

SmootherHierarchy inherits from AbstractHierarchy; defines smoothers for

the fine grid levels in a multigrid hierarchy

GeometricMultiGrid inherits from LinearSolver; the geometric multigrid

solver using above features

Table 5: Classes of the geometric multigrid framework.
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refinement routine in [121]. Furthermore, asynchronous smoothers greatly improved the energy efficiency
both on shared memory platforms using OpenMP, and on (multi-)GPU platforms, compared to classic
Jacobi smoother [123]. The GeometricMultiGrid solver uses a SmootherHierarchy to devise ap-
propriate smoothers for all but the coarsest grid level.
In contrast, the residual and the grid transfer usually need to be computed accurately, because oth-
erwise the overall convergence of the multigrid solver cannot be guaranteed. Nevertheless, performing
residual and grid transfer computations on co-processors like many-core accelerators or GPUs might
still prove beneficial, but care must be taken to ensure consistency in distributed systems [123]. The
LinearInterpolation and LinearRestriction classes offer both cell-based grid transfer opera-
tors and a preprocessing facility to assemble global matrix operators. The GMGLevel class is enabled to
offload the matrices and vectors to GPU for accelerated residual computation and grid transfer operators.
The coarse grid error correction solver is also expected to provide an accurate result. It nonetheless offers
space for optimization, both in the choice of the method and its implementation. One usually employs
Krylov subspace methods such as CG or GMRES methods, or direct methods like LU or QR decompo-
sitions. The coarse grid solver can itself be subject to energy and performance optimization, and the
overall multigrid solver would then inherit the benefits. The GeometricMultiGrid solver can employ
any linear solver from the hiflow:la namespace as coarse grid solver.
Another direction for energy and performance optimization, which is particularly relevant for distributed
memory platforms, affects the parallel setup of the grid levels in the multigrid hierarchy. The problem
sizes in the hierarchy often differ in several orders of magnitude from the largest problem size on the
finest level to the smallest problem size on the coarsest level. A simple parallelization where all grid levels
are distributed to all available processors may turn out to scale poorly for a large number of processors.
This is due to the communication overhead becoming significant and diminishing the efficiency of the
computations on coarse levels with small problem sizes. Instead, parallel setups where coarser levels use
only a subset of the available processors can be beneficial. Balanced setups can maintain the overall
performance of the parallelization while reducing the communication, such that the overall efficiency is
conserved. A fraction of the available processors can be temporarily deactivated while the multigrid al-
gorithm operates on coarse levels, and activated again to use the full computing power on finer levels. It
is crucial to keep communication patterns local between neighboring sub-domains, both within each grid
level as well as between grid levels for the grid transfer. Well-configured parallel setups in the multigrid
hierarchy can yield substantial energy savings by deactivating processes and reducing communication
while maintaining the overall performance. These techniques are implemented in our multigrid frame-
work in the relevant classes including the BasicLevel, BasicHierarchy, DofIdentification and
AsymmetricDataTransfer. We impose restrictions on the general parallelization scheme to prevent
from inefficient setups. First, a process which is once deactivated on a certain grid level, will stay inactive
on all coarser grids. Second, any subdomain on a coarse grid coincides exactly with the union of possibly
several subdomains on the next finer grid. This reduces the necessary communication for a prolongation
or restriction to a minimum. For applying the prolongation or restriction operator, any process of a fine
grid needs to exchange data with only one process of the next coarser grid. This yields independent local
communication patterns between fine and coarse grid processes as indicated in Fig. 6 [122]

2.4 Uncertainty Quantification (UQ)

Quantification of uncertainty is highly desired to make statements about reliability and accuracy.
Uncertainty Quantification (UQ) focuses on understanding, quantifying and propagating uncertainty

in the computational simulation of models. It connects simulation models with probability theory and
deploys a wide variety of tools and methods to quantify these probabilistic models.

Uncertainties arise from different sources and are often grouped in the categories aleatoric and epis-
temic uncertainties. Aleatoric uncertainties are inherent to the model itself and cannot be reduced.
Epistemic uncertainties are due to model assumptions, parameterizations and discretization [106, 108].
One fundamental goal of UQ is to understand and quantify how uncertainty or rather variability of model
parameters propagates to uncertainty in resulting model outputs. Monte Carlo methods are standard
methods addressing this task, as they are applicable to almost every model, with convergence being inde-
pendent of the problem dimension. However, the slow convergence rate w.r.t the number of samples is a
major drawback, resulting in high computational costs. Consequently, there is a need for alternative and
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Figure 6: Hierarchy with 3 grids and 8 processes. All processes are active on the fine grid. Every

second process is set to sleep on the middle grid, and again every second of the remaining processes

is set to sleep on the coarse grid. Non-local vector updates affect only processes of neighboring

subdomains. Prolongation and restriction use independent local communication patterns.

especially cheaper methods. Recently, polynomial chaos expansions [40, 117, 128] have gained popularity
to build faithful model surrogates, that are cheaper to evaluate than the original model. This leads to
the need of methods that compute the expansion coefficients efficiently. These methods are grouped into
intrusive [77] and non-intrusive methods [84, 85].

