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ONTOLOGY AFTER 
INFORMATICS 
	
“What can I know? What must I do? 
What may I hope for? What is man?”1 
The four Kantian questions, as uni-
versal as they seem, pivot around the 
I. All knowledge gained is knowledge 
only in the cognitive relation between 
acts of consciousness and an outside 
world, which is deemed more or less 
inaccessible. Every ethical demand is 
demanded of an I. Every hope experi-
enced is experienced by an I. Kant 
holds that answering these three 
questions will inevitably lead to an 
answer of the fourth: What is man? 
And it is again an I who questions 
what it is. The Western world lives in 
the Kantian horizon. It pivots around 
the I. 

Speculative realists set out to 
change that. While not representing a 
unified theory, this line of thought en-
compasses different non-anthropo-
centric positions striving to, in Ray 
Brassier’s words, “re-interrogate or to 
open up a whole set of philosophical 
problems that were taken to have 
been definitively settled by Kant, cer-
tainly, at least, by those working 
within the continental tradition.”2 As 
overcoming the human as the epis-
temic center of the cosmos neces-
sarily leads to both a speculative 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
1 Immanuel Kant, Critique of Pure Reason, ed. 
Paul Guyer and Allen W. Wood, The Cambridge 
Edition of the Works of Immanuel Kant (Cambridge: 
Cambridge University Press, 1998), A805/B833. 
2 Ray Brassier, Iain Hamilton Grant, Graham 
Harman, and Quentin Meillassoux, “Speculative 
Realism,” in Collapse, ed. Robin Mackay, vol. III 
(Oxford: Urbanomic, 2007), 308. 

stance and a more or less realist posi-
tion, speculative realism is a feasible 
term. In accordance with the tradition 
in which Kant named metaphysics “a 
wholly isolated speculative cognition 
of reason,”3 speculative realism 
merely makes the nature of its task 
obvious by naming it accordingly. 

The variant of speculative re-
alism which will be looked into here, 
is object-oriented philosophy (more 
often referred to as object-oriented 
ontology and thus abbreviated OOO), a 
theory by contemporary American 
philosopher Graham Harman, who 
also coined the term. Even though 
OOO is subsumed under the specula-
tive realism movement, Harman 
claims to be “the only realist in spec-
ulative realism.”4 

OOO, even though this is most 
likely unintended, is a substance on-
tology developed under the impres-
sion of informatics. It “might be 
termed the first computational me-
dium-based philosophy, even if it is 
not fully reflexive of its own historical 
context in its self-understanding of 
the computation milieu in which it re-
sides.”5 As “perhaps the first Internet 
or born-digital philosophy has certain 
overdetermined characteristics that 
reflect the medium within which [it 
has] emerged.”6 Such notions usually 
refer to the leading figures of specula-
tive realism using blogs and social 
media to distribute their thoughts 

3 Kant, CPR, B xiv. 
4 Graham Harman, personal communication 
with the author, March 12, 2017. 
5 David M. Berry, Critical Theory and the 
Digital, Critical Theory and Contemporary Society 
(New York: Bloomsbury, 2014), 103. 
6 Ibid., 104. 
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quickly and engage in lively discus-
sions with the academic community 
online. OOO however has a deeper re-
lation to the computational sphere: 
while Harman first publicly men-
tioned the term object-oriented phi-
losophy in 1999,7 object-oriented 
programming was already invented 
in the late 1960s – and the parallels 
between these two domains are note-
worthy. 

Working at the Norwegian 
Computing Center in Oslo, Ole-Johan 
Dahl und Kristen Nygaard in the 
1960s conceived a new way of com-
puter programming, in which what 
was separate before, namely data and 
functions, were molded into com-
bined and somehow sealed logical 
units. Dahl and Nygaard named these 
units “objects” and the programming 
language they developed, Simula 67, 
is regarded the first to allow for soft-
ware development following the par-
adigm of object-oriented program-
ming (OOP).8 

OOP has been in use for nearly 
five decades now and while it is still a 
popular way of structuring software 
development projects large and small 
today, its critics have become more 
vocal. OOP’s unnecessary complexity 
is just one of the issues computer lan-
guage designers bring up: “The prob-
lem with object-oriented languages is 
they’ve got all this implicit environ-
ment that they carry around with 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
7 Graham Harman, Bells and Whistles: More 
Speculative Realism (Winchester: Zero Books, 2013), 
6. 
8 Bjarne Stroustrup in: Federico Biancuzzi and 
Shane Warden, eds., Masterminds of Programming 
(Sebastopol, CA: O’Reilly, 2009), 10. 
9 Joe Armstrong, Coders at Work: Reflections 
on the Craft of Programming, ed. Peter Seibel (New 
York: Apress, 2009), 213. 

them. You wanted a banana but what 
you got was a gorilla holding the ba-
nana and the entire jungle.”9 Regard-
less of OOP coming under fire lately, 
the striking parallels between the 
aesthetic and technological praxis of 
object-oriented programming on the 
one side and a new metaphysics on 
the other side, promise a fruitful con-
tribution to the ontographic project. 

As a science investigating 
“the structure and properties (not spe-
cific content) of scientific infor-
mation, as well as the regularities of 
scientific information activity, its 
theory, history, methodology and or-
ganization,” informatics was defined 
in the 1960s.10 Since then the task of 
informatics has been extended be-
yond the analysis of scientific infor-
mation and deepened by performing 
this task using the means of compu-
ting. Thus, informatics today has be-
come the science that investigates 
the structure and properties of infor-
mation. The similarities between ob-
ject-oriented programming and 
object-oriented ontology do not come 
as a surprise, given that informatics is 
traditionally occupied with meta-
physics: both computer science and 
philosophy “do not address the mate-
riality of things such as physics, they 
are not confined to the ‘science of 
quantity’ (= mathematics).”11 Since 
computer science strives to map real-
ity onto computational structures, 

10 A.I. Mikhailov, A.I. Chernyl, and R.S. 
Gilyarevskii, “Informatika – Novoe Nazvanie Teorii 
Naučnoj Informacii,” Naučno Tehničeskaja 
Informacija, no. 12 (1966): 35–39. 
11  Alessandro Bellini, “Is Metaphysics Relevant 
to Computer Science?,” Mathema (June 30, 2012), 
http://www.mathema.com/philosophy/metafisica/is-
metaphysics-relevant-to-computer-science/. 
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employing substance ontologies 
seems obvious. As computer science 
works on domain-specific models in 
order to find solutions to practical 
problems, employing models of the 
world, informatics is – like any proper 
science – applied metaphysics. 

 
PARALLELS 

Computational metaphors share 
a lot of similarity in object-
oriented software to the 
principles expressed by [ooo’s] 
speculations about objects as 
objects.12  

There are astonishing parallels be-
tween object-oriented ontology and 
object-oriented programming, even 
though the former only borrowed the 
name from the latter.13 

When object-oriented pro-
gramming was invented, the domi-
nant approach to computer pro-
gramming was imperative or proce-
dural. Imperative programming 
means conveying computational 
statements that directly alter the 
state of the program. A program de-
signed in this way roughly works by 
linearly processing a list of functions 
step by step. When these statements 
are grouped into semantic units, “pro-
cedures,” one can speak of procedural 
programming.  Procedures are used 
to group commands in a computer 
program in order to make large pro-
grams more  easily maintainable. 
Groups of statements also make code 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
12  Berry, Critical Theory and the Digital, 205. 
13  Graham Harman, personal communication 
with the author, August 18, 2013. 

reusable, since the same set of state-
ments can be invoked again and 
again. It also makes code more flexi-
ble, since parameters can be handed 
to a procedure for it to process. Pa-
rameters can be thought of as values 
handed to functions (the x in f(x)). 
While the function follows the same 
logics, the operation’s result depends 
on the parameters passed. 
These improvements however were 
not sufficient to handle complex 
computational tasks like weather 
forecasts. Tasks like this require sim-
ulations. And even though Alan 
Shapiro mockingly notes that “the 
commercialized culture of the USA is 
substantially not a real world any-
more: it is already a simulation. Ob-
ject-oriented programming is a 
simulation of the simulation,”14 the 
necessity of simulating weather sys-
tems or financial markets called for 
more sophisticated strategies to 
structure computer programs. In-
stead of grouping lists of statements 
into procedures and have these state-
ments directly manipulate a pro-
gram’s state, object-oriented pro-
gramming offers a vicarious ap-
proach. Computational statements 
and data are being bundled together 
in objects. These objects are being 
closed off to the rest of the program 
and can only be accessed indirectly 
by means of defined interfaces. Un-
der this new programming paradigm 
computer programmers became ob-
ject designers – they were forced to 