In HiFlow3, an intrusive Stochastic Galerkin method is implemented and applied to an Blood Pump
simulation, see Subsection 4.4. Non-intrusive methods are not implemented in HiFlow3, as they do not
require adaption of existing solvers. However, the use of non-intrusive methods with HiFlow3 is also
possible by utilizing other software like Dakota [1] or ChaosPy [43], as an outer loop. In Subsection 4.2
a non-intrusive method is applied to an Aortic Aneurysm.

As mentioned in Section 1, we focus on the intrusive Galerkin method [77] in HiFlow3. The intrusive
method relies on the Galerkin projection technique, which is based on a weighted residual formulation of
the stochastic system equations. The first step of employing the intrusive Galerkin method is to express
the random variables by using spectral expansion, e.g., Karhunen-Loève (KL) [65], homogeneous chaos
[117] or polynomial chaos (PC) expansion [51]. More specifically, in HiFlow3, we mainly work with the
generalized Polynomial Chaos Expansion (gPCE) [128].

The gPCE attempts to express a random variable by a specific polynomial regarding to its probability
distribution. Table 6 shows two kinds of polynomials implemented in HiFlow3, which correspond to the
Gaussian and Uniform distribution, respectively. Therefore, a random quantity U can be written as:

U =

∞∑
i=0

ui(x)ψi(ξ) ≈
P∑
i=0

ui(x)ψi(ξ) . (14)

Here, {ui} is the set of solution modes only depending on spacial information, {ψi} is the orthogonal
Polynomial Chaos basis and ξ denotes the vector of random variables. The random quantity, more
precisely the stochastic solution, can be approximated by a truncation up to a certain order of polynomial
degree No, result in P PC modes as shown above. The dimension P of the PC basis is obtained by:

P :=
(M +No)!

M !No!
, (15)

where M is the dimension of random variables, i.e. dim(ξ) = M .
Moreover, the stochastic solution and random input can be written in a similar fashion as the random

quantity in (14), and are inserted into the governing equations. Afterward, the stochastic equation, which
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Distribution pdf Polynomials Support

Uniform 1
2 Legendre [−1, 1]

Gaussian e−s
2/2

√
2π

Hermite [−∞,+∞]

Table 6: Chaos Polynomials implemented in HiFlow3. (pdf: probability density functions)
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Figure 7: Illustration of the Stochastic Galerkin matrix-vector multiplication.

is obtained from last step, has to be projected onto the same PC space in order to formulate the desired
stochastic system. The resulting stochastic system can be written in a general way:

AU = b , (16)

where,

A =

A00 · · · A0P

...
. . .

...
AP0 · · · APP

 , U =

U0

...
UP

 , b =

b0...
bP

 . (17)

Without going into detail, the stochastic system is expressed in a general form in (17). Ui is the
solution mode corresponding to PC basis function ψi and has same the dimension as the solution vector
of the deterministic problem. Aij denotes the sub-block of the global Galerkin matrix A, describing the
coupling between modes i and j. However, storing the global matrix A is very expensive, as a sub-block
Aij has the same dimension as the system matrix in the deterministic case. Therefore, in HiFlow3, only
the sub-blocks on the first row in matrix A (Figure 7) are stored and matrix-vector multiplication is
achieved by using (18):

AkjUj :=

P∑
i=0

CijkĀiUj = bk , j, k = 0, ..., P . (18)

Here, Cijk is a third order Galerkin tensor 1), which is defined by the projection process. In HiFlow3,
the polynomial chaos basis is defined under hiflow::polynomialchaos::PCBasis and the Galerkin
tensor is found in hiflow::polynomialchaos::PCTensor.

1)Note that, we give here only an example for third order Galerkin tensor, higher order tensors can be obtained

by using Cijk[77].
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2.5 Extensibility: Third-party packages

While it is the credo of the HiFlow3 developers to provide at least a naive implementation for all core
functionalities of a FEM software, doing research necessitates the ability to use state-of-the-art algorithms
and implementations. Therefore, HiFlow3 provides abstract base classes for the performance-critical parts
of a simulation-cycle – meshes, graph-partitioners, matrices and vectors, for example – in order to wrap
these functionalities from third-party libraries while maintaining the HiFlow3 interface to these func-
tionalities. As a consequence, much of the application development can be done without any additional
software installed.

In the following, those third-party libraries, where HiFlow3 provides a ready to use interface, are listed
per module.

2.5.1 Mesh module

The features and functionalities of the mesh module can be extended in two different setups by external
third-party libraries.

The first aspect is the (re-) distribution of meshes in a parallel computing environment. In order to
produce high-quality partitionings with a high volume-to-surface ratio of the individual subdomains on
the parallel processes, HiFlow3 is capable to call the specific partitioning routines of the METIS [66] and
ParMETIS [67] software packages.

The second aspect is the management of local mesh refinements in a parallel computing environment.
To accomplish this task for quadrilateral meshes in 2D and hexahedral meshes in 3D, HiFlow3 relies on
the p4est [30, 63] library.

2.5.2 Linear Algebra and Solvers

The capabilities of the linear algebra and solvers module can be extended by various third-party libraries.
These interfaces aim, on the one hand, at providing optimized basic linear algebra subroutines (BLAS) for
different compute architectures and, at the other hand, at providing state-of-the-art solution algorithm
for linear systems of equations.

To be specific, HiFlow3 is capable of using features and functionalities from the cuBLAS [86], LAPACK
[9], hypre [33, 42], ILU++ [78, 79], Intel Math Kernel Library (MKL) [61], MUltifrontal Massively Parallel
sparse direct Solver (MUMPS) [7, 8], PETSc [17–19], SLEPc [54, 55, 93], and UMFPACK [36] libraries.