14 Alan Shapiro, Die Software der Zukunft oder: 
das Modell geht der Realität voraus, International 
Flusser Lectures (Cologne: König, 2014), 7; transla-
tion by the author. 
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come up with an object-oriented on-
tology for the world they wanted to 
map into the computer’s memory. 

The invention of object-orien-
tation made object-oriented com-
puter languages a necessity. The 
available computer languages did not 
possess the grammar necessary to 
describe objects and their relations. It 
becomes clear that “computer lan-
guage” or “programming language” 
are misleading terms. These lan-
guages are products of human inven-
tion. They are human-designed, 
human-understandable languages, 
which computers can process in or-
der to fulfill certain tasks.  Designing 
a programming language is an at-
tempt at producing the toolset for fu-
ture developers to solve as yet un-
anticipated problems, sometimes in 
ways that were previously inconceiv-
able. Object-oriented ontologies in in-
formatics are pragmatic and open, 
they are realist in a sense of being a 
useful system of denotators of things 
outside the computer (or the pro-
gramming language). They aim for re-
usable program code, which only 
needs to be written once, so problems 
do not need to be solved twice and er-
rors do not have to be fixed in multi-
ple places. Thus, the programming 
language designer’s task is meta-
pragmatic: designing a language as a 
tool for others to build tools to even-
tually fulfill certain tasks. Object-ori-
entation discards lists of statements 
in favor of objects as the locus of, to 
use a Simondonian term, “problem 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
15 Gilbert Simondon, “The Genesis of the 
Individual,” in Incorporations, ed. Jonathan Crary and 
Sanford Kwinter (New York: Zone, 1992), 301. 

solving.” Simondon’s notion of the in-
dividual describes objects as “agents 
of compatibilisation,” solving prob-
lems between different “orders of 
magnitude.”15 With this notion Si-
mondon seems to have anticipated 
the object in object-oriented pro-
gramming; or at the very least, the ac-
tual implementation of objects in OOP 
prove to be in line with the traits of 
the individual Simondon described. 

Object-oriented programming 
became so widely adopted partly be-
cause it is close to the everyday expe-
rience of objects. It also makes strong 
use of hierarchies, another everyday 
concept. Objects may remain identifi-
able and stable from the outside, even 
when their interior changes dramati-
cally. The “open/closed principle” is 
evidence of this: a component, not 
necessarily an object, needs to be 
open for future enhancement, but 
closed with regards to its already ex-
posed interfaces. This “being closed” 
ensures that other components de-
pending on the component can rely 
on the component’s functionality dis-
played earlier – unexpected changes 
in behavior need to be prevented.16 
Being closed can be read as unity, as 
a certain stability of an object that 
makes it identifiable. Object-oriented 
programming however reaches some 
of this stability by interweaving ob-
jects into a hierarchy, an idea that ob-
ject-oriented ontology rejects. 
In both object-oriented programming 
and object-oriented ontology objects 
are the dominant structural ele-

16 Bertrand Meyer, Object-Oriented Software 
Construction, Prentice-Hall International Series in 
Computer Science (New York: Prentice-Hall, 1988), 
23. 