2.5.3 I/O

Conducting large-scale and massively parallel simulation requires efficient strategies for managing the
input and output (I/O) of simulation data. Especially, the runtime of a single job on cluster systems is
typically restricted to several hours which necessitates the ability to reload the last state of a simulation
run. In order to write and read large data efficiently, HiFlow3 interfaces the HDF5 [110] library for binary
data I/O.

In order to visualize the finite element solution functions and possibly derived/evaluated functions
– e.g., L2 and H1 error norms – HiFlow3 is capable to write visualization data in the well-established
(parallel) VTK data format [102]. This functionality is implemented in the CellVisualization and
ParallelCellVisualization classes, respectively. As the names of the classes indicate, the visual-
ization output is written in a cell-wise manner, which means that the DoF values are written per cell.
As a result, DoF values may be written redundantly several times in the context of continuous finite
element methods, whenever a DoF is shared by several cells. The big advantage of this methodology is
the capability to write true discontinuous visualization output for discontinuous finite element methods.
Furthermore, it allows precise visualizations in the context of hp-FEM.

3 Interfaces and Environments

HiFlow3 can be set in the context of larger approaches by automating and integrating it into an entire
simulation workflow taking into account pre- and post-processing steps.
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Figure 8: Schematic representation of the complex biomechanical modeling workflow from to-

mographic images via simulation to post-processing, showing the miscellaneous specific tools and

software components used for the different stages.

As an example, a simulation pre- and post-processing scheme for surgery simulations, called Medical
Simulation Markup Language (MSML), is presented in order to analyze and process patient-individual
medical data. Then, this information is used as input for the fully automated HiFlow3 simulation setup.

Further, we developed an interface between HiFlow3-based simulations and machine learning ap-
proaches. Hereby, machine learning algorithms are used in order to calibrate parameters which are nec-
essary for the HiFlow3-based simulations. As an example, soft tissue material parameters are calibrated
patient-individually for elasticity simulations.

3.1 Simulation Pre- and Post-Processing and Cognitive Application Pipeline

In the field of medical engineering, mathematical soft tissue modeling and FEM-based elasticity simulation
allow to predict the behavior of soft tissue subjected to external forces and momentums, e.g., during or
after surgical manipulation. Similarly, computational fluid dynamics (CFD) and fluid structure interaction
(FSI) simulations can depict the flow behavior of, e.g., blood in the aorta, and hence allow, for risk analysis,
e.g., in aortic aneurysms.

Using the FEM simulation toolkit HiFlow3 and describing a respective surgery simulation scenario
by means of a HiFlow3 Extensible Markup Language (XML) input file, we can run a simulation and
obtain results, which can be provided to surgeons in order to assist them during surgery. However,
there is a complex biomechanical modeling workflow which precedes the actual simulation (simulation
preprocessing), and which is to compose the above-mentioned XML scenario input files along with the
respectively needed specifications, like mesh geometries, material parameters, boundary conditions, etc.

This biomechanical modeling workflow usually covers many different steps, see Figure 8. It commonly
starts from tomographic data, goes via image segmentation and FE mesh generation, and also includes
the definition of boundary conditions, material parameters and other model and simulation specifications.
Despite of being a seemingly simple task, the composition of an appropriate biomechanical model as a
result of passing through these workflow steps can be very time-consuming in practice, and often requires
manual interaction.

With the modeling approach of the Medical Simulation Markup Language (MSML) [109], we describe
and integrate the entire workflow, and facilitate the patient-specific construction of biomechanical mod-
els for subsequent HiFlow3-based simulation. Namely, using the MSML and a set of dedicated MVR
simulation preprocessing operators, we allow for the comprehensive analysis and processing of patient-
individual medical data and for fully automatically setting up HiFlow3 XML input files, which can directly
be executed through the HiFlow3-based simulation application [101].

For more information, please see [96].
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Figure 9: Draft of the basic structure and setup of the implementation of our reinforcement

learning algorithm for simulation calibration [97].

3.2 Machine Learning-based Calibration of Soft Tissue Simulation Material

Parameters

Based on our works on cognition-guided and patient-individual soft tissue simulation for surgery assis-
tance [98], we further investigated on an interface between HiFlow3-based soft tissue simulation and
Machine Learning algorithms. We developed a machine learning framework which allows to patient-
individually calibrate soft tissue material parameters for subsequent HiFlow3-based elasticity simula-
tions [97].

A Q-Learning (reinforcement learning) algorithm, which assesses the quality of the preliminarily ob-
tained simulation result by means of comparison with real patient data, allows to iteratively approximate
the default material parameters to the real patient-individual parameters. Figure 9 gives a structural
draft of the algorithm.

An evaluation by means of a simple soft tissue-filled beam on the one hand, and of a coarse-grained
liver morphology on the other hand showed the usability and the efficacy of this promising approach.
Further, training data sets have been created for setting up and optimizing a neural network in order to
obtain calibration results in a more efficient and time-saving way.

For more details, please see the EMCL preprint [97]. We emphasize that this work – rather than being
a closed research work with an in-depth theory backup and a complete evaluation – represents a technical
report and some interesting experimental works that are to serve for further research and development.

3.3 Multiphysics model coupling using OpenPALM

“Simulations that couple multiple physical phenomena are as old as simulations themselves” [68]. In this
section, we outline the usage of HiFlow3 in multiphysics simulations in conjunction with OpenPALM [29,
76, 89]. OpenPALM is a dynamic parallel software coupler tool supporting the controlled execution of
simulation models in a coupling algorithm, and providing a communication mechanism for data exchange
between coupled models.

3.3.1 OpenPALM terms and concepts

Following [125], we briefly introduce the terms and concepts of OpenPALM. Its main idea is to consider
multiphysics applications as a composition of units which can be coupled by means of a data transfer
mechanism. OpenPALM’s goal is to ease the coupling of new and of existing codes written in Fortran, C
or C++ with minimal effort, even if they were not meant to be coupled in the first place. OpenPALM
consists of three main components: a graphical user interface (GUI) named PrePALM, the driver and
the library. The user can compose a coupled application in a pre-processing step with the help of the
PrePALM graphical user interface. Its main feature is a canvas where the user can describe the coupling
algorithm in a graphical form. This is done by defining execution paths, named branches in OpenPALM,
scheduling the units by arranging them on the branches, and by connecting the units to indicate data
transfer.
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OpenPALM allows dynamic control flows in the coupling algorithm. This includes the conditional
execution of units where it is not known a priori if and when conditions are fulfilled, repeated execution
of units in loops where it is not known a priori if and how often the loop will be executed, or execution
switches with multiple alternative paths. Complex control flows can be defined using an arbitrary number
of branches.
OpenPALM features two levels of parallelism. On the one hand, units can run concurrently on separate
sets of processors when they are scheduled to separate execution branches. On the other hand, OpenPALM
is able to couple units which are internally parallelized supporting both shared and distributed memory
parallel units, which may internally use message passing, multi-threading and/or accelerators.

A key feature is the communication mechanism. Owing to OpenPALM’s philosophy of coupling
individual units, it is necessary to facilitate data transfer between units and at the same time keeping them
general and independent from any particular application. Models are viewed as entities which produce
and/or consume data and perform certain computational tasks, so that generality and reusability for
any purpose is maintained. Therefore, units cannot know about communication partners. Instead, they
need a way to request for input data or to announce the availability of output data without information
about source or target of the communication. OpenPALM offers communication routines for sending and
receiving data, which fulfill these requirements. These routines, among others, are implemented in the
library. Developers can use them in the unit’s source code and link against the library. The communication
routines are independent from the specific application at hand by using an abstract description of the
data to be exchanged.

These library routines used in the units are complemented by the OpenPALM driver. The driver is a
special entity which is automatically adjoined to any coupled application. It has two main purposes: to
orchestrate the execution of the branches and units, and to act as a broker for the data transfer between the
units. The driver starts, stops and monitors the execution of the branches, and controls the units’ access to
resources such as files, memory, or processors. It also forms the counterpart to the communication routines
used in the units. Since units do in general not know their communication partners, they announce data
transfer requests to the driver. The driver then deduces the correct matching of source and target, and
arranges a connection between the corresponding units.

3.3.2 Example application for fluid-heat-coupling in a natural convection scenario

In [120], we demonstrated the use of OpenPALM in natural convection simulations. We implemented a
Navier-Stokes solver and a heat equation solver with HiFlow3, and used them as units in the OpenPALM
coupling. Figure 10 shows the solution of the natural convection flow at selected time steps. The fluid and
the heat model update each other after each time step with the new velocity and temperature fields using
OpenPALM’s communication mechanism. Figure 11 (left) shows the coupling setup in the PrePALM
graphical user interface. The models are executed on concurrent execution branches with data exchange
defined by connections of the input/output plugs. Both models used HiFlow3’s MPI parallelization with
individual domain decompositions. Although the non-linear fluid model has a far larger demand for
computing power than the linear temperature model, we achieved a balanced time-to-solution for both
models by allocating appropriate resources to each model using OpenPALM’s dynamic parallel coupling
techniques. Furthermore, we achieved tremendous performance increases for specific parallel setups owing
to the coupling-level parallelism using a concurrent operator splitting time stepping scheme [119, 120] while
maintaining accuracy, as the Figures 11 (center) and (right) show.

4 Show Cases

HiFlow3 is developed at the Engineering Mathematics and Computing Lab (EMCL) at Heidelberg Uni-
versity and in the Data Mining and Uncertainty Quantification (DMQ) research group at Heidelberg
Institute for Theoretical Studies (HITS gGmbH). It is the workhorse of EMCL for many of its research
activities, where the numerical solution of PDE is involved. EMCL is particularly noted for its openness
to multidisciplinary research in the field of engineering and scientific computing. At EMCL and DMQ, in-
terdisciplinarity characterizes both daily activities and the long-range direction of research. The challenge
of EMCL and DMQ is to enable world-class scientific research by employing cutting-edge supercomputing
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(a) t = 0 (b) t = 5 (c) t = 10

Figure 10: Fluid temperature (color) and velocity (arrows) at selected time steps [120].

Figure 11: PrePALM coupling setup of the fluid model and the heat model (left), simulation

runtime concurrent operator splitting scheme vs. reference (center), integrator accuracy concurrent

operator splitting scheme vs. reference [119, 120].

technologies.
Many of the (new) features and functionalities, which have been described in Section 2, have been

developed in the context of actual and current research activities. This also holds true for the configura-
tions in Section 3. In the following, selected results of these research activities, which have been published
before, are presented as show cases in order to give an impression, what kind of numerical simulations
are enabled by HiFlow3 Version 2.0.