 
YORAN: APPLIED METAPHYSICS 

	

 125 

ments. In object-oriented program-
ming, objects are supposed to be mod-
eled after real-life objects as the aim 
is to provide a sufficiently precise 
representation of the reality to be 
simulated. In practice this undertak-
ing often fails. Objects are being cre-
ated in code for things that do not 
exist outside the program. Function-
ality is forced into object form even 
when the result is awkward and un-
satisfying. As a result, alternative pro-
gramming paradigms are getting 
more interest lately and new pro-
gramming languages like Apple’s 
Swift are designed undogmatically, 
mixing different paradigms with the 
goal to always deliver the solution 
that’s least error-prone for the use-
case. But this should not be of any 
concern as we are focusing on the 
multitude of traits that OOP and OOO 
share: 
 
1. Objects are both systems’ basic 

building blocks. 
2. Objects can be anything from 

very simple to extremely com-
plex. 

3. Objects have an inner life, 
which is not fully exposed to 
the outside. 

4. Objects interact with other ob-
jects indirectly and do not ex-
haust other objects completely. 

5. Objects can destroy other ob-
jects. 

6. Results of interactions between 
objects may or may not be pre-
dictable from outside an object. 

7. Objects can contain objects. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
17 Biancuzzi and Warden, Masterminds of 
Programming, 350. 

8. Objects can change over time, 
but at the same time stay the 
same object in the sense of an 
identifiable entity. 

9. No two objects are the same. 

 
OBJECTS AS  
UNPREDICTABLE 
BUNDLES 
 
The first programming language re-
garded as object-oriented was Simula 
67, invented in the 1960s by Ole-Jo-
han Dahl und Kristen Nygaard at the 
Norwegian Computing Center in Oslo. 
Simula 67 was designed as a formal 
language to describe systems with 
the goal of simulation (thus the name 
Simula, a composite of simulation 
and language). Simula already incor-
porated most major concepts of ob-
ject-orientation. Most importantly, 
Dahl’s and Nygaard’s object definition 
still holds today: objects in object-ori-
ented programming are bundles of 
properties (data) and code (behavior, 
logics, functions, methods). These ob-
jects expose a defined set of inter-
faces, which does not reveal the 
totality of the object’s capabilities and 
controls the flow of information in 
and out of the object. These two spe-
cifics are subsumed under the “en-
capsulation” moniker.17 

Objects in programming are 
another variant of “the ancient prob-
lem of the one and the many”:18 they 
exist as abstract definitions, called 

18 Graham Harman, The Quadruple Object 
(Winchester: Zero Books, 2011), 69. 
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“classes” or “object types,” and as ac-
tual entities, called “objects” or “in-
stances.” So, while a class is the 
Platonic description of an abstract ob-
ject’s properties and behavior, in-
stances are the actual realization of 
such classes in a computer’s 
memory.19 There can be more than 
one instance of any class, and it is 
possible and common for multiple in-
stances of the same class to com-
municate with each other. 
Let us look at a concrete example of 
the difference between procedural 
and object-oriented programming. In 
procedural programming, a typical 
function would be y=f(x), where f is 
the function performed on x and the 
function’s result would be stored (re-
turned) in the variable y. In object-ori-
entation however, an object x would 
be introduced, which would contain a 
method f. An interface would be de-
fined that would allow for other ob-
jects to call f, using a specified 
pattern. And so, by invoking f, the 
member function being part of object 
x – or x.f() for short – the object, con-
taining both data and functionality, 
stays within itself. In our case, there 
is no return value, so no y to save the 
results of function f to. This is not 
necessary as the object itself holds all 
the data it operates on. 

Object-oriented programming 
has been criticized for the fact that 
the behavior of object methods (func-
tions inside objects) is unpredictable 
when viewed from a strictly mathe-
matical perspective. A mathematical 
function y=f(x) is supposed only to 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
19 Vlad Tarko, “The Metaphysics of Object 
Oriented Programming,” May 28, 2006, 
http://news.softpedia.com/news/The-Metaphysics-
of-Object-Oriented-Programming-24906.shtml. 

work on x and return the result in y. 
An object method however can also 
modify other variables inside its ob-
ject and thus lead to unpredictable re-
sults. A function is supposed to return 
its result – an object method however 
modifies its object, but does not nec-
essarily return a copy of (or a pointer 
to) the whole modified object. When 
manipulating an object through one 
of its member functions, it is not 
known from the outside which effects 
this manipulation will have on the ob-
ject internally. This means the ob-
ject’s behavior following such a 
method call is not predictable from 
outside of the object. While software 
developers generally try to prevent 
unpredictability, the object-oriented 
philosopher will hardly be surprised: 
it is a key characteristic of OOO that 
objects can behave in unpredictable 
ways and that their interiority is 
sealed off from any direct access: 

I think the biggest problem 
typically with object-oriented 
programming is that people do 
their object-oriented program-
ming in a very imperative 
manner where objects encap-
sulate mutable state and you 
call methods or send mes-
sages to objects that cause 
them to modify themselves 
unbeknownst to other people 
that are referencing these ob-
jects. Now you end up with 
side effects that surprise you 
that you can’t analyze.20 

20 Biancuzzi and Warden, Masterminds of 
Programming, 315. 
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While in object-orientation data and 
operations performed on it need to be 
bundled into one object, the compet-
ing paradigm of functional program-
ming means that operations and data 
are separated. In the functional pro-
gramming language Haskell for ex-
ample, functions can only return 
values, but cannot change the state of 
a program (as is the case in object-ori-
entation). 

 
THE PLATONIC 
CLASS 
 
While objects may have complex in-
ner workings (code as well as data), 
they usually do not share all this in-
formation with other objects. An ob-
ject exposes certain well-defined 
interfaces through which communi-
cation is possible. In line with object-
orientation’s original application, we 
want to discuss the key concepts of 
OOP using a simulation program. We 
will imagine a program simulating 
gravitational effects in our solar sys-
tem. Such a program, if designed in 
an object-oriented way, would most 
definitely contain an object type – or 
Platonic “class” – representing a 
planet. Such a class would contain 
variables to describe a planet’s physi-
cal and chemical properties like its 
diameter, atmosphere, age, current 
average temperature, its position in 
relation to the solar system’s sun, etc. 
It would also contain methods, which 
would be used to manipulate class 
data. A method to change the average 
temperature (to account for the case 
of a slowly dying sun for example) 

would need to be implemented as 
well. In a solar system simulation, 
there would be multiple instances – 
objects – of the planet class; in the 
case of our solar system one would 
create objects for Earth, Jupiter, Sat-
urn etc. 

The simulation would manip-
ulate any planet’s data by calling the 
object’s respective method, for exam-
ple the one to change the planet’s av-
erage temperature on the surface. 
The actual variable holding the aver-
age temperature itself would not be 
exposed to the object’s outside. So, 
any interaction with the object must 
be mediated through the interface 
methods provided by the object. All 
interactions with an object become 
structured by this intermediate layer 
and can be checked for faulty inputs. 
Instead of directly changing the tem-
perature on a planet to a value below 
absolute zero (which would be possi-
ble if direct access was given), the in-
termediate data setting method 
provides its own logic, and thus limi-
tations, to prevent such a “misuse” of 
the object. 

But all planets are different 
and to take this into consideration in 
our simulation, we would need to set 
any instance’s properties (data) ac-
cordingly. To do so, classes provide 
special “constructor” methods, which 
bring an instance of a class into exist-
ence. Constructors take parameters 
needed to initially construct an object 
and then create an instance accord-
ingly. (To destroy objects, so-called 
“destructors” can be used as well.)  
As mentioned, object-oriented pro-
gramming differentiates between 
classes (object types) and objects 
(there is other terminology, but in this 
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work, we will use these classic terms 
as defined in the C++ programming 
language). What makes this parallel 
interesting is that it is an interplay 
between a fixed structure and free-
floating accidents that constitutes an 
object. This interplay is what OOO 
deems an object’s essence. As not to 
stretch the analogies between OOO 
and OOP too far, this interplay takes 
place on the inside of an object in OOO, 
but in OOP it crosses borders between 
objects. But similar to the situation in 
OOO, objects can come into existence 
without actively enacting any reality. 
However, the object structure in OOP 
(which we would call the counterpart 
to OOO’s real-object-pole) defines 
what an object can do. This is to be 
understood as a potential and not as 
an exhaustive description of the ob-
ject’s capabilities. In OOP, the instance 
of an object (what we have come to 
see as its real-qualities-pole) cannot 
be reduced to the object itself (the 
real-object-pole) – an object therefore 
is always more than its rigid struc-
ture. If the object has any interface to 
the outside, which is the case with 
most objects in OOP, there is still no 
way to know the results of all possible 
interactions with the object. 