Readers, who are new to HiFlow3 or numerical simulation by means of finite elements in general, are
kindly referred to Section A in the Appendix, where an overview of available tutorials on HiFlow3 is
given. These tutorials comprise general theory on the tackled problems in general and, particularly, the
implementation of a numerical solver by means of finite elements with the aid of HiFlow3.

4.1 Show Case: Cyclone-Cyclone Interaction (CCI)

A show case for the demonstration of the capabilities of HiFlow3 in the context of meteorology and
High Performance Computing (HPC) is the simulation of two interacting tropical cyclones scenarios with
different physical models. These models are expressed in the form of systems of PDEs. The models —
including their derivation and discretization as well as further numerical results — are presented in detail
in [49]. For further information on the background, history and state-of-the-art in this field, please refer
to [49] and the references therein. The task of forecasting the motion and evolution of the interaction of
tropical cyclones is a challenging and computationally expensive task. The underlying physical processes
interact in complex ways on a wide range of spatial and temporal scales, which needs to be considered in
the discretization of the respective models.

Typically, tropical cyclones have diameters on the scale of several 100 km. In the considered scenario,
two cyclones of this type, which interact with each other, are placed in the computational domain with an
initial distance of the storm centers of 400 km. Therefore, the horizontal extend of the dynamic evolution
of the two cyclones easily reaches the scale of 1000 km. Consequently, the domain Ω needs to be chosen
large enough such that the cyclones are still fully contained within the domain on the considered time-
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Figure 12: Domain Ω and boundary conditions for CCI scenario.

interval. In the presented case, the domain extends over 4000 km in both horizontal directions, and 13 km
in the vertical. Horizontally, the domain is centered around the origin of the coordinate system, i.e., the
domain Ω is defined as

Ω := [−2, 000, 000; 2, 000, 000]× [−2, 000, 000; 2, 000, 000]× [0; 13, 000], (19)

where the boundaries of the intervals are given in meters [m]. The domain Ω as well as the applied
boundary conditions for Problems 4.1 and 4.2, respectively, are depicted in Figure 12.

The physical models for the evolution of the fluid dynamics, which are considered here, are the
compressible Navier-Stokes equations for a dry atmosphere as well as a so-called Low-Mach number
approximation, cf. [49]. The governing equations of these models are given as follows:

Problem 4.1 (Compressible Navier-Stokes model [49])

Let Ω ⊂ R3 be as in (19) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)> : [0, T )×Ω→
R3, a density perturbation ρ∗ : [0, T ) × Ω → R, a temperature perturbation θ∗v : [0, T ) × Ω → R and a

pressure perturbation p∗ : [0, T )× Ω→ R satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v =

(
fv,−fu,−ρ

∗

ρ
g

)>
(20)

∂tρ
∗ + w∂zρ0 + v · ∇ρ∗ + ρdiv v = 0 (21)

∂tθ
∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (22)

(
− gκθz ln

(
1 + θzz

θ0

)
+R′

)
ρ∗ (θ∗v + θv,0)

p0
+ 1 +

θ∗v
θv,0


1

1−κ

p0 − p0 = p∗ (23)

w = 0, ∂nu = 0, ∂nv = 0 on [0, T ]× Γ (24)

v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x) (25)

as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v and p∗,

p∗0 :=
(
(ρ∗0 + ρ0)R′

(
θ∗v,0 + θ0

)) 1
1−κ (1000hPa)

−κ
1−κ − p0
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and

ρ := ρ∗ + ρ0.

Equations (20)-(23) are required to hold on (0, T )× Ω and (25) is asked to hold on {t = 0} × Ω.

Problem 4.2 (Low-Mach model [49])

Let Ω ⊂ R3 be as in (19) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)> : [0, T )×Ω→
R3, a density perturbation ρ∗ : [0, T )×Ω→ R, a temperature perturbation θ∗v : [0, T )×Ω→ R, a pressure

perturbation p∗ : [0, T )× Ω→ R and a thermodynamic pressure pth : [0, T )→ R, which fulfills∫
Ω

p∗dx = 0, (26)

satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v +

(
−fv, fu, ρ

∗

ρ
g

)>
= 0 (27)

∂tpth + w∂zp0 +
pth + p0

1− κ
div v = 0 (28)

∂tθ
∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (29)(

p0
pth+p0

)κ
pthθv,0 +

[(
p0

pth+p0

)κ
− 1
]
p0θv,0 − p0θ

∗
v(

− gκ
R′θz

ln
(

1 + θzz
θ0

)
+ 1
)
R′ (θv,0 + θ∗v) θv,0

= ρ∗ (30)

∂tpth −
∫

Ω
κw∂zp0dx

(1− κ) |Ω|
= 0 (31)

w = 0, ∂nu = 0, ∂nv = 0 on [0, T ]× Γ (32)

v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x), pth(0) = 0 (33)

as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v and p∗,

ρ∗0 :=
(1000 hPa)

κ
(pth(t) + p0(x))

1−κ

R′
(
θ∗v,0 + θ0

) − ρ0

and

ρ := ρ∗ + ρ0.

Equations (27)-(30) are required to hold on (0, T )× Ω and (33) is asked to hold on {t = 0} × Ω.