 
HIERARCHY AND 
INHERITANCE 
 
Let us assume all planets in our solar 
system simulation have been suffi-
ciently defined. We would still need 
an object representing the sun. The 
sun is not a planet, but a star, yet there 
are properties and probably methods 

both share, something all celestial 
bodies incorporate. Since its first in-
carnation in Simula 67, using the ob-
ject-oriented programming paradigm 
is synonymous with organizing ob-
jects hierarchically in tree-like struc-
tures. Every object has at least one 
parent object (a superclass) and can 
have child objects (subclasses). An 
object then inherits all properties and 
methods of its superclass (or, in some 
cases, superclasses) and hands them 
and its own properties and methods 
down its subclasses, which can then 
add additional properties and meth-
ods. So, both classes representing 
planets and suns should be derived 
from a superclass representing any 
celestial body. This celestial body 
class would then handle properties 
and methods shared by all its sub-
classes. Only methods and data nec-
essary for more specific celestial 
bodies like planets or stars would be 
defined in their respective sub-
classes. In OOP, a principle of reversed 
subsidiarity is at work: anything that 
can be handled at the highest, most 
abstract level is being handled there; 
only more specific tasks are being 
handled further down the object hier-
archy. 

OOP’s terminology, talking of 
“parent classes,” “child classes,” and 
“inheritance,” shows the hierarchical 
tradition in which OOP is rooted. Any 
object in the hierarchy “inherits” all 
traits from its parent object. Such a 
hierarchy has at its root an abstract 
object (CObject in Microsoft’s MFC 
model), which only consists of ab-
stract methods that make no state-
ment about the specifics of this object 
at all. Such an object is rarely being 
used directly by software developers, 
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but only through one of its more con-
crete subclasses. But not all objects 
are part of such a hierarchy, like for 
example the CTime object in the MFC 
model.21 CTime is used to represent 
an absolute time value. Operations on 
such a value are very basic and 
needed in a multitude of methods, but 
it would be hard to logically position a 
time object somewhere in an all-en-
compassing hierarchical system. The 
question of what a representation of a 
specific time should be derived from 
is hard to answer. This concept is too 
basic to be inserted into a hierarchy. 
So, while CTime objects can be inte-
grated into custom-made hierarchies, 
they themselves are not derived from 
any superclass: representations of 
time are solitary objects within the 
MFC model. 

 
INTERFACE AND 
IMPLEMENTATION 
 
Now that we have a small hierarchy 
of celestial bodies represented in our 
object-oriented program design, we 
still face the task of implementing the 
actual simulation algorithm. Discuss-
ing this algorithm itself is outside our 
scope. We are more interested in 
where such an algorithm would be 
placed in an object-oriented design. 
This touches a key question of any 
object-oriented system: where and 
how do processes take place? Do they 
happen within objects, between ob-

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
21 Microsoft, “CTime Class,” 2015, 
https://msdn.microsoft.com/en-us/library 
/78zb0ese.aspx. 

jects, or in both places? While Simon-
don stresses the notion of objects as 
being through becoming,22 the con-
cepts of both OOP and OOO define ob-
jects qua their relative stability. 

In object-oriented ontology, 
real objects need sensual objects as a 
bridge between them, leading to a 
chain of objects. Sensual or real ob-
jects cannot touch each other di-
rectly. The sensual object acts as an 
interface between real objects – or 
the real object as the interface be-
tween sensual objects. In object-ori-
ented programming, objects cannot 
touch directly as well: they are broken 
down in interface and implementa-
tion parts. The interface part acts as 
an – incomplete – directory of meth-
ods and variables made available to 
other objects. It never exposes every-
thing on an object’s inside to the out-
side. It can even announce methods, 
which at the time of such an an-
nouncement are not even fully de-
fined. Only when these methods are 
being invoked, a real-time decision 
will be made in regard to which ver-
sion of the method would be appropri-
ate to use in the current situation. So, 
OOP’s interface is on the one hand a 
sensual object since it serves as the 
interface to other objects while not 
exposing the whole enactability on 
reality of its real object – which would 
be the implementation. Methods can 
execute different code, depending on 
criteria inaccessible from the outside, 
allowing for a program to change dur-
ing runtime without damaging the 

22 Simondon, “The Genesis of the Individual.” 
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object’s identifiability. The imple-
mentation part on the other hand rep-
resents the real object in the totality 
of its enactability in the program. 

As for the solar system simu-
lation, in object-oriented program-
ming the obvious implementation 
would be a superclass representing 
all the components of a solar system 
needed for its simulation on a celes-
tial bodies’ level. An instance of such 
a solar system class would then have 
to incorporate member classes for 
every celestial body in the solar sys-
tem. But which object would be the 
one to describe the relations between 
all the data and methods of the solar 
system object? One could create 
methods in the solar system class 
that would contain the algorithm 
needed for the simulation, like modi-
fying a planet’s position in space de-
pending on the position and 
movement of other celestial bodies as 
time progresses. But the intended 
way of handling such a simulation is 
a technique called message-passing. 

Objects can send and receive 
messages. The concept of message-
passing allows for messages to be 
sent to an object, which then decides 
how to handle the message. This way 
an object is able to handle requests 
dynamically, depending on the type 
of data sent to it. This illustrates how 
both sides in an object-to-object in-
teraction are involved. This interac-
tion is not a simple sender-receiver 
relationship, but a rich exchange in 
which both objects involved do not 
fully touch each other, but are selec-
tive with regards to which input to ac-
cept at all. An object representing a 
planet could send a message to other 
planet objects, informing them about 

its own location in space. These other 
planets then would change their posi-
tion in space accordingly. This way 
one could create a very simple simu-
lation of gravity, but none of the ob-
jects involved would have any access 
to other object properties not needed 
for the calculation of gravitational ef-
fects. 

So, message-passing is not 
just a concept of inexhaustibility, it is 
also a concept of indirection. Objects 
do not exhaust each other, they do not 
even touch directly, but they com-
municate by messages, which can be 
seen as an implementation of the 
concept of sensual objects. 

 
INEXHAUSTIBILITY 
OF PROGRAMS 
 
Let us go back to the solar system 
simulation example one last time. We 
found that the object ontology offered 
by object-oriented programming lan-
guages is a lax one, since there can be 
objects outside the hierarchy. 

The solar system object, the 
object which hosts our simulation, 
would need to be instantiated at some 
point, since it cannot create itself. 
There has to be code outside the solar 
system class. Of course, there might 
be another object, which again incor-
porates the solar system class (a su-
perclass to the solar system) 
representing a galaxy. But the Milky 
Way is not useful for simulating the 
gravitational effects in our solar sys-
tem, and this would just move the 
problem to another level. The object-
oriented programming paradigm is 
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an abstraction from the hardware the 
program will eventually be running 
on, since the central processing unit 
(CPU) does not “know” objects. The 
compiler or interpreter program must 
have done its task of translation to 
machine code before the CPU can run 
the program – and after this transla-
tion the object concept is lost to the 
CPU. These translator programs re-
duce object-orientation to a very 
basic sequence of memory opera-
tions, which the chip can process. 
This would only change if object-ori-
ented hardware were being built, 
hardware that would render compil-
ers or interpreters useless – but ob-
ject-oriented chip designs like the 
Intel iAPX 432, which was introduced 
in 1981, eventually failed. They were 
slow and expensive and new technol-
ogies more suitable to the limitations 
of hardware prove more efficient – 
and so the idea of object-orientation 
in chips has only found very limited 
application.23 

Programming languages 
came a long way in the last 60 years. 
They moved from a primitive set of 
commands in order to directly access 
a processor’s memory to complex se-
mantics, completely abstracted from 
the hardware its programs will run 
on. All high-level programming lan-
guages need an intermediary be-
tween statements made in such a 
language and the hardware programs 
are supposed to run on – these inter-
mediaries are either compilers (pro-
grams that in a time-consuming way 
translate high-level programming 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
23 David R. Ditzel and David A. Patterson, 
“Retrospective on High-Level Language Computer 
Architecture”(ACM Press, 1980), 97-104, 
doi:10.1145/800053.801914. 