In both the Compressible Navier-Stokes model and the Low-Mach model, the unknown functions v,
ρ∗, θ∗v and p∗ are discretized in space by means of finite elements and by means of finite differences in time
[49]. The domain Ω is triangulated admissibly in congruent hexahedra. Based on this triangulation, finite
elements of Lagrange type with trilinear basis polynomials are chosen for all six unknown functions, i.e.,
a Q1/Q1/Q1/Q1/Q1/Q1 discretization is chosen in space [49]. Also, all finite dimensional test function
spaces are chosen to be defined by the Q1 discretization of the domain Ω by hexahedra.

For the discretization in time, in the momentum equation of both the Compressible Navier-Stokes and
the Low-Mach model all terms are treated in a Crank-Nicolson manner except for the pressure part p∗,
which is treated in an implicit Euler manner [49]. The continuity equation is in both cases discretized
by the implicit Euler scheme in time, whereas the thermodynamic energy equation is discretized by the
Crank-Nicolson time-stepping scheme [49].

The resulting discrete nonlinear systems of equations are solved with an inexact Newton method, where
the linearized systems in each Newton step are solved with the GMRES algorithm [94] – preconditioned by
the BoomerAMG preconditioner of the hypre library [42] – in the case of the compressible Navier-Stokes
model and with the FGMRES algorithm [94] – preconditioned by a nested Schur complemented approach
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Figure 13: Initial velocity field
[
m
s

]
and vertical vorticity component

[
1
s

]
[49].

[49] – in the case of the Low-Mach number approximation. Please refer to [49] for further details about
the solution process.

The initial conditions for the CCI scenario are depicted in Figure 13. Please refer to [49] for further
visualizations. To demonstrate the capabilities of HiFlow3 in the context of this showcase in terms of
scalability, the parallel scaling behavior of the two models with the respective solvers has been investigated
and the results are shown in Figures 14 and 15, respectively.

The results show that both models scale very well up to 1024 processes and achieve over 80% of parallel
efficiency, while the differences between both models are small. For the configuration of 2048 processes,
there is a notable decrease in efficiency measure as the speed-up from 1024 to 2048 processes is notably
smaller than for the lower processor numbers. On 2048 processors, the Compressible Navier-Stokes model
performs considerably better by providing an efficiency of over 60%, whereas the efficiency of the Low-
Mach model decreases to approximately 45%. For further comparative measures of the two models and
their solvers, please refer to [49].

Figure 16 shows a comparison of the solutions of the two models after approximately 12 h of simulated
physical time and Figure 17 shows the solution of the Low-Mach model after 96 h of simulated physical
time. For an in-depth comparison, please refer to [49].

4.2 Show Case: Fluid-Structure Interaction for Aortic Blood Flow

The numerical simulation of aortic blood flow can help to get a deeper understanding of the bio-mechanics
of aortic physiology and disease. Pre-surgical risk parameters computed by numerical simulation are
discussed in the literature. They can enhance the risk assessment before aortic surgery. Furthermore,
simulations can give information on the dynamics of blood flow after different surgery scenarios. At the
current state of the art, however, simulation methods have to be refined and validated in a broad way
[34].

The three-dimensional and time-dependent bio-mechanics of the aorta are mainly governed by the
fluid flow of the blood and the vessel wall movement. The fluid flow can be modeled by the Navier-Stokes
equations. The vessel wall displacement can be modeled by the momentum conservation equations for
visco-elastic materials. At the boundaries of the considered vessel section, the three-dimensional model
can be embedded in a zero-dimensional lumped parameter model of the full cardiovascular system [45].
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Figure 14: Speedup in strong scaling test for whole time-step on bwForCluster MLS & WISO

(Production) relative to 256 processes [49].
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Figure 15: Efficiency in strong scaling test for whole time-step on bwForCluster MLS & WISO

(Production) relative to 256 processes [49].
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(a) Compressible Navier-Stokes

(b) Low-Mach

Figure 16: Velocity field and vertical vorticity component at common final time.

34



Figure 17: Final velocity field and vertical vorticity component at T = 96 h, computed with

Low-Mach model.

Considering blood vessel dynamics, which include the elastic vessel wall movement, involves the cou-
pling of fluid flow and wall displacement. A monolithic solver for the resulting fluid-structure interaction
(FSI) problem is implemented in HiFlow3-based on the Arbitrary Eulerian-Lagrangian (ALE) method.
The mathematical foundation is described for example in [46].

In the release 2.0 of HiFlow3, the FSI-solver is available for the computation of the FSI benchmark
proposed by [113]. The computed benchmark quantities are well within the range of the reference values
provided in [114].
Furthermore, an analytically solvable benchmark problem for fluid-structure interaction including the
uncertainty of input parameters has been defined. It is based on a two-dimensional Couette-flow with
an additional layer of structure material surrounding the fluid phase. The analytical solution is point-
symmetric for the modes of the Polynomial Chaos expansion. The implementation of the FSI-solver in
combination with the intrusive UQ-approach described in 2.4 has been verified by means of this benchmark
in [72].

For further validation purposes, the implemented FSI solver has been used to simulate the fluid flow
through a prototypical aortic phantom. The simulation results were compared to the velocity field of the
fluid flow through the silicone vessel measured by phase-contrast magnetic resonance imaging (PC-MRI)
[74]. Considering the uncertainties in the stiffness of the vessel wall material, the simulation results are
in well accordance to the measurements [73].

The FSI simulation can be embedded in a pre- and post-processing workflow enabling the usage of
patient-specific geometries as described in Section 3.1. The simulation of a proband is visualized in Figure
18.

Possible future extensions of the FSI application are given by data assimilation (cf. Section 3.2) with
PC-MRI measurements and the usage of complex material laws for blood flow and the aortic wall. The
developments aim to enhance medical imaging of aortic blood flow and to provide additional information
for the pre-operative risk assessment of aortic surgery.
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(a) Mean value: Highest von Mises stress values

appear at the bifurcations of the aortic bow.

(b) Standard deviation: The highest influence of the

uncertainty of the input parameters can be located

within the domain.

Figure 18: Simulation of aortic blood flow with elastic vessel wall movement. The visualization

shows the velocity magnitude V and the von Mises stress at maximal mid-systolic inflow. The

inflow velocity and the stiffness of the vessel wall were modeled as uncertain parameters.

4.3 Show Case: Mitral Valve

In the framework of the collaborative research center (SFB TRR 125) Cognition-guided Surgery 2), we
model and simulate the biomechanical behaviour of the elastic mitral valve soft tissue in the human heart,
subjected to surgical manipulation during and after a minimally-invasive mitral valve reconstruction
through annuloplasty surgery [100].

Using the MSML (see 3.1), a segmented mitral valve (MV) geometry is meshed and annotated for the
HiFlow3-based FEM simulation, and boundary conditions are defined to model the natural forces during
the cardiac cycle and the external forces through annuloplasty.

Our HiFlow3-based simulation application implements via the elasticity equations (cf. the respective
HiFlow3 Tutorial on Soft Tissue Simulation [99]) a biomechanical model for the numerical simulation of
the MV behavior, see Figure 19 for an illustration. Specifically, it is capable of simulating the post-surgical
behavior of the mitral valve, both with respect to the closing behavior and with respect to the resulting
von Mises stress distribution which may indicate potential tissue rupture (see Figure 20).

Looking at the performance of the entire mitral valve repair (MVR) surgery assistance system, we
separately evaluated the MSML-based MVR simulation preprocessing components on the one hand, and
the HiFlow3-based MVR simulation component on the other hand.

For the MSML-based simulation preprocessing component, we employ Intel Core i7-4600U notebook
PCs with 8 GB RAM, which have access to our medical patient data bases, and thus fully automatically
yield results after 72± 4 seconds.

The HiFlow3-based MVR simulation application [100] is executed on the bwUniCluster 3), a High-
Performance Computing cluster based in Germany. We run the simulation on 128 cores, distributed over
16 nodes, each with 64 GB RAM. Space discretization with approximately 120 000 tetrahedral cells and
70 000 DoFs corresponds to the original TEE-ultrasound-based imaging resolution, such that the usage
of the HiFlow3-based CG solver along with its internal Symmetric Gauss-Seidel and the external hypre
BoomerAMG preconditioners yields simulation results (as shown in Figure 20) in just under three minutes
of computation time [98].

2)Cognition-Guided Surgery: www.cognitionguidedsurgery.de/
3)bwUniCluster: https://bwunicluster.urz.uni-heidelberg.de/
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Figure 19: Illustration of the biomechanical model specification for describing the MV behavior

and the procedure of MVR annuloplasty surgery.

Figure 20: Visualization of the biomechanical model and of the simulated post-surgical MV

behavior after MVR annuloplasty surgery.
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Figure 21: Illustration of the boundaries and the axis of rotation on the blood pump geometry.

Inflow maximal speed (m/s) 0.5 Inflow speed variation (σ1) 10%

Dynamic viscosity (N · s/m2) 0.0035 Viscosity variation (σ3) 10%

Angular speed (rad/s) 261.8 Angular speed variation (σ2) 10%

RPM 2500 Density (Kg/m3) 1035

Table 7: Model parameter values.

4.4 Show Case: Blood Pump with UQ

One UQ application in HiFlow3 by using the intrusive Galerkin method is a FDA blood pump [44]
simulation. Figure 21 indicates here the geometry of FDA blood pump, it consists of a pump housing
(blue) and a rotor (red). The rotor operates under a high rotating speed and pushes the blood from inlet
to the outlet through the pump chamber.

In order to simulate the blood flow within the pump chamber, the Variational Multiscale method
is employed, the moving mesh is modeled with a shear layer update approach [107]. We consider three
uncertain parameters: inflow boundary condition g, rotating speed ω of the rotor and dynamic viscosity µ.
We model each of those uncertain parameters with independent, uniformly distributed random variables
ξi ∼ U(−1, 1), i = 1, 2, 3, it reads:

g = g0 + g1ξ1 , (34a)

ω = ω0 + ω2ξ2 , (34b)

µ = µ0 + µ3ξ3 . (34c)

Where g1 = σ1g0, ω2 = σ2ω0 and µ3 = σ3µ0. σi are the decay factors with respect to the mean value,
thus 0 < σi < 1. Due to the three uncertain inputs, velocity and pressure can be expressed by using
the Polynomial Chaos (PC). After inserting the PC expansion into the governing equation, a Galerkin
projection can be performed in order to obtain a generalized PCE system. For the sake of simplicity, the
detailed procedure can be found in [107].