languages to machine code the pro-
cessor can work with) or interpreters 
(which basically fulfill the same task 
in real-time). In any case, there is a 
medium between the high-level lan-
guage and the machine.24 

While objects in object-ori-
ented ontology are described as bro-
ken down in a real and a sensual part 
(what we superficially likened to the 
concepts of implementation and in-
terface in programming), we need to 
understand that the whole relation of 
the statements made in a high-level 
programming language to the hard-
ware the written program will run on 
is the relation of model and reality. 
The hardware of the chip forms the 
ultimate reality of the program, since 
the hardware defines the reality 
against the model put on top of it 
must work. The reality of the hard-
ware again is its context, the wider 
environment of the machinery, its ap-
plications, and the people using it. 

The limits of a program’s en-
actability of its reality are in the hard-
ware it runs on and the time available. 
A self-modifying program could en-
act an infinite amount of reality given 
there is enough time. So, the real ob-
ject is inexhaustible by the relations it 
enters into with sensual objects. Pro-
grams running on a chip can never 
exhaust it. It is impossible to list all 
the programs that could be executed 
on the chip. It is not even possible to 
know in advance if all these programs 
will actually come to an end. Alan Tu-
ring described this phenomenon, 
which later became known as the 

24 A new generation of chips might end this 
separation. FPGAs are chips whose hardware can be 
modified by means of software, effectively blurring 
the line between software and hardware. 
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“halting problem”: it is undecidable if 
an arbitrary computer program will 
eventually finish running or will con-
tinue running forever.25 The halting 
problem extends inexhaustibility to 
the proof of inexhaustibility. 

Object-oriented ontology 
aims at treating all objects equally – 
which rules out a central perpetrator. 
In object-oriented programming, it 
seems that there is no central perpe-
trator as well and objects act inde-
pendently from a central instance. In 
reality, object-orientation today is a 
paradigm put on top of hardware, 
which is incapable of working with-
out a central perpetrator. So, while the 
language in which the program is 
modeled, is object-oriented, it is im-
portant to understand that these ob-
jects are constructions in a language, 
which again tries to mimic things and 
relations in reality. 

Objects act on behalf of them-
selves as long as one stays at the ob-
ject’s level of abstraction. On the 
chip’s level these objects are nonex-
istent – the CPU only acts upon 
memory, where certain information 
is stored. The CPU and the operating 
system will make decisions without 
the objects “knowing,” for example for 
dispatching: since programs today 
mostly run on computers with more 
than one central processing unit, it is 
necessary to distribute tasks (or ob-
ject methods) to different CPUs. 

The intuition of being sur-
rounded by objects with a certain in-
dependence from each other is at the 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
25 Alan M. Turing, “On Computable Numbers, 
with an Application to the Entscheidungsproblem,” 
Proceedings of the London Mathematical Society s2-
42, no. 1 (January 1, 1937): 230-65, 
doi:10.1112/plms/s2-42.1.230; Alan M. Turing, “On 

root of both models, OOP and OOO. But 
object-oriented ontology rejects the 
concept of a reducibility of objects to 
other objects: even though every ob-
ject can be broken down to its parts 
(representing new objects): these ob-
jects do not exhaust the bigger object 
they form. There is nothing “below” 
objects in OOO. OOP however is a 
model, which is deliberately put on 
top of the more primitive and non-in-
tuitive computational concept of 
memory. 

This shows how object-ori-
ented programming works only at a 
certain level of abstraction, thus con-
stituting the major difference be-
tween object-oriented programming 
and object-oriented ontology: the ear-
lier being a model applied pragmati-
cally in one domain, the latter aiming 
for a complete metaphysics. 

Computable Numbers, with an Application to the 
Entscheidungsproblem. A Correction,” Proceedings of 
the London Mathematical Society s2-43, no. 6 
(January 1, 1938): 544-46, doi:10.1112/plms/s2-
43.6.544. 
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