Before showing the numerical results, some physical parameters are presented in Table 7. We consider
10% deviation from the mean value, and the rotating speed is 2500 revolution per minute (RPM). Figure
22 shows the mean value and standard deviation of the pressure distribution on the rotor. The standard
deviation follows slightly the magnitude of the mean value, since it is lower at the center and higher on
the hub of the blade. But the uncertainty distribution arises also at certain locations where the pressure
is less important. Figure 23 represents the mean value and the standard deviation of the velocity. The
standard deviation becomes higher after the flow at the outlet, it might be due to the acceleration after
the nozzle structure.
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Figure 22: The mean value and standard deviation of the pressure at time step = 500.
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Figure 23: The mean value and standard deviation of the velocity at time step = 500.

5 Conclusion and Outlook

HiFlow3 Version 2.0 continues the path as a multi-purpose finite element software, which provides pow-
erful tools for efficient and accurate solution of a wide range of problems modeled by partial differential
equations (PDEs). New features and functionalities, which allow to run numerical simulations with more
advanced solution algorithms and discretizations in comparison to previous releases of HiFlow3, have
been implemented and described. These comprise fully adaptive mesh refinement in a distributed envi-
ronment, a new implementation of Schur complement solvers, uncertainty quantification based on chaos
polynomials, energy-aware multigrid schemes and many more.

The presented new algorithms and features as well as general under-the-hood improvements have
leveraged new research activities in the fields of medical engineering, meteorology and environmental
sciences. The described show cases demonstrate the advantages, which HiFlow3 can offer in performing
a numerical simulation by means of finite element methods. Especially, the high performance computing
capabilities of HiFlow3 – not only in the mentioned fields of applications, but also in general – have been
significantly improved.

The development process is automated and continuously checked by a Jenkins installation run at
EMCL. Here at each commit into the source repository, the code syntax is checked, the library is built
and automated notifications are sent to the developers. The continuous integration guarantees a high
quality standard of HiFlow3 already during the development phase.

HiFlow3 is subject to strong development efforts in order to increase both, the quality and the ease of
use of the package even for complex applications. Current development aims at establishing a standard
interface in order to be able to use HiFlow3 by means of a software as a service.
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(JSC).

A Tutorials

The following Table 8 shows a list of the current HiFlow3 tutorials.

Table 8: List and description of current HiFlow3 tutorials

Title Version Year Description

Poisson equation 1.4 2014 Introductory Tutorial to the ba-
sic functions of HiFlow3

Incompressible Navier-Stokes
equation

1.4 2014 An application of HiFlow3 to the
Navier-Stokes equation

Linear algebra with GPU 1.4 2014 Explanation of the HiFlow3 LA
Toolbox

Applying an Inexact Newton
Method

1.4 2014 A tutorial to solve non-linear
problems with the inexact New-
ton Method

Distributed Control Problem for
Poisson Equation

1.4 2014 An optimization problem cou-
pled with the solution of the
Poisson Equation

Stabilization Schemes for Ad-
vection Dominated Stationary
Convection-Diffusion Equation

1.4 2014 An introduction to the coupled
problem of Convection and Dif-
fusion

Time-Discretization Methods
Based on Convection-Diffusion
Equation

1.4 2014 An explanation of time-
discretization

Boundary Value Problem for In-
compressible Generalized Porous
Media Equation

1.4 2012 Porous Media Modeling

Direct and Inverse Problem in
Electrostatics

1.4 2014 HiFlow3 applied to a standard
physic’s problem

Elasticity for Soft Tissue Simula-
tion

1.5 2015 An introduction to structure
simulation

Poisson equation with un-
certain parameters using the
Spectral-Stochastic-Finite-
Element-Method

1.5 2015 A study of Uncertainty Quantifi-
cation

Aortic Blood Flow Simulation 2.0 2017 A patient-specific CFD-
simulation of an aortic bow.

Error Estimation on Convex
Bent Domains for the Poisson
Equation

2.0 2017 Error estimation and local refine-
ment for Poisson equation with
different error estimators
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Heuveline: Simulation of Surgical Cutting in Soft Tissue using the Extended Finite

Element Method (X-FEM)

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.



Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

www.emcl.iwr.uni-heidelberg.de


	Introduction
	License

	Features and Functionalities of the Open-Source FEM Software Toolkit HiFlow3
	Mesh
	Data Structures
	Main Routines

	DoF/FEM
	Pyramid Element
	Discontinuous Galerkin

	Linear Algebra and Solvers
	Abstract Matrix and Vector Interfaces
	Schur Complement Preconditioner and Solver
	Energy-efficient Geometric Multigrid Solver

	Uncertainty Quantification (UQ)
	Extensibility: Third-party packages
	Mesh module
	Linear Algebra and Solvers
	I/O


	Interfaces and Environments
	Simulation Pre- and Post-Processing and Cognitive Application Pipeline
	Machine Learning-based Calibration of Soft Tissue Simulation Material Parameters
	Multiphysics model coupling using OpenPALM
	OpenPALM terms and concepts
	Example application for fluid-heat-coupling in a natural convection scenario


	Show Cases
	Show Case: Cyclone-Cyclone Interaction (CCI)
	Show Case: Fluid-Structure Interaction for Aortic Blood Flow
	Show Case: Mitral Valve
	Show Case: Blood Pump with UQ

	Conclusion and Outlook
	Tutorials

